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Abstract. Based on an idea by Carlo Rubbia, the n TOF facility at CERN has

been operating for over 20 years. It is a neutron spallation source, driven by

the 20 GeV/c proton beam from the CERN PS accelerator. Neutrons in a very

wide energy range (from GeV, down to sub-eV kinetic energy) are generated by a

massive Lead spallation target feeding two experimental areas. EAR1, horizonal with

respect to the proton beam direction is set at 185 meters from the spallation target.

EAR2, on the vertical line from the spallation source, is placed at 20 m. Neutron

energies for experiments are selected by the time-of-flight technique (hence the name

n TOF), while the long flight paths ensure a very good energy resolution. Over one

hundred experiments have been performed by the n TOF Collaboration at CERN,

with applications ranging from nuclear astrophysics (synthesis of the heavy elements

in stars, big bang nucleosynthesis, nuclear cosmo-chronology), to advanced nuclear

technologies (nuclear data for applications, nuclear safety), as well as for basic nuclear

science (reaction mechanisms, structure and decay of highly excited compound states).

During the planned shutdown of the CERN accelerator complex between 2019 and

2021, the facility went through a substantial upgrade with a new target-moderator

assembly, refurbishing of the neutron beam lines and experimental areas. An additional

measuring and irradiation station (the NEAR Station) has been envisaged and its

capabilities for performing material test studies and new physics opportunities are

presently explored. An overview of the facility and of the activities performed at

CERN is presented in this contribution, with a particular emphasis on the most relevant

experiments for nuclear astrophysics.
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1. Introduction

Neutron-induced reactions play a fundamental role in different fields, such as reactor

technology, astrophysics and applications. There exist several neutron time-of-flight

(TOF) facilities in the world devoted to such measurements. The most active in the

recent years are GELINA at JRC-Geel [1] and CERN n TOF [2] in Europe, LANSCE [3]

in the USA, ANNRI [4] at J-PARK in Japan and CSNS Back-n [5] in China. This

contribution presents a brief summary and update on latest experiments at CERN

n TOF. At n TOF neutrons are produced via spallation reactions on a Pb-target, where

the Proton Synchrotron (PS) pulsed beam impinges at 20 GeV/c with a maximum duty-

cycle of 0.8 Hz, a width of 7 ns rms and a nominal intensity of 8.5×1012 protons/pulse.

The high-energy spallation neutrons are moderated by means of a water-moderator

circuit that yields a neutron spectrum spanning from thermal up to a few GeV of neutron

energy. The low duty-cycle and the white neutron spectrum enable measurements

in the full-energy domain every single neutron bunch. Neutrons travel along two

different beam-lines for measurements based on the time-of-flight technique. EAR1

is located 185 m in the horizontal direction with respect to the proton beam-line, thus

enabling very high-resolution neutron-induced reaction cross-section measurements [6].

A second experimental area, EAR2, is placed 20 m upwards from the spallation source,

thus becoming suitable for measurements requiring a high resolution and a very high

instantaneous neutron flux [7]. Over the last 20 years more than 135 cross-section

Figure 1. Graphical summary of the ∼135 experiments performed at CERN n TOF

over the last 20 years.

measurements [8, 9] have been carried out at the CERN neutron-time-of-flight facility

n TOF [10] (see Fig.1). About 65% of these measurements comprise radiative neutron-
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capture cross sections, 27% correspond to neutron-induced fission cross sections and

8% of the measurements are related to neutron-induced light charged-particle reactions.

The experimental campaigns were modulated by the CERN long shut-down periods (see

Fig.1), which have been used to implement progressive improvements both in the facility

and in the detection systems utilized at n TOF. Several of them are described in this

contribution.

During the last CERN long shutdown LS2 (2019-2021) the facility underwent its

latest major upgrade, which mainly comprised the replacement of the spallation target

itself [11, 12] and the construction of the new NEAR station for neutron-activation

measurements [13, 14].

The new neutron source is based on a segmented lead-target design with N2-

gas cooling (see Fig.2) [11]. This new cooling circuit avoids previous issues related

to erosion-corrosion and out-diffusion effects in the water-lead interface, which led to

radioactive contamination of the former water-cooling circuit [15]. Additionally, the new

target comprises two independent moderator circuits, specifically designed for EAR1

and EAR2 and with the possibility of using borated- or demineralized water. The new

target-moderator assembly has allowed to remarkably improve the resolution function at

EAR2 [16], while increasing the neutron flux by 30-50% in both experimental areas [17],

thus making it even more attractive for the measurement of unstable samples in the

resolved-resonance region [18]. It is worth to remark also the improvement in the flux

flatness with the reduction of neutron-absorption dips thanks to the optimized target

cladding design (see Fig.2).

Figure 2. New segmented spallation-target design with N2-gas cooling [11] (Left).

Neutron-flux versus neutron-energy for EAR1 and EAR2 before (dotted line) and after

(solid line) target upgrade (Right) [16].

Improvements in the facility have been accompanied also by concomitant

developments on detection systems. This statement will be illustrated with a few

selected examples on each one of the main neutron-reaction channels shown in Fig.1.

Thus, Sec.2 summarizes the recent measurement of the 235U(n, f) cross section from

thermal up to 170 keV with very high resolution and improved accuracy using a
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customized setup of samples and Si-detectors placed in-beam [19, 20]. Detection

systems customized for the measurement of neutron-induced light-particle emission are

briefly discussed in Sec.3 on the basis of the 7Be(n, p) and 7Be(n, α) reactions. These

measurements were carried out at EAR2 using highly radioactive 7Be-samples and they

were of relevance for Big-Bang nucleosynthesis studies [21, 22]. The measurement

of the key s-process branching nucleus 79Se is discussed in Sec.4 together with

recent developments on total-energy detection systems aimed at enhanced detection

sensitivity [16]. Finally, Sec.5 summarizes future prospects of the new NEAR

station [13, 14, 23, 24] for measurements of astrophysical interest.

2. Fission measurements for reactor technology

Neutron-induced fission cross sections are fundamental for the design of future

Generation-IV reactors, nuclear-waste transmutation and new fuel cycles [25, 26]. More

than 30 neutron-induced fission cross section measurements have been carried out so

far at n TOF using a variety of detection systems and covering different neutron-

energy ranges (see Fig.1). Most relevant isotopes of U, Pu, Np, Th, Cm and Am

have been investigated. A recent example is the measurement of the 235U(n, f) cross

section in a wide neutron energy range (25 meV-170 keV) and with an improved

systematic uncertainty of 1.5% [19, 20]. This accuracy could be achieved thanks to

a very high-resolution and redundant measurement at n TOF EAR1 relative to the

standard reactions 6Li(n, t) and 10B(n, α). The measurement was performed with a

customized setup, consisting of six samples, two for each target material 235U, 6Li and
10B, and six silicon detectors, each one facing one sample (see Fig.2 in [19]). Thus, each

reaction was measured with a separate sample-detector pair in the forward and in the

backward direction with respect to the neutron beam. This redundancy allowed us to

minimize systematic effects related to the asymmetry in the angular distributions of

the standard reactions used as reference. These new cross-section results may help to

solve discrepancies in previous experiments and improve future evaluations, as requested

by the NEA in the framework of the Collaborative International Evaluation Library

Organization (CIELO) project [27].

3. Neutron-induced charged-particle emission experiments for Big-Bang

nucleosynthesis

In the last years an increasing number of neutron-induced charged-particle emission

measurements have been carried out at n TOF, with a focus on astrophysics and

medical applications [28]. These are very challenging measurements owing to the very

small cross sections involved, the reduced Q-values and other experimental effects. At

variance with fission and radiative neutron-capture reactions, light-charged particle

emission experiments commonly require of detection systems specifically designed for

each particular measurement. Thus, two different detection set-ups were developed to
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measure (n, p) and (n, α) reactions on 7Be, which are of interest for the cosmological

lithium problem [29]. Both experiments were carried out at the high-flux EAR2 station

owing to the very high sample activities. The 7Be(n, p)7Li cross section was measured

from thermal up to 325 keV using a Si telescope and a high-purity sample. The highly

radioactive sample (1 GBq) was produced by implantation of a 7Be ion beam at the

neighbouring ISOLDE facility [22]. The 7Be(n, α)4He cross section was measured in

the 10 meV to 10 keV neutron energy range using two 7Be samples with an even

larger total activity of 36 GBq. Each sample was set-up in a sandwich configuration

with two 140 μm-thick Si-detectors placed directly in-beam [21]. Although significant

discrepancies were found between both cross-section measurements and the scarce

previous data available, the results helped to rule-out a significant contribution of

uncertainties in these two nuclear reactions into the long-standing cosmological lithium

problem.

4. Neutron-capture reactions for heavy-element nucleosynthesis

Neutron-capture reactions play a fundamental role in understanding the nucleosynthesis

of heavy elements in the universe [30]. In this respect, the measurement of the so-called

s-process branching nuclei represents one of the main fronts of experimental research

at CERN n TOF [31]. These radioactive nuclei split the s-process path and produce

variations in the local isotopic-abundance pattern, which reflects the physical conditions

of the stellar environment. However, in many cases the measurement of branching nuclei

is hindered by the difficulty of producing a suitable sample with the sufficient mass and

enrichment for the radioactive nucleus [32], and by the experimental difficulty ascribed

to the measurement of a very small quantity of atoms combined with a very high γ-ray

background from the sample-decay activity.

Figure 3. New total-energy detection system with imaging capability i-TED

installed at EAR1 (Left). New segmented total-energy detector (s-TED) for capture

measurements in EAR2 (Right).

79Se, with a half-life of 2×105 years represents such a challenging case [33, 34]. In
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this case the only possibility to produce a sample of 79Se required neutron-activation at

ILL-Grenoble of an eutectic 208Pb78Se-alloy, which was produced at PSI-Villigen [35].

The resulting sample contained about 3 mg of 79Se embedded into about 3 g of 208Pb

and 1 g of 78Se. The low concentration of 79Se required of a dedicated measurement at

EAR1 with very high neutron-energy resolution, so that the capture-levels of 79Se+n

could be clearly identified and disentangled from capture-resonances from the main

isotope in the sample (78Se). The large amount of lead in the sample yielded a

significant neutron-induced γ-ray background in the surrounding walls and materials,

which could be best treated by means of a new detection system called i-TED [36, 37]

shown in Fig.3-left. i-TED consists of an array of four Compton cameras specifically

developed and customized for neutron-capture experiments [38]. This system allows

one to obtain information on the incoming radiation direction, thereby allowing one

to reject a significant portion of the surrounding background radiation [37, 16]. On

the other hand, the sample radioactivity was dominated by Se- and Co- impurities

activated during the neutron-irradiation at ILL, leading to 5 MBq of 75Se and 1.4 MBq

of 60Co. This large sample-related background could be best handled at EAR2 by

means of its very high instantaneous neutron flux. However, the capture measurement

at EAR2 required new detectors capable of coping with very high count-rate conditions.

To this aim an array of nine small (49 ml volume) C6D6-detectors was implemented

(Fig.3-right). The new detection system, called s-TED [39, 16], permits to reliably

handle the very large instantaneous and varying count-rate conditions. Owing to

the small detector volume, a very short detector-sample distance becomes possible

(�5 cm), thus remarkably enhancing signal-to-background ratio with respect to state-

of-the-art C6D6 detectors that had to be placed further away from the neutron beam

(36 cm) [40, 41]. The analysis of this experiment is in progress and preliminary results

are very promising [42].

5. Outlook

As discussed in the preceding sections, upgrades in the facility and improvements in

detection systems have allowed for a corresponding enhancement in detection sensitivity

for the measurement of challenging neutron-induced cross sections. Regarding neutron-

capture measurements, there are many isotopes whose neutron-capture cross sections

are difficult to access via TOF experiments owing to the limited number of atoms that

can be made available in a sample. In such cases, if applicable, the neutron-activation

technique may become the only possibility to gain experimental knowledge on the cross

section. Also, the combination of TOF- and activation-measurements may yield a more

accurate, complete and reliable information (see e.g. [43] and table 2 in [30]). In order to

perform this type of experiments a new experimental area, the NEAR station, has been

recently built at a short distance (3 m) from the n TOF spallation target [13, 9, 14].

The neutron beam is transported from the spallation target into the NEAR station

by means of a collimator inserted in a hole of the shielding wall. The new area is
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complemented with the GEAR laboratory, which is equipped with a high-efficiency

HPGe detector for measuring the γ-ray activity of the samples irradiated at the NEAR

station. A moderator/filter assembly allows one to produce a neutron distribution

that resembles a Maxwell-Boltzmann spectrum at different thermal energies, spanning

between a few keV and several 100 keV (see Fig.11 in [14]). At present, a series of

systematic measurements are being carried out in order to characterize the neutron field

at NEAR [44]. In the future, one of the most interesting features will be the possibility to

measure very small radioactive samples, which may be produced in the nearby ISOLDE

facility and conveniently transported to NEAR for activation experiments [45]. At

present, cooling-down times required to access NEAR are of the order of 4 hours, which

puts a constraint on the shortest activation-product half-life accessible at NEAR. In

order to access isotopes with activation products of even shorter half-lives the fast-

cyclic activation technique may be used [46]. This may open the possibility to access

radioactive nuclei of interest, not only for the s-process but also for the intermediate

i-process of nucleosynthesis [47], such as 137Cs(n, γ) or 144Ce(n, γ) [45].

Further major facility upgrades will remain hindered until the next 3 years-long

shutdown CERN-LS3 in 2026, with the exception of small upgrades and additions to

NEAR. On the other hand, the innovative capture-detection systems, i-TED and s-TED,

have delivered already very satisfactory results and they still have margin for further

enhancements and improvements in the forthcoming years. Progressive refinements

in readout photosensors [48], electronics and structural materials [41] may contribute

further to enhanced performances and new, more accurate and complete neutron-capture

measurements.
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