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The magnetic, noncollinear parametrization of Dudarev’s DFT + U method is generalized to fully relativistic
ultrasoft pseudopotentials. We present the definition of the DFT + U total energy functional and the calculation
of forces and stresses in the case of orthogonalized atomic orbitals defining the localized Hubbard manifold,
where additional contributions arising from the derivative of the inverse square root of the overlap matrix
appear. We further extend the perturbative calculation of the Hubbard U parameters within density-functional
perturbation theory to the noncollinear relativistic case, by exploiting an existing and recently developed
theoretical approach that takes advantage of the time-reversal operator to solve a second Sternheimer equation.
We validate and apply the new scheme by studying the electronic structure and the thermodynamics of the
binary compounds EuX (where X = O, S, Se, Te is a chalcogen atom), as representative simple crystals, and of
the pyrochlore Cd2Os2O7, representative of a more structurally complex oxide.
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I. INTRODUCTION

Simulating electronic properties of materials containing
transition-metal or rare-earth atoms has always been a con-
siderable challenge for first-principles methods based on
density-functional theory (DFT). The reasons are twofold:
strongly localized electrons can display multideterminant
character/strong correlations, which are not captured by ap-
proximate DFT, and they give rise to large self-interaction
errors [1]. One of the most widely adopted schemes to
improve the electronic description of systems hosting lo-
calized electrons is DFT + U [2–4]. The approach consists
of augmenting the DFT total energy functional EDFT with
a corrective term EU aiming to improve the description of
d or f electrons: EDFT+U = EDFT + EU . Rather than ad-
dressing electronic correlations, DFT + U corrects the large
self-interaction errors that are prevalent in systems that also
display strong correlations [5]. In fact, the main effect of the
EU correction enforces an integer-like electronic occupation
in the target localized manifold, or in more modern terminol-
ogy, a piecewise linearity of the total energy with respect to
the occupation of such a manifold [6,7]. It has been shown
to be quite successful to describe the magnetic and insulating
properties of oxides [7,8] and molecules [5,9] containing 3d
transition metals. Elements belonging to the same block of the
periodic table but in the 5th and 6th rows have frontier 4d and
5d orbitals, which are spatially more extended and therefore
less localized and magnetic than the 3d ones; for this reason
the +U correction is less frequently adopted to these ions. On
the other hand, increasing the atomic number also increases
the strength of the relativistic effects, i.e., the spin-orbit cou-
pling (SOC), which scales as Z4 for hydrogenic atoms (Z
being the atomic number), and as Z2 (due to the shielding

effect) in the external shells of many-electron atoms [10]. As
a consequence, in less explored but very interesting cases, it
is the combined effect of electronic localization and SOC that
determines the nature of the ground state. Relevant examples
are the strontium iridate Sr2IrO4 [11], pyrochlore iridates and
topological materials [12,13], americium monochalcogenides
[14], and the osmium-based double perovskite Ba2NaOsO6

[15].
In this paper we introduce a generalization of the DFT + U

method to deal with noncollinear magnetic structures and
SOC—already described in [16–18]—and extend it to a fully
relativistic (FR) ultrasoft pseudopotential (US-PP) formalism
[19,20]. In doing this, we exploit Smogunov’s implementa-
tion of Liechtenstein’s DFT + U functional with FR US-PP
[21,22] (which is currently restricted to total energy cal-
culations, without structural optimization or determination
of Hubbard parameters), and then adapt it to Dudarev’s
parametrization of DFT + U , which consists of the neglect of
high-order multipolar terms in the Coulomb interaction tensor
within Liechtenstein’s DFT + U [7]. We choose Dudarev’s
formulation of DFT + U because it reflects more transpar-
ently the localizing character of the Hubbard correction when
included within DFT functionals, and it better highlights
the restoration of the piecewise linearity in the approximate
exchange-correlation terms.

In the same PP framework, we extend the former im-
plementation by deriving the expressions of forces and
stresses, also when orthogonalized atomic orbitals are used as
Hubbard projectors, thus requiring the inclusion of contribu-
tions coming from the derivatives of the inverse square root of
the overlap matrix between different site-centered atomic-like
orbitals. Finally, exploiting density-functional perturbation
theory (DFPT) [23], we present a scheme to calculate the
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Hubbard U parameters from first principles in the case of
broken time-reversal symmetry (induced by the noncollinear
magnetism) and including SOC in full at the self-consistent
level. In doing so, we leverage the recent approach intro-
duced in Ref. [24] for the calculation of phonon frequencies
in the presence of SOC and noncollinear magnetism—which
exploits the solution of two independent Sternheimer equa-
tions: a standard one and a time-reversed one, in order to
obtain the first-order wave functions entering in the linear-
response problem. In this way, the entire formulation is
internally consistent and completely free from any adjustable
parameters.

We then apply the theory we developed to the study of
the series of binary europium monochalcogenides EuX (X =
O, S, Se, Te) and of the more complex oxide osmium
pyroclore Cd2Os2O7. For the EuX compounds, we deter-
mine both electronic structure and thermodynamic properties,
such as lattice parameter and bulk modulus, and quantify
the effect of different parametrizations of the exchange-
correlation functional on the final results. We also study
the pressure dependence of the enthalpy, and evaluate the
critical pressure above which a structural phase transition
occurs, where the crystal changes from the Fm3̄m to the
Pm3̄m space group. For Cd2Os2O7, we study the electronic
structure and energetics of different noncollinear magnetic
orderings, and analyze how the imposed magnetic patterns
change the crystal structure following variable-cell structural
relaxations.

The paper is organized as follows: In Sec. II A we in-
troduce the DFT + U functional in the FR US-PP scheme,
and generalize the calculation of the forces and stress tensor
to this framework, extending it also the case of orthogonal-
ized atomic wave functions defining the localized Hubbard
manifold. In Sec. II B we discuss the theory concerning the
perturbative calculation of the Hubbard U parameters, gen-
eralized to the noncollinear case in absence of time-reversal
symmetry. Finally, in Sec. III we validate the new approach
by applying it to the study of EuX oxide and chalcogenides
and Cd2Os2O7.

II. THEORETICAL FORMULATION

A. Total energy functional, forces, and stresses

Within DFT + U , the total energy DFT functional is
modified by adding the so-called Hubbard corrective term.
Dudarev’s formulation of DFT + U [25] provides a prescrip-
tion for the Hubbard augmentation part that is rotationally
invariant with respect to the localized manifold of interest.
Here, we adopt the parametrization of the noncollinear Du-
darev functional as employed in [16,17], and generalize it to
the FR US-PP scheme. In principle, when atomic states from
a FR calculation are used to build the Hubbard occupation
matrix [7], this latter should depend on the quantization-
axis projection of the total angular momentum J = L + S.
However, to avoid working in the basis of J and recast the
formulation in a similar way as is done in electronic-structure
codes for US-PPs [19], we use the j-averaged radial parts of
the atomic wave functions. The assumption underlying this
procedure is that magnetism (mostly driven by the electronic

exchange) is dominant compared to the splitting induced by
SOC. In this way, the total energy functional acquires the
spin-resolved form E = EDFT + EU , where

EU =
∑

I

U I

2

∑
m,σ

(
nIσσ

mm −
∑
m′σ ′

nIσσ ′
mm′ nIσ ′σ

m′m

)
, (1)

where I labels the atomic site within the unit cell, and m and
σ are the atomic magnetic quantum number and spin index,
respectively. The occupation matrix nIσσ ′

mm′ in the FR US-PP
scheme reads [26]

nIσσ ′
mm′ =

∑
i,σ1,σ2

θ̃i
〈
ψ

σ2
i

∣∣Sσ2σ
′ ∣∣φIσ ′

m′
〉〈
φIσ

m

∣∣Sσσ1
∣∣ψσ1

i

〉
, (2)

nIσσ ′ =
∑

m

nIσσ ′
mm = 1

2

(
nIδσσ ′ + σσσ ′ · mI

)
, (3)

where ψ and φ are, respectively, the (pseudo-)Kohn-Sham
(KS) and localized Hubbard states, nI = ∑

σ nIσσ is the oc-
cupation and mI = ∑

σσ ′ nIσσ ′
σσ ′σ is the magnetization of

the Hubbard manifold, and the index i collectively repre-
sents the band and the quasimomentum indices. The 2 ×
2 ultrasoft (nonlocal) S matrix 〈r1|Sσσ ′ |r2〉 = Sσσ ′

(r1, r2) is
given by

Sσσ ′
(r1, r2) = δ(r1 − r2) δσσ ′ +

∑
I,ν,ν ′

QIσσ ′
νν ′ βI

ν (r1) βI
ν ′ (r2)∗,

where ν is an index referring to the atomic quantum numbers
of the β projector functions pertaining to the US-PP, and

QIσσ ′
νν ′ =

∑
ν1,ν2,σ1

f σσ1
νν1

QI
ν1ν2

f σ1σ
′

ν2ν ′ (4)

are the FR augmentation charges. These lead to hav-
ing orthonormal constraints

∑
σσ ′ 〈ψσ

i |Sσσ ′ |ψσ ′
j 〉 = δi j ; see

Ref. [20] for an in-depth discussion. The KS pseudo-
wave-functions ψσ

i (r) = 〈r, σ |	i〉 are defined as the σ -spin
component of the KS spinor |	i〉 = ∑

σ |ψσ
i , σ 〉. The atomic

pseudostates φIσ
m = φI

m are actually spin-independent (be-
cause of the j-averaging procedure), but for practical pur-
poses we still define the spinor |
I

m〉 = ∑
σ |φI

m, σ 〉, for
which φIσ

m (r) = 〈r, σ |
I
m〉 (it will have nonzero spin com-

ponents as in the collinear case, and equal spatial parts).
If these states are orthogonalized according to Löwdin’s
decomposition, an overlap matrix OIσ I ′σ ′

mm′ = 〈φIσ
m |Sσσ ′ |φI ′σ ′

m′ 〉
needs to be introduced and the Hubbard atomic-like states
become

φIσ
m (r) → ϕIσ

m (r) =
∑

I ′,m′,σ ′

(
O−1/2

)I ′σ ′Iσ
m′m φI ′σ ′

m′ (r). (5)

The former set of equations completely defines our total en-
ergy functional.

For the calculation of forces and stresses, the Hellmann-
Feynman theorem applies (provided the Hubbard U is
considered independent of displacements and strain); as a
consequence, the variation of EU with respect to a pa-
rameter μ (μ = uI , the atomic displacement, for forces,
and μ = ε, the strain, for the stress tensor) involves
only the variations of the ultrasoft matrix and the φIσ

m (r)

115157-2



NONCOLLINEAR DFT + U AND HUBBARD … PHYSICAL REVIEW B 108, 115157 (2023)

functions:

∂EU

∂μ
=

∑
I

U I

2

∑
{m},{σ }

(
δσσ ′

mm′ − 2nIσσ ′
mm′

) ∂nIσ ′σ
m′m

∂μ
, (6)

in which the terms to be differentiated, according to Eq. (2),
are

∂

∂μ

〈
ψσ

i

∣∣Sσσ ′ ∣∣φIσ ′
m′

〉 → 〈
ψσ

i

∣∣[∂Sσσ ′

∂μ

∣∣φIσ ′
m′

〉 + Sσσ ′
∣∣∣∣∂φIσ ′

m′

∂μ

〉]
,

∂Sσσ ′

∂μ
=

∑
I,νν ′

QIσσ ′
νν ′

( ∣∣∣∣∂βI
ν

∂μ

〉〈
βI

ν ′
∣∣ + ∣∣βI

ν

〉〈∂βI
ν ′

∂μ

∣∣∣∣
)

;

in the case of orthogonalized atomic orbitals, the derivative of
Eq. (5) involves also the variation of the overlap matrix

∂ϕIσ
m (r)

∂μ
=

∑
I ′,m′,σ ′

[(
∂O−1/2

∂μ

)I ′σ ′Iσ

m′m
φI ′σ ′

m′ (r)

+ (
O−1/2

)I ′σ ′Iσ
m′m

∂φI ′σ ′
m′ (r)

∂μ

]
. (7)

The case of nonorthogonal atomic states is recovered by set-
ting OIσ I ′σ ′

mm′ = δII ′
δσσ ′

δmm′ . Notably, in the orthogonal case,
when evaluating forces, the second term on the right hand
side of the former equation reduces to |∂μφI ′σ ′

m′ 〉 = |∂uJ φ
I ′σ ′
m′ 〉 =

δI ′J |∂uJ φ
Jσ ′
m′ 〉, and still contains the sum of interorbital terms

within the same atom due to saturation of the m′ and σ ′
indexes with the overlap matrix. For the detailed expressions
concerning how to evaluate in practice the derivatives of the
atomic orbitals in reciprocal space, we refer to Ref. [27], and
for the variation of the βI

ν projectors we refer to Ref. [28].
In particular, the calculation of the derivative of the inverse
square root of OIσ I ′σ ′

mm′ is carried out using the formal solution
of the Lyapunov equation

∂O−1/2

∂μ
= −

∫ ∞

0
dt exp

( − tO−1/2
)

× O−1

(
∂O

∂μ

)
O−1 exp

( − tO−1/2
)
, (8)

where the integral can be performed analytically element
by element of ∂μO−1/2 [29]. The usefulness of Eq. (8)—
although computationally expensive for systems with many
atoms (large supercells)—is that it is exact and shows that for
the calculation of ∂μO−1/2 only the eigenvalues of O and its
derivative are needed.

B. First-principles determination of Hubbard parameters
using perturbation theory

Following the linear-response approach for the calculation
of the Hubbard parameters introduced by Cococcioni and de
Gironcoli [7], the Hubbard U can be defined as

U I = (
χ−1

0 − χ−1
)

II , (9)

where χ (χ0) are the interacting (noninteracting) N × N ma-
trices expressing the response to a localized perturbation
indirectly changing—through a Legendre transform—the lo-
calized orbital occupation. The dimension N of such matrices
depends on the supercell size and on the number of atomic
species which are perturbed: N = NHNq, where NH is the

number of the perturbed Hubbard atoms and Nq is the num-
ber of q points [30] (see below). In the original scheme of
Ref. [7], in order to have a localized perturbing potential, a
finite-difference approach based on supercells was used. More
recently, Timrov et al. [26,31] developed a more efficient
scheme based on DFPT, according to which the supercell
periodicity is substituted by a decomposition of the potential
into monochromatic perturbations, with wave vectors belong-
ing to a q-point grid of size commensurate to the equivalent
supercell. Although in Refs. [26,31] time-reversal symmetry
was not assumed—because of the presence of a spin-polarized
exchange-correlation potential—the collinearity of the prob-
lem still allowed recasting the perturbative expansion as in
the time-reversal-invariant case. However, it has been shown
[24,32,33] that when noncollinear magnetism is present, it
is necessary to solve at least two separate Sternheimer lin-
ear systems. This approach was originally developed for the
calculation of spin-fluctuation spectra in a norm-conserving
pseudopotential (NC-PP) framework: in Ref. [32] two Stern-
heimer equations were solved, one at +q and the other at −q,
while in [33] the time-reversal operator T was used in the
second Sternheimer equation. In Ref. [24] the scheme em-
ploying T was further generalized to FR US-PPs, and used for
the calculation of phonon dispersions in elemental magnetic
metals.

The original extension of DFPT to US-PPs was devel-
oped by Dal Corso for the calculation of vibrational spectra
[28], who showed how the change of orthonormalization
constraint—provided by the presence of the S matrix—
changes the induced charge density; then, by the same author,
it was generalized to the FR nonmagnetic case [34]. In this
work we follow the strategy of Ref. [24], where the former
DFPT was extended to the magnetic time-reversal symmetry
broken case, and apply it to an external perturbation changing
the orbital occupation. Indeed, to evaluate ab initio the Hub-
bard U parameter in the linear response method of Ref. [7],
one uses the constrained DFT technique [35,36]: from the
total energy E , a new energy functional is introduced Ẽ{q} =
minρ,α{E [ρ] + ∑

I αI (nI − qI )}, where the orbital occupa-
tions nI are controlled by the variables qI . The additional
term

∑
I αI (nI − qI ) acts precisely as a perturbation changing

the orbital occupation of the localized manifold, thanks to
which variations of Ẽ{q} with respect to qI can be acquired.
The Hubbard U parameter is then defined as the curvature of
Ẽ{q} with respect to the variables qI . In practice a Legendre
transform is performed, which shifts the qI dependence to
the αI dependence: E{α} = Ẽ{q} + ∑

I αI qI . The curvature of
E{α} with respect to αI yields the χ and χ0 matrices, which
are linked to the on-site Hubbard U I by Eq. (9) [7,31]. The
intersite Hubbard parameters V II ′

can be easily accessed via
the off-diagonal elements (χ−1

0 − χ−1)II ′ [26,37].
We introduce the Hubbard projector PIσσ ′ =∑
σ1

∑
m Sσσ1 |φIσ1

m 〉〈φIσ1
m |Sσ1σ

′
, in terms of which the external

perturbation becomes
∑

I αI
∑

i,{σ } θ̃i〈ψσ
i |PIσσ ′ |ψσ ′

i 〉 (the
notation

∑
{σ } stands for a sum over all the σ indices

appearing in the following expression); the first derivative
of the total energy E = E + ∑

I αI
∑

mσ nIσσ
mm with respect to

the external parameter αI , because of the Hellmann-Feynman
theorem, is ∂IE = nI = ∑

i,σσ ′ θ̃i 〈ψσ
i |PIσσ ′ |ψσ ′

i 〉 (we use
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the notation ∂I ≡ ∂/∂αI ). The second derivative gives the
response matrix ∂I∂I ′E = χII ′ , where

χII ′ =
∑
m,σ

∂nIσσ
mm

∂αI ′
=

∑
i,σσ ′

{[
∂θ̃i

∂αI ′

]〈
ψσ

i

∣∣PIσσ ′ ∣∣ψσ ′
i

〉

+ θ̃i

(〈
∂ψσ

i

∂αI ′

∣∣∣∣PIσσ ′ ∣∣ψσ ′
i

〉 + 〈
ψσ

i

∣∣PIσσ ′
∣∣∣∣∂ψσ ′

i

∂αI ′

〉)}
. (10)

The first term accounts for the change of electronic occupa-
tions, and it is present in metals for perturbations with the
same periodicity of the underlying lattice [23]. This latter
presents no relevant difference compared to the nonmag-
netic case [34] and will not be discussed further. The other
two contributions, providing χII ′ |θ̃ (the notation |θ̃ means the
quantity is evaluated at fixed electronic occupations), contain
the variation of the KS pseudo-wave-functions. Standard ma-
nipulations within DFPT, described in [28,34], allow us to
rewrite χII ′ |θ̃ as

χII ′ |θ̃ =
∑
{σ }

∑
i, j

[
θ̃i − θ̃ j

]
θ̃ ji

(〈
ψ

σ3
j

∣∣Sσ3σ4

∣∣∣∣∂ψ
σ4
i

∂αI ′

〉

× 〈
ψ

σ1
i

∣∣PIσ1σ2
∣∣ψσ2

j

〉

+ 〈
(T ψ j )

σ3
∣∣Sσ3σ4

∣∣∣∣
(
T ∂ψi

∂αI ′

)σ4
〉

× 〈
(T ψi )

σ1
∣∣(T PIT †)σ1σ2

∣∣(T ψ j )
σ2

〉)
. (11)

It should be noted that now, since the S matrix is αI -
independent, the change of orthonormalization constraints is
just

∑
{σ }〈∂I ′ψσ

i |Sσσ ′ |ψσ ′
j 〉 = −∑

{σ }〈ψσ
i |Sσσ ′ |∂I ′ψσ ′

j 〉. Using
perturbation theory, the expressions of the first-order wave
functions are, for the direct one [28],

∑
{σ }

〈
ψ

σ2
j

∣∣Sσ2σ1

∣∣∣∣∂ψ
σ1
i

∂αI ′

〉
=

∑
{σ }

〈
ψ

σ2
j

∣∣∣∣∂I ′V [B]
σ2σ1

εi − ε j

∣∣∣∣ψσ1
i

〉
, (12)

and for the “time-reversed” one,
∑
{σ }

〈
(T ψ j )

σ2
∣∣Sσ2σ1

∣∣∣∣
(
T ∂ψi

∂αI ′

)σ1
〉

=

∑
{σ }

〈(
T ψ j

)σ2

∣∣∣∣∂I ′V [−B]
σ2σ1

εi − ε j

∣∣∣∣(T ψi
)σ1

〉
, (13)

where in both the two previous expressions it is understood
that i 	= j. The perturbed KS potential appearing in the two
former equations has the form [34]

∂V [B]
σσ ′

∂αI
= PIσσ ′ +

∑
σ1σ2

∫
d3r

∂V σ1σ2
loc,[B](r)

∂αI
Kσ1σ2

σσ ′ (r), (14)

∂V σ1σ2
loc,[B](r)

∂αI
=

∑
σσ ′

∫
d3r′ δV σ1σ2

loc,[B](r)

δρσσ ′ (r′)
∂ρσσ ′

(r′)
∂αI

. (15)

The induced local potential ∂IV
σ1σ2

loc,[B](r) can be alter-
natively decomposed as ∂IV

σ1σ2
loc,[B](r) = ∂IVHxc(r)δσ1σ2 −

∂I Bxc(r) · σσ1σ2 . Here, VHxc(r) = δEHxc/δn(r) and Bxc(r) =
−δExc/δm(r) are the Hartee exchange-correlation and the

magnetic exchange-correlation potentials, respectively.
Finally,

Kσ1σ2
σσ ′ (r, r1, r2) = δ(r − r1)δ(r − r2)δσ1σ δσ2σ

′

+
∑
I,νν ′

∑
ν1ν2

f σσ1
νν1

QI
ν1ν2

(r) f σ2σ
′

ν2ν ′ βI
ν (r1) βI

ν ′ (r2)∗ (16)

is the FR US kernel, which is linked to the US S matrix by
Sσσ ′ = ∑

σ1

∫
d3r Kσ1σ1

σσ ′ (r) [34]. The same kernel enters in the
definition of the perturbed electronic (spin-resolved) charge
density in Eq. (15):

∂ρσσ ′
(r)

∂αI

∣∣∣∣
θ̃

=
∑

i,σ1σ2

θ̃i

[〈
ψ

σ1
i

∣∣Kσ ′σ
σ1σ2

(r)

∣∣∣∣∂ψ
σ2
i

∂αI

〉

+ 〈
(T ψi )

σ1
∣∣(T Kσ ′σ (r)T †

)
σ1σ2

∣∣∣∣
(
T ∂ψi

∂αI

)σ2
〉]

, (17)

which contains a term similar to the one in round parenthe-
ses in Eq. (10), with PIσσ ′

substituted with Kσ1σ2
σσ ′ (r) [24,34].

This shows that the problem has to be solved iteratively until
convergence of ∂Iρ

σσ ′
(r) [23]. Note that in the perturbed KS

state of Eq. (13) the effect of T , when applied to the first-order
KS potential, is to reverse the sign of Bxc. Collecting together
Eqs. (11)–(13) we obtain the following expression:

χII ′ |θ̃ =
∑
{σ }

∑
i, j

θ̃i − θ̃ j

εi − ε j
θ̃ ji

[〈
ψ

σ3
j

∣∣∣∣∂V [B]
σ3σ4

∂αI ′

∣∣∣∣ψσ4
i

〉

× 〈
ψ

σ1
i

∣∣PIσ1σ2
∣∣ψσ2

j

〉

+
〈
(T ψ j )

σ3

∣∣∣∣∂V [−B]
σ3σ4

∂αI ′

∣∣∣∣(T ψi )
σ4

〉

× 〈
(T ψi )

σ1
∣∣(T PIT †

)
σ1σ2

∣∣(T ψ j )
σ2

〉]
, (18)

which has the well-known Lindhard-like form occurring
within perturbation theory in the independent-particle approx-
imation [38].

As discussed in Ref. [31], the former DFPT formulation
still relies on the use of a supercell, where only the Ith atom
is perturbed. Hereafter, to denote the Ith atom in a supercell
we use the notation RI = Rl + τη, where Rl is the supercell
vector and τη is the basis vector, i.e., I → (l, η). To recast the
perturbative treatment in a form involving only quantities con-
tained in the primitive cell, a monochromatic decomposition
of the external potential is introduced:

PIσσ ′ =
Nq∑
q

e−ιRl ·q

Nq
Pησσ ′

(q), (19)

Pησσ ′
(q) =

Nk∑
p

∑
mσ1

Sσσ1
∣∣φησ1

mp+q

〉〈
φησ1

mp

∣∣Sσ1σ
′
, (20)
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where p is the quasimomentum, and the Bloch sums

φησ
mp(r) =

∑
l

eιp·Rl

√
Nk

φlησ
m (r) = eιp·r

√
Nk

vησ
mp(r) (21)

were used [31] (the localized β projectors within Eq. (20)
undergo a similar decomposition; see Ref. [26]). Here
v

ησ
mp(r + Rl ) = v

ησ
mp(r) is the periodic part, and it makes ap-

parent for the operator Pη(q) to enjoy the property〈
r1 + Rl

∣∣Pη(q)
∣∣r2 + Rl

〉 = eιq·Rl
〈
r1

∣∣Pη(q)
∣∣r2

〉
. (22)

Substituting the Eq. (19) into χII ′ |θ̃ = χlη,l ′η′ |θ̃ , it can be
rewritten as

χlη,l ′η′ |θ̃ =
Nq∑
q

eιq·(Rl −Rl′ )

Nq
χηη′ (q)|θ̃ . (23)

As routinely done within DFPT [23], the sum over the empty
states [in fact, the one over the j index of Eq. (18)] is avoided
thanks to the use of the Green’s function techniques, i.e., by
solving a Sternheimer equation where KS projectors over the
unoccupied manifold are introduced [39]. Using the explicit
expression of the KS Bloch states ψσ

nk(r) = 1√
Nk

eιk·ruσ
nk(r)

(and a transformation similar to Eq. (21) for the β projectors
[24,26]), we rewrite everything in terms of the periodic parts
uσ

nk(r), and the solution is finally recast into the form

χηη′ (q)|θ̃ = 1

Nk

∑
nkσ

[〈
ν

qησ

nk

∣∣�η′
q uσ

nk

〉

+ 〈(
T ν

(−q)η
n(−k)

)σ ∣∣(T �
η′
(−q)un(−k)

)σ 〉]
, (24)

where now the sum over nk runs, in fact, only over the
occupied states, and we introduced the q-dependent peri-
odic parts ν

qησ

nk and their corresponding time-reversed ones(
T ν

(−q)η
n(−k)

)σ
:

∣∣νqησ

nk

〉 = e−ι(k+q)·r

N−1/2

k

∑
σ ′

Pησσ ′
(q)

∣∣ψσ ′
nk

〉
, (25)

∣∣(T ν
(−q)η
n(−k)

)σ 〉 = e−ι(k+q)·r

N−1/2

k

∑
σ ′

Pησσ ′
(q)

∣∣(T ψn(−k) )
σ ′ 〉

. (26)

In Eq. (24) the scalar products are meant to be performed
within the unit cell. The two unknowns �

η′
q uσ

nk and their “time-

reversed” counterpart
(
T �

η′
(−q)un(−k)

)σ
are the solutions of

two Sternheimer linear systems: a standard one for �
η′
q uσ

nk,

∑
σ ′

(
H [B]σσ ′

k+q − εnk Sσσ ′
k+q

)∣∣�η′
q uσ ′

nk

〉=−
∑
σ ′,σ1

P†σσ1
nk+q

∂V [B]
σ1σ ′

∂αη′ (q)

∣∣uσ ′
nk

〉
,

and a time-reversed one for
(
T �

η′
(−q)un(−k)

)σ
,

∑
σ ′

(
H [−B]σσ ′

k+q − εn(−k) Sσσ ′
k+q

)∣∣(T �
η′
(−q)un(−k)

)σ ′ 〉

= −
∑
σ1,σ ′

�
†σσ1
nk+q

∂V [−B]
σ1σ ′

∂αη′ (q)

∣∣(T un(−k)
)σ ′ 〉

,

where we have introduced the (left) projectors: P†σσ ′
nk+q =

θ̃nk δσσ ′ − ∑
mσ1

βnk,mk+q Sσσ1 |uσ1
mk+q〉〈uσ ′

mk+q| and the time-

reversed ones �
†σσ ′
nk+q = (T P†

n(−k−q)T †)
σσ ′

, with the usual

definition βnk,mk′ ≡ θ̃nkθ̃nk,mk′ + θ̃mk′ θ̃mk′,nk [24,40].

III. APPLICATIONS

In this section, with the formalism described above, we
investigate the binary europium monochalcogenides series
EuX (X = O, S, Se, Te), and the cadmium osmate pyrochlore
Cd2Os2O7. All the theory illustrated was implemented in the
Quantum ESPRESSO distribution within the PW and HP
packages [21,30,41].

A. Computational details

All the first-principles calculations have been carried out
using FR US-PPs from the PSlibrary v1.0.0 [42]. We em-
ployed the generalized-gradient approximation (GGA) with
the PBEsol analytical form [43] and—for the EuX series—
also the local-density approximation (LDA) parametrized by
Perdew and Zunger [1] as exchange-correlation functional.
All the DFT + U calculations have been performed using
orthogonalized atomic orbitals, as directly read from the
pseudopotential file. The computational details adopted for
the materials-specific calculations are reported below; lat-
tice parameters and structural data have been taken from
the Materials Project [44]. High-symmetry paths within the
Brillouin zone have been obtained using SeeK-path [45].
The structural analysis of the crystal distortions has been
carried out with ISOTROPY(ISOCIF) Software Suite [46],
and visualized with VESTA [47]. The data used to produce
the results of this work are available at the Materials Cloud
Archive [48].

1. EuX

Even though US-PPs are optimized to be accurate with
substantially reduced kinetic energy (KE) cutoffs compared
to NC-PPs, the inclusion of 4d and 4 f states in the valence
for Eu—necessary to reduce at minimum the transferability
errors—entails very high KE cutoffs [42]. We used 140 Ry
for the wave functions and 1120 Ry on the charge density.
The Brillouin zone has been sampled with an 18 × 18 × 18 k-
point grid for the plane-wave calculations, with a 4 × 4 ×
4 q-point mesh used for the evaluation of the Hubbard pa-
rameter U applied on Eu. A Gaussian smearing of 0.007 Ry is
used to help converge narrow-gap states.

2. Cd2Os2O7

Numerical simulations for Cd2Os2O7 have been performed
using a KE cutoff of 60 Ry and 480 Ry, respectively, for
the KS states and the charge density. We used a 8 × 8 × 8 k
mesh for Brillouin zone sampling and a 2 × 2 × 2 q-point grid
for the calculation of the U interaction parameter. The +U
correction was applied to the 5d5/2 and 5d3/2 states of Os. We
employed Gaussian smearing of 0.007 Ry.
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FIG. 1. Calculated fully relativistic DFT(GGA-PBEsol)+U band structure of the four EuX compounds considered here (X = O, S, Se, Te)
in the Fm3̄m phase, plotted along high-symmetry lines of the Brillouin zone. We use the so-called fat-band representation, where the dominant
orbital character of each band is also reported. The zero of the energy is at the valence band maximum.

B. Europium monoxide and monochalcogenides EuX

Europium monoxide and monochalcogenides are a series
of compounds crystallizing in the relatively simple rock-salt
Fm3̄m space group. In pristine conditions they are insulating
materials, and for a Eu2+ configuration they have a magnetic
moment m � 7 μB (J = 7/2) for half-filled 4 f electronic
states [49]. EuO and EuS are ferromagnetic semiconductors,
EuSe has a complex magnetic phase diagram, eventually
becoming an antiferromagnet below 1.8 K, and EuTe devel-
ops antiferromagnetism below 9.58 K [50]. However, both
EuSe [51] and EuTe [52] display an antiferromagnetic-to-
ferromagnetic phase transition upon application of hydrostatic
pressure at low temperatures. The interest in studying these
materials arises from the fact that—besides being easily
accessible to study given their structurally simple structure—
EuO and EuS are some of the few naturally occurring
ferromagnets at ambient pressure conditions.

We performed spin-polarized ab initio calculations in the
2-atom primitive cell within DFT + U including SOC to the
whole EuX series. The U parameter was calculated from first
principles within the scheme described above. Figure 1 shows
the FR GGA + U band structures of the EuX compounds
in the Fm3̄m phase; the orbital character is also highlighted
through the so-called fat-band representation. At variance
with plain DFT, which predicts an erroneous metallic ground
state for all the compounds, within DFT + U all the materials
are semiconductors. The most relevant aspect in the electronic
structure is the progressive deepening in energy of the weakly
dispersive Eu-4 f7/2 and Eu-4 f5/2 bands as the atomic num-

ber of the chalcogen increases, eventually merging with the
X-np3/2 and X-np1/2 for X = S, Se, and Te; however, this
happens without significant 4 f − np hybridization due to the
overall conservation of the 4 f electronic quantum numbers.
This deepening also changes the character of the band gap,
which is found between the 4 f and 5d states in EuO and
between the np and 5d for the other materials. A comparison
between the FR and scalar-relativistic (SR) (i.e., without in-
cluding SOC) band structures is displayed in Fig. 2; it shows
that for an accurate low-energy electronic description of the
Eu-4 f states, the inclusion of SOC is essential, due to the
considerable broadening of the Eu-4 f bandwidth because of
spin-orbit splitting.

The calculated magnetic moments are mEu =
6.97, 6.98, 6.98, and 6.99 μB, for X = O, S, Se, and Te,
respectively, fairly agreeing with the nominally expected ones
of 7 μB; this reflects the 7 fully occupied majority Eu-4 f flat
bands located right below the Fermi energy. The minority
(empty) spin states are instead found significantly higher in
energy than the window reported in Fig. 1, consistently with
previous studies [54].

It is experimentally known that the EuX compounds ex-
hibit a structural phase transition upon increase of hydrostatic
pressure, changing the crystal from the NaCl, fcc-like, Fm3̄m
space group to the CsCl, bcc-like, Pm3̄m space group [53]. We
determined the critical pressure of the phase transition Pc by
calculating the equation of state as a function of volumes V
for the two phases NaCl-like and CsCl-like, then evaluating
the pressure P and finally obtaining the enthalpy H(P) =
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FIG. 2. Comparison between DFT + U band structures calcu-
lated using either scalar-relativistic (SR; dashed orange lines) or
fully relativistic (FR; blue lines) US-PPs along the L → W → X
high-symmetry path of the Brillouin zone. The bands are aligned so
that the maximum of the valence band at the X point between the SR
and the FR electronic structures coincides.

E (P) + PV (P); the crossing of the two enthalpies HNaCl and
HCsCl yields Pc. In Table I the calculated lattice parameter a0,
the bulk modulus B0 (evaluated by fitting the 3rd-order Birch-
Murnaghan equation of state), and the critical pressure Pc are
reported. For both the Fm3̄m and Pm3̄m phases and the two
LDA and GGA functionals, we recalculated the corresponding
Hubbard parameters U , which are reported in Table II. In
general the best results for a0 are given by the +U correction
on top of the GGA-PBEsol functional. This is not surprising,

since the PBEsol functional was developed with the aim of im-
proving equilibrium volumes with respect to LDA and PBE.
For B0, the LDA functional provides better results compared
with PBEsol, even though the differences are quite small. This
trend, together with the level of precision of the results, is also
in good agreement with a previous theoretical study employ-
ing an impurity solver in the Hubbard I approximation [55].
The critical pressure Pc calculated with plain DFT function-
als instead is systematically overestimated—up to 65% with
respect to the experimental value for EuO—while the results
obtained with the FR DFT + U functional are significantly
more accurate. We note that for EuS, the critical pressure
evaluated with the GGA exchange-correlation functional is
slightly underestimated with respect to the experiments—in
opposition to the other compounds, where instead Pc is overes-
timated. This trend can be attributed to the errors intrinsically
present in ab initio calculations, e.g., the use of approximate
functionals (for both the base exchange-correlation and the
additional Hubbard terms). Similar discrepancies can also be
found in other ab initio findings [55]. However, we regard
these errors to be minor issues, as the overall accuracy of
our numerical results is satisfactory, the average error being
�10%.

Interestingly, our calculated values of U (reported in
Table I) agree well with the empirically chosen U ’s (between
6–9 eV), which provide a faithful description of the magnetic
exchange interaction parameters in EuX [55,56]. The com-
puted U ’s are found to be mostly dependent on the chemical
environment (i.e., on the crystal phase), while they do not
vary appreciably by changing the exchange-correlation base
functional. It should be noted that the U values obtained
with SR- or FR-PPs are very similar; this seems to suggest a
reasonable level of transferability among them, provided that
the atomic orbitals are highly compatibles (i.e., the PPs are
of the same type, in this case US-PPs, and generated through
the same code, ld1.x in our case). We attribute this behavior
to the combined effect of the determination of the Hubbard U
starting from a metallic ground state—yielding weak changes
in the electronic structure, i.e., in the pseudo-wave-functions
and eigenvalues appearing in Eq. (18)—together with the lack
of chemical diversity within the response matrices χ and
χ0. Indeed, the presence of additional Hubbard interactions
between the transition-metal/rare-earth atoms and the ligands
might change the situation, providing larger changes in the
Hubbard parameters.

TABLE I. Calculated lattice parameter a0 (in Å), bulk modulus B0 (in GPa), and critical pressure Pc (in GPa) for the Fm3̄m phase using
fully relativistic (FR) US-PPs and different DFT functionals (LDA and GGA-PBEsol), and compared with experimental data.

EuO EuS EuSe EuTe

Method a0 B0 Pc a0 B0 Pc a0 B0 Pc a0 B0 Pc

FR-LDA 4.909 125 65 5.660 67 32 5.898 57 24 6.305 43 16
FR-GGA 4.971 111 67 5.732 60 31 5.978 50 23 6.393 39 15
FR-LDA+U 5.040 108 39 5.819 59 19 6.043 51 16 6.434 40 12
FR-GGA+U 5.102 96 42 5.893 53 18 6.123 46 16 6.523 36 12
Exp. 5.083a 110 ± 5b 40b 5.845a 61 ± 5b 22b 6.147a 52 ± 5b 15b 6.544a 40 ± 5b 11b

aReference [44].
bReference [53].
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TABLE II. Calculated Hubbard U interaction parameters (in eV)
using different DFT functionals, for the two NaCl- and CsCl-like
phases investigated at the lattice parameters aNaCl

0 (as reported in
Table I) and aCsCl

0 = (3.315, 3.556, 3.776, 4.040) Å for (EuO, EuS,
EuSe, EuTe), respectively, using scalar-relativistic (SR) or fully rela-
tivistic (FR) US-PPs.

U (eV)

PP-functional EuO EuS EuSe EuTe

Fm3̄m phase
FR-LDA 7.69 7.46 7.55 7.51
FR-GGA 7.65 7.65 7.74 7.69
SR-GGA 7.87 7.79 7.85 7.79

Pm3̄m phase

FR-LDA 7.15 6.98 7.11 7.14
FR-GGA 7.10 6.94 7.08 7.11

C. Cd2Os2O7

In recent years magnetic pyrochlore oxides have attracted
a lot of interest because of the very rich physics they have
shown to host [57]: from the experimentally observed
spin-ice phases in Ho2Ti2O7 [58] and Dy2Ti2O7 [59] to the
theoretically proposed three-dimensional topological
semimetal in the rare-earth iridates R2Ir2O7 [12]. Despite
the vast number of magnetically disordered frustrated
phases appearing in these systems, long-range order was also
observed, for example in Cd2Os2O7 [60]. At high temperature
this material is metallic, but develops a metal-insulator
transition when lowering the temperature, with an onset
that starts at T = 227 K and continuously proceeds with a
decrease of the Drude response by the free carriers, until
a band gap is formed at T = 150 K [61]. The insulating
transition is also concomitant with the appearance of
tetrahedral antiferromagnetic ordering, as confirmed by
x-ray diffraction studies [62,63].

Given the tetrahedral network formed by the Os sublattice,
the pyrochlore crystal structure allows different noncollinear
magnetic orderings to develop. We analyzed three differ-
ent types of noncollinear magnetic patterns: all-in/all-out
(AI/AO), 3-in/1-out (3I/1O), and 2-in/2-out (2I/2O) con-
figurations; they are depicted in the insets of Fig. 3. In the
first case, the magnetic moments carried by the Os atoms
point inward to the Os tetrahedron; in the second, 3 magnetic
dipoles point inward and 1 outward; in the third, 2 point in and
2 point out. The latter is also the same pattern appearing in the
spin-ice state, although in a frustrated (disordered) manner.

Without the inclusion of the Hubbard EU correction, re-
gardless of the initial spin configuration, all the Os ions are
nonmagnetic and the electronic DFT ground state converges
to an erroneous metallic state. We evaluated the Hubbard U
parameter in the FR US-PP scheme illustrated above, and
then performed GGA(PBEsol)+U calculations. The inclusion
of the Hubbard correction successfully stabilizes all three
AI/AO, 3I/1O, and 2I/2O magnetic and insulating states.
The calculated UOs = 4.48 eV, including the effect of SOC,
is considerably larger than the empirical range 0.8–2 eV used
in previous ab initio studies [61,64]; therefore, the resulting
band gap is expectedly larger, but the magnetic moments

FIG. 3. Calculated projected density of states (pDOS) for the
three magnetic orderings all-in/all-out (AI/AO), 3-in/1-out (3I/1O),
and 2-in/2-out (2I/2O). In the figure, the orbital character of the
Os-5d5/2 and Os-5d3/2 is reported, together with the one pertaining
to the O-2p3/2 and O-2p1/2 states. The insets schematically represent
the tetrahedral network formed by 4 osmium atoms, with the arrow
displaying the direction of the magnetic moment: orange, in; brown,
out.

|mOs| � 1.09–1.02 μB in the local 〈111〉 axis of the Os atoms
are similar to those seen in previous simulations [65]. Also
for this material we compared UOs obtained with SOC and
the one without SOC, at the SR level; in this latter case
U SR

Os = 4.61 eV, which is again very similar to the U FR
Os =

4.48 eV obtained using FR-PPs. Figure 3 shows the calculated
GGA + U projected density of states (pDOS) for the three
magnetic states; each structure has relaxed lattice parame-
ters and atomic positions. The different magnetic state has a
marginal effect on the electronic structure, changing mostly
the Os-5d5/2 and the Os-5d3/2 conduction states and slightly
the amplitude of the band gap. Nevertheless, different forms of
magnetism can still produce qualitative changes in the crystal
structure. As shown in Table III, the AI/AO state maintains
the cubic space group Fd 3̄m (227), consistently with experi-
ments, where there are two inequivalent oxygen atoms O1(in
the 8b Wyckoff position) and O2(48 f ), the latter surrounding
all the equivalent Os(16c). On the contrary, the 2I/2O and
the 3I/1O orderings change the original space group. For
the first, the material acquires a tetragonal I41/amd (141)
distortion, containing three inequivalent O: O1(4a), O2(16g),
and O3(8e), where always four O2 and two O3 surround the
Os(8d ) atoms, which are again all equivalent. In the 3I/1O
ordering, the relaxed space group is the rhombohedral R3̄m
(166); in this case there are two inequivalent osmium atoms:
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TABLE III. Simulated types of magnetism: All-in/all-out
(AI/AO), 2-in/2-out (2I/2O), and 3-in/1-out (3I/1O), together with
the absolute value of the magnetic moments on the Os ions |mOs|,
energy difference �E = E − EAI/AO with respect to the AI/AO con-
figuration, and space group of the relaxed structure.

Magnetism mOs (μB) �E (meV/f.u.) Space group

Exp.
AI/AOa Fd 3̄mb

GGA(PBEsol) + U = 4.48 eV

AI/AO 1.09 0 Fd 3̄m
2I/2O 1.09 +85 I41/amd
3I/1O 1.03 (Os1) +57 R3̄m

1.10 (Os2)

aReference [63].
bReference [44].

Os1(3a, the 1-out), surrounded by six O2(18h), and Os2(9d
the 3-in), enclosed within four O3(18h) and two O2. This is
reflected in a slightly different magnetic moment on Os1, as
reported in Table III. By analyzing the electronic energetics of
the three investigated magnetic orderings, shown in Table III,
we find the AI/AO state to be the ground state of the material,
in accordance with experiments [62,63].

IV. SUMMARY AND CONCLUSIONS

We have presented a comprehensive ab initio scheme
to perform first-principles simulations in the presence of
both (i) noncollinear magnetism and/or strong spin-orbit
coupling requiring a fully relativistic treatment, and (ii)
significant electronic localization requiring Hubbard correc-
tions to local/semilocal DFT functionals. The formalism is
extended to a modern and widespread pseudopotential ap-
proach, the ultrasoft scheme [19], which allows accurate and
precise simulation on d and f electrons preserving mod-
est kinetic energy cutoffs in a plane-wave expansion of
the pseudo-wave-functions. We also developed a density-
functional perturbation theory approach to the calculation
of the Hubbard interaction parameters U in the case of
noncollinear magnetism and/or spin-orbit coupling. In the
application of the formulation to real materials, it has been

shown to be able to reproduce both qualitatively and quantita-
tively the known experimental features of the systems studied.
For EuX, the equilibrium volume, the bulk modulus, and the
critical pressure Pc are accurately reproduced; significantly,
for Pc the effects of the +U correction are larger when Pc

from pure DFT deviates more from the experimental values
(e.g., for EuO), while they are smaller when DFT is closer to
experiments (e.g., for EuTe). For Cd2Os2O7, we determined
the energetics of different magnetic noncollinear orderings
and assessed their influence within the variable-cell structural
relaxation process. It is found that different magnetic order-
ings lower their energy by distorting into crystal structures
with lower symmetries. However, at the GGA − PBEsol + U
level of theory, the all-in/all-out (AI/AO) magnetic ordering
yields the lower energy state, in a relaxed crystal structure
displaying the Fd 3̄m space group, in both cases consistently
with experiments.

The ab initio scheme we developed allowed us to incorpo-
rate for the first time within the linear-response method the
effect of spin-orbit coupling (SOC) and noncollinear mag-
netism in the determination of the Hubbard U parameters.
In general, the inclusion of such effects for the evaluation
of U is not a trivial task: for example, in the constrained
random-phase approximation approach [66], the inclusion of
SOC in the calculation of the U parameters can become
technically difficult because of the involvement of complex-
valued Wannier spinors in the ab initio treatment [67]. In
conclusion, we believe the present work will be helpful in
first-principles study of materials hosting both localized elec-
trons together with noncollinear magnetism and/or consistent
spin-orbit coupling strength.
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