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Abstract

Background: Previous research studies have demonstrated that medical content image retrieval can play an important role by
assisting dermatologists in skin lesion diagnosis. However, current state-of-the-art approaches have not been adopted in routine
consultation, partly due to the lack of interpretability limiting trust by clinical users.

Objective: This study developed a new image retrieval architecture for polarized or dermoscopic imaging guided by interpretable
saliency maps. This approach provides better feature extraction, leading to better quantitative retrieval performance as well as
providing interpretability for an eventual real-world implementation.

Methods: Content-based image retrieval (CBIR) algorithms rely on the comparison of image features embedded by convolutional
neural network (CNN) against a labeled data set. Saliency maps are computer vision–interpretable methods that highlight the
most relevant regions for the prediction made by a neural network. By introducing a fine-tuning stage that includes saliency maps
to guide feature extraction, the accuracy of image retrieval is optimized. We refer to this approach as saliency-enhanced CBIR
(SE-CBIR). A reader study was designed at the University Hospital Zurich Dermatology Clinic to evaluate SE-CBIR’s retrieval
accuracy as well as the impact of the participant’s confidence on the diagnosis.

Results: SE-CBIR improved the retrieval accuracy by 7% (77% vs 84%) when doing single-lesion retrieval against traditional
CBIR. The reader study showed an overall increase in classification accuracy of 22% (62% vs 84%) when the participant is
provided with SE-CBIR retrieved images. In addition, the overall confidence in the lesion’s diagnosis increased by 24%. Finally,
the use of SE-CBIR as a support tool helped the participants reduce the number of nonmelanoma lesions previously diagnosed
as melanoma (overdiagnosis) by 53%.

Conclusions: SE-CBIR presents better retrieval accuracy compared to traditional CBIR CNN-based approaches. Furthermore,
we have shown how these support tools can help dermatologists and residents improve diagnosis accuracy and confidence.
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Additionally, by introducing interpretable methods, we should expect increased acceptance and use of these tools in routine
consultation.

(JMIR Dermatol 2023;6:e42129) doi: 10.2196/42129
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Introduction

Background
Melanoma is one of the top-5 most common cancers in
Switzerland with a standardized incidence ratio per 100,000
inhabitants of 29.8 for men and 24.7 for women [1].
Longitudinal data acquired since 1989 show a linear 100%
increase of the standardized incidence ratio for men [1] in the
last 30 years. Unfortunately, this is a worldwide trend.
According to Arnold et al [2], melanoma incidence and deaths
are expected to increase 50% and 68%, respectively, by 2024.
However, it is known that if diagnosed on time, skin cancer can
be cured with a simple surgical procedure, dramatically
increasing the survival rate. The rapid increase in cases every
year has not been followed by an increase in the available
number of dermatologists. This causes the system to operate
inefficiently with increasing waiting times to get access to
specialist consultation. To cope with such a situation, a study
[3] proposed to provide specific training in skin cancer diagnosis
to general practitioners to improve their competence in such
cases. The outcome of that study showed a positive impact
during a limited period after the initial training, but eventually,
the accuracy dropped again after one year. Thus, it is necessary
to explore long-term solutions that can support dermatologists
to face this pandemic in a reliable way.

The use of deep learning has raised substantial interest in
dermatology. Seminal studies such as Esteva et al [4] showed
how deep learning algorithms can outperform board-certified
dermatologists in certain dermoscopic image triage tasks. More
recent studies broadened the scope by developing algorithms
for automatic screening and ugly-duckling characterization in
wide surface images [5]. Despite such encouraging applications
and results, the transition from academic research studies to
real-world application is only slowly being addressed. Different
surveys showed a favorable position from dermatologists [6]
as well as patients [7] with respect to the introduction of artificial
intelligence (AI) in routine consultations. However,
interpretability [8] and the need of a specialist to supervise the
outcome are issues that concern clinical users and patients.
When exploring the option of implementing such support tools
in real-world consultation, there are 2 main aspects to monitor:
on the one hand, diagnosis accuracy and, in the other, diagnosis
confidence, since both play a key role. For example, the
overdiagnosis of benign lesions as malignant lesions and
diagnoses with low confidence cause unnecessary surgeries. A
frequent scenario in clinical practice is the surgical removal of
atypical-looking benign lesions. Even in the hands of experts,
there are 5 benign lesions removed for every 1 melanoma [9],
and in the hands of nonexperts, this increases exponentially.

Another important fact that needs to be carefully considered is
the bias that can be introduced in the user’s decision-making.
However, one of the main limitations in the adoption of these
tools for nonexpert users comes from the interpretability of such
tools, which does not transmit confidence in the predictions
even if the demonstrated accuracy is high.

Use of Image Retrieval in Dermatology
Content-based image retrieval (CBIR) is a powerful tool in
medical practice that proposes similar cases to the ones under
study, thus mimicking an automatized bibliography search.
Dermatology is not an exception, since large data sets of images
are traditionally available. Early applications of CBIR in skin
lesion categorization relied on the comparison retrieved from
text and annotations [10] and progressed to consider colors and
shapes [11,12]. However, with the introduction of convolutional
neural networks (CNNs), CBIR is now using them as the
backbone for feature extraction [13-17]. A pilot study [16]
concluded that CBIR was perceived as easy to use and engaging;
however, trust still has to be gained for routine use. Furthermore,
in another high-impact study [17] where the impact of using
CBIR as a support tool was evaluated, one of the conclusions
was that users tend to prefer other AI approaches such per-class
probability in the long term. The authors suggested exploring
other CBIR architectures that might overcome this issue. One
possible reason is the lack of interpretability of the retrieval
process. To overcome this limitation, recent studies [18-20]
evaluated the option of introducing interpretability methods
such as saliency maps to guide the CNN feature extraction.
These newly proposed architectures were tested using
radiography data sets, which present substantial differences
with dermoscopic imaging. For this reason, in this study, we
proposed an updated version of the algorithm by Silva et al [18]
for the specific needs of skin lesion diagnosis, which we refer
to as saliency-enhanced CBIR (SE-CBIR).

The benefits of SE-CBIR in routine dermatologic consultations
are as follows:

• Improved interpretability: Saliency maps provide a visual
representation of the regions of interest considered by the
neural network during feature extraction.

• Improved retrieval performance: By guiding feature
extraction toward the regions of interests, we reduce the
noise and nonrelevant information in the retrieval process.

• More efficient real-world implementation: By improving
interpretability, trust by nonexperts should increase,
supporting the wider adoption and implementation of such
tools.
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Methods

Data Set Description
For the training, validation, and testing of our algorithm, the
HAM10000 data set [21,22] was used. It consists of a total of
10,015 labeled dermoscopic images belonging to 7 different
categories of pigmented lesions. The ground truth was
determined in more than 50% of images by histopathology, and
the other half were either confirmed by follow-up examinations,
expert consensus, or in vivo confocal microscopy [22].
Follow-up images of lesions were removed during the retrieval
process to maximize the diversity. The HAM10000 data set
designations for the 7 different classes were kept. The
description for each category is as follows: actinic keratosis,
squamous cell carcinoma, and Bowen disease (akiec); basal cell
carcinoma (bcc); benign keratosis (bkl; solar lentigo, seborrheic
keratosis, and lichen planus-like keratosis); dermatofibroma
(df); melanoma (mel); melanocytic nevi (nv); and vascular
lesions (vasc; angiomas, angiokeratomas, pyogenic granulomas,
and hemorrhage). The data set is highly unbalanced, with 67%
of the total number of lesions corresponding to melanocytic
nevi and 11% to melanoma. To counteract such imbalance, a
multiclass focal loss function was used during training.

Ethical Considerations
In this study, we used a public data set, namely HAM10000
[21,22]. This data set is routinely used by research studies and

is available under a Creative Commons
Attribution-NonCommercial 4.0 International Public License.
Therefore, the use of this data set is not subject to ethics board
approval.

Architecture Description
CBIR algorithms are designed to retrieve images from a data
set that are related to the image under study. Their performance
is boosted by introducing CNNs for feature extraction and
representation. We chose EfficientNetB4 [23] as the backbone
for our classifier. The choice was driven by the fact that
ensemble models combining different versions of EfficientNet
were used by the top teams in International Skin Imaging
Collaboration (ISIC) competitions [24]. We profited from
transfer learning by initializing the weights using “ImageNet”
default values. The EfficientNetB4 top layer was removed and
replaced by average pooling, batch normalization, and 2
combinations of a dropout and a dense layer. The output layer
features a softmax activation function. We extracted the deep
features just after the last convolutional layer and before the
classification layers.

The traditional CBIR approach, as depicted in Figure 1, includes
3 steps: step 1, a CNN classifier using the HAM10000 data set
is trained; step 4, extracted features from the query image are
compared to those of each image in the retrieval set; and step
5, images are ranked according to similarity.

Figure 1. Saliency-enhanced content-based image retrieval (SE-CBIR) scheme. A 7-class classifier is trained in the first stage, from which saliency
maps for each image can be extracted. The original classifier is modified by adding an additional channel to input combinations of skin lesion images
and their saliency maps for fine-tuning. Finally, the retrieved images are ranked according to the cosine similarity of their deep features. Traditional
content-based image retrieval (CBIR) includes only steps 1, 4 and 5, whereas SE-CBIR includes steps 1 to 5. CNN: convolutional neural network.

In clinical imaging, the relevant information is usually spatially
constrained, so new approaches such as that in Silva et al [18]
propose to add a fine-tuning stage, guiding the training using
saliency maps to enhance the retrieval performance. With the
emerging field of explainable AI, a variety of saliency methods
have been developed, such as vanilla gradient [25], SmoothGrad

[26], and integrated gradients [27]. Saliency methods aim to
create a map highlighting the pixels that are relevant for the
network’s classification of a particular input image. We chose
vanilla gradient for various reasons: it is model agnostic, simple
to integrate, interpretable, and consistent. In Silva et al [18], the
superiority of latent representations derived from saliency maps
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over those directly generated from the input x-ray images was
demonstrated, where latent representations of saliency maps
were used for medical image retrieval purposes and in sample
selection for active learning.

Due to the substantial differences between the x-ray images and
our dermoscopic data set, we designed a second fine-tune stage
that input the original image (3 RGB channels) plus the saliency
map computed in the first step. This was done to avoid excessive
loss of information included in the original colored dermoscopic
images in contrast with the approach in Silva et al [18]. As
shown in Figure 1, the traditional CBIR approach is comprised
of 3 steps: the training of a skin lesion classifier (step 1),
followed by deep feature extraction for every single image (step
4), and finally image retrieval according to similarity score (step
5), whereas SE-CBIR comprises 5 steps, adding the computation
of saliency maps (step 2) and the training of a 4-channel
classifier (step 3) [28]. It is worth it noting that in step 3, the
input and first convolutional layer are expanded to a 4-channel
input to input the saliency maps together with the original image.

Data Augmentation
Standard data augmentation techniques from the albumentations
libraries [29] were applied during training to avoid overfitting.
These transformations include geometric augmentations and
noise, distortion, brightness and contrast, and color
modifications. The data augmentation is applied on the fly
during each epoch. All images were resized and randomly
cropped to the expected EfficientNetB4 input resolution (380
× 380). Additionally, coarse dropout to enhance regularization
was applied. During the training of SE-CBIR (fine-tuning stage),
no data augmentation, other than random flips and rotations,
was performed.

Training
For training, validation, and test purposes, the data set was
randomly stratified in an 80:10:10 split, ensuring the same class
distribution in all subsets. During training, an adaptative learning
rate (α) approach was chosen to allow different α values for
the pretrained EfficientnetB4 layers and the added layers, aiming
to adapt the parameters of the pretrained layers just slightly or
not at all compared to the new layers. A learning rate schedule
was set up, with an initial ramp-up during the first epochs that
aims to keep the learned features. After the ramp-up, the learning
rate decays exponentially. Exponential decay is a widely used
learning rate scheduling method to improve convergence. The
adaptability of this approach reduces the time required to train
neural networks and makes a neural model scalable, as they can
adapt to structure and input data at any point in time while being
trained.

For step 1, the learning rate was set to a low value (α=5 × 10–5)
to profit from prelearned features, whereas for the additional
layers, the α was set to .01. This approach focuses the training
on the classification layers. In this second step, we added an
additional channel to the original input size, creating 4D images
including the 3 RGB channels plus the 1D saliency maps. An
adaptive learning rate approach similar to traditional CBIR was
applied. However, the adapted layers were found to perform

better at being trained with a 100-times larger (α=1 × 10–3)

learning rate than that in the first step. The learning rate was

kept low at α=1 × 10–5 for the pretrained layers to profit again
from transfer learning, and the same number of epochs and loss
function were used.

The multicategorical focal loss function [30] was chosen for
training. This function adds a term to the cross-entropy loss,
improving performance in imbalanced data sets such as
HAM10000. This is achieved through down weighting, which
reduces the influence of easy examples on the loss function,
resulting in more attention to hard ones. With a softmax
activation function in the last layer, the focal loss  focal for each
sample can be derived by:

The parameters αi and γ define the weights on this additional
term, whereas y*i represents the softmax prediction value of an
input.

Image Retrieval and Ranking Metrics
In CBIR and image classification-based models, high-level
image visuals are represented in the form of feature vectors that
consists of numerical values. Image retrieval is based on the
comparison of features extracted from the images. These vector
features are then compared among the different image features
to search and rank the “closest” ones. We chose cosine similarity
to compare the features’ latent representation due to its adequacy
of handling high-dimensional vectors (1792 × 1 in our case).
The mathematical representation is as follows:

where A and B are the feature vectors of the query image and
each of the images in the labeled data set. The lower the value
of Sc, the closer both images are in terms of features extracted.

To evaluate the retrieval performance and compare the
traditional CBIR algorithm against SE-CBIR, we used the
retrieval precision for k retrieved images (P@k) or cut-off value
metric:

Similarly, for multiclass retrieval, we defined the average
precision for k retrieved images (AP@k):

with M being the total number of classes.

Rater Recruitment and Reader Study Design
To evaluate the impact of this type of decision support, a reader
study was designed within the University Hospital Zurich
Dermatology Clinic. A total of 9 participants were recruited
based on their willingness and availability to participate: 1 expert
on pigmented skin lesions with more than 25 years of experience
and 8 residents from the clinic with 1 to 5 years of experience.
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However, all of them had reasonable experience with melanoma
diagnosis using dermoscopic imaging.

To evaluate the impact of the diagnosis support tool, the reader
study was divided into 2 tasks. In task 1, volunteers were asked
to provide a diagnosis on 100 randomly chosen dermoscopic
images extracted from our HAM10000 test set. In parallel, they
were also asked to provide their level of confidence in their
diagnosis on a 5-point Likert scale [31]. After a break period
of 1 day, the participants underwent task 2. They were asked to
rediagnose the same set of images while being supported with
the 6 “closest” images proposed by the retrieval algorithm that
are characterized by their associated ground-truth label, as

shown in Figure 2. Note that the saliency maps were not
presented to the participants along with the retrievals; however,
in a real-world implementation, they would be available. To
minimize bias, the single images were rotated by 180° with
respect to the original orientation. Additionally, each participant
was presented with a different, randomly selected set of images
for the evaluation. As in task 1, the volunteers were asked to
provide a diagnosis and their confidence level. To facilitate
participation, a web survey was created ad hoc for the evaluation
process, allowing the users to examine the lesions on
high-quality screens and providing flexibility on when and
where to perform the evaluation.

Figure 2. Web interface developed for clinical evaluation. This screenshot corresponds with task 2, where the participants were presented with the
query lesion and the 6 closest retrieved ones with their labels (colored edges). The user is asked to specify the confidence for each lesion diagnosis on
a scale of 1 to 5. akiec: actinic keratosis, squamous cell carcinoma, and Bowen disease; bcc: basal cell carcinoma; bkl: benign keratosis; df; dermatofibroma;
mel: melanoma; nv: melanocytic nevi; vasc: vascular lesions.

Results

Saliency Maps
An example of a saliency map calculated using the vanilla
gradients is shown in Figure 3 (center). Additionally, an overlay

of the original image and the saliency map is shown (right) for
illustration purposes. To minimize the loss of information during
the fine-tuning training step, the original image (3 RBG
channels) and the corresponding saliency map (1 channel) are
fed as a 4-channel input to the CNN.

Figure 3. Dermsocopic image (left), extracted saliency map (center), and the overlay of both (right).
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Image Retrieval Results
Retrieval precision comparing the traditional CBIR algorithm
versus SE-CBIR is summarized in Table 1. The
saliency-enhanced approach improves both the per-class
prediction (P@k) and the average (AP@k) for all values k of
retrieved images. The improvement in AP@k increases with k,
from 7% (k=1) to a maximum of 18% (k=9). For a single class,
the largest difference was found for class df where the prediction

accuracy was almost doubled. The only class that did not
experience a significant improvement was akiec. Both classes
df and akiec were underrepresented with only 1% and 2% of
the total retrieval data set. In the case of class df, SE-CBIR
identified additional features leading to a significant
improvement, whereas for class akiec, it could be that the limited
samples available for class akiec presented similar appearances
as solar lentigo or seborrheic keratosis and larger statistics are
needed. For all other classes, P@k was >0.8 for k=1.

Table 1. Retrieval precision per class for different number of retrieved images comparing the original 3-channel classifier versus the saliency-enhanced
one. Precision retrieval was evaluated for k=1, 3, 6, and 9 retrieved images. For each value of k, the average precision was also calculated.

AP@k bPer-class P@kaMethod and retrieval image (k)

vascinvhmelgdffbklebccdakiecc

SE-CBIRj

0.840.930.950.811.000.820.820.591

0.810.880.950.720.970.780.820.573

0.810.890.950.690.980.750.830.566

0.810.900.950.690.960.750.830.569

CBIRk

0.771.000.950.670.550.800.750.691

0.690.830.920.540.640.630.670.593

0.650.790.920.490.580.570.660.526

0.630.750.920.470.600.550.650.469

aP@k: retrieval precision for k retrieved images.
bAP@k: average precision for k retrieved images.
cakiec: actinic keratosis, squamous cell carcinoma, and Bowen disease.
dbcc: basal cell carcinoma.
ebkl: benign keratosis.
fdf: dermatofibroma.
gmel: melanoma.
hnv: melanocytic nevi.
ivasc: vascular lesions.
jSE-CBIR: saliency-enhanced content-based image retrieval.
kCBIR: content-based image retrieval.

Reader Study Outcome
The outcome of the clinical evaluation by the 9 volunteers is
summarized in Table 2. Diagnosis accuracy for the SE-CBIR
algorithm was computed by majority voting among the k=6
retrieved images, which reached 89% on average for all
evaluations. In task 1, participants recorded the lowest accuracy
at 38%, with an average of 62.2%. The performance was not
uniform with σ=12.7 points. As expected, the board-certified
dermatologists performed at the same level as the algorithm. In
task 2, a significant improvement in diagnosis accuracy was
observed for all participants. The average accuracy increased
by 22.7 points to 84.9%, which also helped to reduce diagnosis
spread, bringing it down to σ=7.1 points. Since each participant
was presented with a different image data set, to evaluate the
consistency of their selection, the Cohen κ coefficient for each
participant for tasks 1 and 2 was calculated, as well as the

average among them. The results showed that agreement
between raters improved with the support of AI, going from
fair agreement (k_average=0.35) in task 1 to substantial
agreement (k_average=0.66) in task 2. In addition, the 2
best-performing participants in task 1 were able to outperform
the SE-CBIR majority-voting prediction when provided with
retrieved images. It is worth noting that the HAM10000 data
set is composed of hand-picked lesions whose diagnosis can be
challenging without access to the patient’s context. Regarding
the average diagnosis confidence, an improvement from 3.11
to 3.86 was found (+24%). With the support of the retrieved
cases, the confidence in the correct diagnosis increased from
3.35 to 4.03. Indeed, most (6/9, 67%) of the participants
expressed a confidence level above 4, both in absolute
confidence and confidence for correct diagnoses, whereas in
task 1, only 1 participant showed that level of confidence. On
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the other hand, the confidence in incorrectly predicted lesions
increased much less (2.72 to 2.90).

Table 2 shows the performance of the retrieval algorithm with
an average accuracy of 89.2%. This result is substantially higher
than the largest reader study using the ISIC18 data set published
by Tschandl et al [17]; however, it used a different test set for
the evaluation.

A closer look at the predictions per class is shown in Figure 4
with the help of confusion matrices. Each row represents the
total number of instances of a given class, whereas each column
represents the total number of instances predicted for each class.
Figure 4 (right) shows a substantial improvement of per-class
accuracy with the help of SE-CBIR–retrieved images.

Table 2. Qualitative evaluation results for all participants. Diagnosis accuracy and confidence level on a 5-point Likert scale. Saliency-enhanced
content-based image retrieval (SE-CBIR) accuracy was computed by majority voting among 6 retrieved images. The absolute confidence is reported
for both tasks, with separate values for correct and incorrect diagnoses.

Task 2Task 1SE-CBIR,
accuracy (%)

Participant

Confidence
for incorrect
diagnosis

Confidence
for correct
diagnosis

Absolute confi-
dence

Accuracy
(%)

Confidence
for incorrect
diagnosis

Confidence
for correct
diagnosis

Absolute confi-
dence

Accuracy
(%)

3.134.174.09922.83.483.388589Dermatologist

3.384.124842.53.452.924490Resident 1

1.543.312.85741.72.922.436089Resident 2

23.513.45962.152.62.518092Resident 3

3.334.564.41882.262.972.76289Resident 4

3.654.624.46833.534.324.056686Resident 5

3.574.194.06793.663.933.846592Resident 6

34.124892.753.43.146093Resident 7

2.713.563.38793.053.033.043888Resident 8

2.9 (0.7)4.03 (0.5)3.86 (0.51)84.9 (7.1)2.72 (0.6)3.35 (0.5)3.11 (0.6)62.2
(12.7)

89.2 (2.3)Total, mean
(SD)

Figure 4. Aggregated confusion matrix for all participants for task 1 (left) and task 2 (right). Overall diagnosis accuracy was improved when using
saliency-enhanced content-based image retrieval (SE-CBIR) as a support tool. The melanoma overdiagnosis was reduced by 53% in task 2, mainly
driven by changes from initial melanoma diagnosis to nevi. akiec: actinic keratosis, squamous cell carcinoma, and Bowen disease; bcc: basal cell
carcinoma; bkl: benign keratosis; df; dermatofibroma; mel: melanoma; nv: melanocytic nevi; vasc: vascular lesions.

Class nv represented almost 80% of the test data set, and the
SE-CBIR results show that almost 25% of the diagnoses were
reconsidered into the correct class. Similarly, for class bkl,
incorrect diagnoses were corrected in task 2 improving the
accuracy by 17%. For class mel, the accuracy improved to 79%
for correct melanoma cases. In total, just 20 correct decisions
of task 1 were changed to an incorrect diagnosis in task 2,
whereas 224 misclassified lesions from task 1 were correctly

classified in task 2. This is an important indication that the
algorithm does not lead to overconfident misclassifications but
rather improves the number of correct diagnoses and their
confidence—although we should note that 12 of the incorrectly
overturned diagnoses agreed with the algorithm’s majority
voting. Those cases probably would require additional
patient-context information for a better evaluation. From a skin
management point of view, melanoma overdiagnosis is a
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conservative approach where a negative biopsy might be
justified. Regarding melanoma (mel) diagnosis, in task 1, a total
of 21 cases were underdiagnosed (33% of the 64 total mel cases),
whereas in task 2, this value decreased to 14 (22%) out of 64
cases. Regarding overdiagnosis in task 1, a total of 171
nonmelanoma cases (where 144 were nv cases) were
misclassified into mel, whereas in task 2, this value decreased
to 81 cases (with 65 nv cases).

Discussion

This study presents a novel algorithm for skin lesion diagnosis
support based on the use of saliency maps for feature extraction
guidance in contrast to state-of-the-art image retrieval (CBIR).
We refer to this architecture as SE-CBIR due to the addition of
a second fine-tuning stage, combining saliency maps and
dermoscopic imaging.

It was shown that SE-CBIR improved retrieval precision in
dermoscopic data sets compared to traditional CBIR by 7%.
Clinical relevance was assessed by a reader study where the
participants improved their overall diagnosis accuracy by +22%,
as well their confidence level by +24%. Considering only
melanomas, the study demonstrated that SE-CBIR helped to
decrease overdiagnosis by 53%.

However, the study has limitations, such as the use of a single
data set and the fragility of saliency maps. It is well-known that
different methods for saliency map calculation might lead to
different results. Another potential limitation identified in the
evaluation process is the fact that the participants did not have
access to the patient’s context, which penalizes the diagnosis
accuracy in certain difficult cases. Future work should include
increasing the number of participants, including different target
groups such as general practitioners, nurses, or technicians, to
evaluate the impact and usefulness of such tools in different
scenarios, as well as addressing the imbalance of the classes
such as akiec, where the current data set does not seem to be
representative and is difficult to generalize. In this case, data
augmentation techniques will not solve the issue and additional
images of such a class should be sought and included.

In conclusion, we have demonstrated the superior quantitative
performance of SE-CBIR in comparison to the state-of-the-art
CBIR by introducing saliency maps for feature extraction. By
introducing interpretable methods, we also expect to improve
acceptance by users since they have access to
human-understandable information to better comprehend the
algorithm’s decision process.
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