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Transport of bound quasiparticle states in a
two-dimensional boundary superfluid

Samuli Autti 1 , Richard P. Haley 1, Asher Jennings1,3, George R. Pickett 1,
Malcolm Poole1, Roch Schanen1, Arkady A. Soldatov 2, Viktor Tsepelin 1,
Jakub Vonka 1,4, Vladislav V. Zavjalov1 & Dmitry E. Zmeev 1

The B phase of superfluid 3He can be cooled into the pure superfluid regime,
where the thermal quasiparticle density is negligible. The bulk superfluid is
surrounded by a quantum well at the boundaries of the container, confining a
sea of quasiparticles with energies below that of those in the bulk. We can
create a non-equilibrium distribution of these states within the quantum well
and observe the dynamics of their motion indirectly. Here we show that the
induced quasiparticle currents flow diffusively in the two-dimensional system.
Combining this with a direct measurement of energy conservation, we con-
clude that the bulk superfluid 3He is effectively surrounded by an independent
two-dimensional superfluid, which is isolated from the bulk superfluid but
which readily interacts with mechanical probes. Our work shows that this two-
dimensional quantum condensate and the dynamics of the surface bound
states are experimentally accessible, opening the possibility of engineering
two-dimensional quantum condensates of arbitrary topology.

At the lowest temperatures (and here in zero field and pressure) bulk
superfluid 3He exists in the B phase, formed of triplet-paired Cooper
pairs. Here, the minimum energy required to create a quasiparticle, or
one half of a broken Cooper pair, is the energy gap Δ ≈ 1.6mK (2 ⋅ 10−26

J). These quasiparticles are responsible for themacroscopic transfer of
momentum and energy in the superfluid, and the quasiparticle density
decreases exponentially with decreasing temperature. Therefore, at
temperatures below a quarter of the superfluid transition tempera-
ture ≈ 1 mK, the bulk superfluid only conducts heat efficiently from
sources hot enough to create new quasiparticles. However, within
roughly a coherence length ξ ≈ 80 nm of the sample container walls,
the energy gap is partially suppressed1–3, as shown schematically in
Fig. 1a. The coherence length is the smallest length scale across which
the superfluid wave function can change, and therefore the gap sup-
pression region is effectively two-dimensional. This suppression gives
rise to a quantum well allowing quasiparticles to exist at arbitrarily
small energies4–13.

In the simplest description, the bound quasiparticles have a linear
dispersion as a function of their in-plane momentum p∣∣, E = vLp∣∣5–10,14.

Here vL = 27mms−1 is the Landau critical velocity, which means that
such bound quasiparticles move at a uniform group velocity vqp = vL in
the plane of the surface7,15. Since this dispersion is best approximated
when the scattering from the containing wall is (partially) specular7,
the primary experiments in this article were carried out with
approximately two monolayers of solid 4He coating all surfaces4,
yielding specularity in the range between 0.2 and 0.8, where one is full
specularity and zero means diffuse surface scattering. We can also
measure the effect of removing the 4He coating16 so that specularity is
approximately zero. In this case, the bound quasiparticles have amore
complicated dispersion, but the order ofmagnitude of vqp remains the
same7,15.

We are able to expel some bound quasiparticles to the bulk
superfluid when a probe inserted in the bulk superfluid is accelerated
to a velocity exceeding a critical velocity. The probe we use is the
crossbar of a cylindrical goalpost-shaped wire17 (radius R = 63.5μm,
crossbar 8mm, legs 25mm, see Methods). When the wire is moved,
driven by the Laplace force in a magnetic field, the superfluid flow
velocity with respect to the crossbar surface follows vfl = 2v cosðθÞ,
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where v is the velocity of the crossbar in the laboratory frame, and the
polar angle θ is defined in Fig. 1b. The bound-state dispersion is Dop-
pler shifted in energy by ± vflpF as shown in Fig. 2 and detailed in
Supplementary Fig. S1 (pF being the Fermi momentum), and in the
wire frame the bulk superfluid ismoving at vfl. As the energy difference
between the highest quasiparticle states occupied at zero temperature
and the bulk superfluid is Δ in the absence of flow, the critical velocity
where the first bound quasiparticles can escape to bulk is vc =Δ/
(3pF) = vL/3 (see detailed derivation in Methods). Below the critical
velocity, we canmanipulate the bound quasiparticle dispersion curves
by changing the direction and amplitude of the superflow along the
surface, allowing us to create a non-equilibrium state within the two-
dimensional superfluid. The crossbar trajectories used for this purpose
are illustrated in Fig. 3. We return to the details of these patterns of
motion in the next section.

As the wire velocity v is increased from zero beyond vc, the most
energetic bound quasiparticles escape to the bulk superfluid as sche-
matically shown in Fig. 2. Details of the escape process and the critical
velocity are provided in Methods. While the wire is moving at a uni-
form velocity18, a new equilibrium of bound quasiparticle distribution
is established, and no further quasiparticles are released into the bulk.
A similar process takes place during the deceleration phase at the end

of the motion, where a further pulse of bound quasiparticles can
escape. These steps form the first part of the double cycle (green line
in Fig. 3).

The pulses of quasiparticles released into the bulk increase the
temperature of the bulk liquid. We can infer the dependence between
the temperature increase and the heat released by the motion of the
wire. Moreover, because each quasiparticle in the bulk liquid carries
energy very close to Δ, this measured temperature rise yields the
number of quasiparticles that have escaped during the motion of the
wire. We label the direction of the initial acceleration-deceleration
cycle “up". The quasiparticle release process in an up cycle is sche-
matically illustrated in Fig. 4a.

We know that bulk superfluid flow can be used to push the bound
quasiparticles to the bulk superfluid, where they become regular
thermal quasiparticles. Simultaneously, the distribution of the quasi-
particles that remain bound to the surface is distorted. The basic
physics of the bound states that did not escape to the bulk, such as
transportwithin the quantumwell, remain unexplored. Thus, it has not
been clear whether the two-dimensional system is an independent
superfluid condensate with meaningful transport physics of its own
excitations, a layer of normal fluid, or merely the border of the bulk
superfluid with only local dynamics.

In this article, we use the bulk escape process to take snapshots of
the dynamics of the quasiparticles that remain bound to the goalpost
wire crossbar. We argue that the bound quasiparticles are decoupled
both from phonons in the container wall (crossbar) and from thermal
quasiparticles in the bulk superfluid, substantiated by direct mea-
surement of energy conservation in the bound state system. Our
experiment also shows that instead of interacting with the bulk
superfluid, the bound quasiparticles have their ownmode of transport
by diffusion within the two-dimensional superfluid. Finally, the
observed characteristic time scale of the transport is consistent with
bound states in a two-dimensional region of superfluid, not normal
fluid. Combining these observations, we conclude that the surface
forms a two-dimensional superfluid, separated from the bulk by its
different superfluid gap spectrum. This two-dimensional superfluid
provides the primary system at low energies that a mechanical probe
immersed in the superfluid interacts with.

Results
We can measure and analyse the heat released by an up cycle of the
crossbar by varying the bulk quasiparticle density. That is, the crossbar
also scatters bulk quasiparticles while it moves, with the resulting drag
force F yielding the heatingQ = Fl (l is the distance travelled). This drag
force canbe varied by changing the temperature of the bulk superfluid
and measured independently using a separate thermometer wire
whose resonance width Δf∝ F. The proportionality constant is calcu-
lated in Methods, yielding the black line in Fig. 5a, in good agreement
with the measured Q. The effect of Q can thus be removed by extra-
polating themeasured heat release linearly toΔf = 0. The heat released
from the bound quasiparticles extracted this way from a single accel-
eration is q = 12 ± 3 pJ, which is in good agreement with the theoretical
estimate ~10 pJ as detailed in Methods.

Importantly for the current experiment, at the end of the up cycle
(Fig. 3), the dispersion curves of the quasiparticles have returned to
their zero-velocity profile, but leaving on one branch a deficit where
the highest energy quasiparticles have energies well below zero
(Fig. 4a). Since at low temperatures the equilibrium density of quasi-
particles in the bulk liquid is very low, themechanism for the deficit of
quasiparticles to be replaced by quasiparticles coming from the bulk is
too slow to be directly observed.We can estimate the time constant of
this process from the thermalisation time of the bulk superfluid, ~1 s,
and the ratio of the surface areasof the entire container, including heat
exchangers and the goalpost wire crossbar, yielding τ ~ 103 s (details
can be found in Methods). Therefore, equilibrium for these particles

Fig. 1 | The two-dimensional quasiparticle quantum well. a The component of
the superfluid gap that corresponds to momenta perpendicular to the wall is
suppressed as the container boundary is approached. This yields a potential well in
which bound quasiparticles (red halo) can exist to arbitrary low energies. The gap
for motion along the surface remains nonzero. At low temperatures, the density of
quasiparticles in the bulk superfluid is vanishingly low. b The probe wire (cross-
section shown by the grey disk) is surrounded by the bound quasiparticle potential
well (red halo). The thickness of the potential well aξ (a ~ 1, see Methods) deter-
mines the bound quasiparticle mean free path as indicated by the double arrow.
Here R is the radius of the wire crossbar. When the crossbar is moving, the local
superflow velocity around it depends on the polar angle θ. Green notches indicate
the span of θ = ± 80° where the quasiparticle escape condition vfl > vc is satisfied
locally for the wire velocity of v = 45mms−1.
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canbe reestablished only by theflowof boundquasiparticles along the
potential well around the crossbar, removing the momentum imbal-
ance, and by flow along the legs of the goalpost wire and container
walls, removing excess energy.

Nowwe can progress tomeasuring bound quasiparticle transport
in the surface system. Referring back to the cycle of crossbar motion
shown in Fig. 4a, the end state is not the same as the initial state, as we
are left with a quasiparticle deficit in the left-hand branch. The key
concept of the experiment is to repeat the acceleration–deceleration
cycle oncemore after await ofΔt (up–up cycle), as shown in Fig. 3. This
can be done for two extrema. If we repeat the cycle immediately after
the first has ended, that is, setting Δt to zero, then the second cycle
follows that shown inFig. 4b,wherewestart alreadywith the full deficit
in the left-hand branch. However, this second process only yields one
burst of quasiparticles that on the deceleration. Thus, the combined
series of two cycles yields three bursts of quasiparticles into the bulk.
Alternatively, after the first cycle, we can wait for an “infinite” period,
i.e. longer than the time taken for the deficit to fill by the flow of
localised quasiparticles around the wire periphery, in which case we
have the same starting conditions as shown in Fig. 4a. Thus, a series of
two cycles with a long wait in between will emit four equal bursts of
quasiparticles. Between these two extremes, we can explore the
situationwith intermediate values of the delayΔt and canmapout how
rapidly the deficit fills. That is the basis of the measurement, which
provides ameasure of the diffusion rate of the localised quasiparticles
through the potential well around the wire.

Bound state diffusion
To interpret the data, we now need to devise a model for diffusive
quasiparticle transport in the two-dimensional surface quantum well,
whichwe do following the theoretical lead of refs. 19–22. This model is
based on three assumptions (all well justified). First, there is no inter-
action between surface-bound and bulk quasiparticles, as has been
observed across two orders of magnitude in bulk quasiparticle
density4. This assumption is further substantiated by anestimate of the
equilibriation time (in Methods) that implies that direct equilibriation
between the two systems would take at least 103 s. Secondly, the
thermal Kapitza resistance between phonons in the solid boundary
material and the superfluid quasiparticles is very large at the lowest
temperatures. A simple estimate for the exponential decay of the
energy of the bound quasiparticles into the material of the crossbar
yields time constant τRK

>10 s (Methods). These two assumptions imply
that energy in the bound quasiparticle system is conserved. Third, the
distribution of the bound quasiparticle system reflects the history of
crossbar motion as detailed below and in ref. 4, meaning that the
bound quasiparticle momentum distribution equilibrates with the
time constant τ. Thus, quasiparticle transport acts as the equilibration
mechanism.

The diffusion coefficient for quasiparticle transport can be esti-
mated asD ~ vqpl∣∣. Here l∣∣ is themean free pathwhich, in the absenceof
quasiparticle–quasiparticle collisions (this assumption is confirmed
below), is determined by the thickness of the quantumwell, that is, the
distance between the wire surface and the edge of the surface layer,
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Fig. 2 | Schematic presentation of the quasiparticle dispersion curves. The
panels represent dispersion curves for the bound quasiparticles (red and blue
discs) and for quasiparticles in the bulk superfluid during an acceleration, steady
velocity, and deceleration cycle with the indicated times referring to the initial “up"
sequence shown in Fig. 3. The dispersion curves are drawn in the reference frame
moving with the wire. In panel a, the wire is stationary. As we apply an increasing
superflow along the crossbar surface during the first 3ms, the quasiparticle bands
become tipped until, as in (b), those bound quasiparticles with energies above the
minimum in the bulk liquid escape into the bulk. When the acceleration ceases, no

more bound quasiparticles can escape, and equilibrium in the wireframe, as shown
in panel (c), is re-established by diffusion as the wire is moving at constant velocity.
On deceleration, a second burst of bound quasiparticles escapes into the bulk.
Finally, with the superflow velocity again zero, as shown in panel (d), the bands
return to their initial state, leaving the bound quasiparticles to redistribute via
diffusion. A more detailed description of the same process is shown in Supple-
mentary Fig. S1. Note that this figure is for illustration purposes only. The local
dispersion curves cannot be represented in this way, especially for the depletion
situation, but it gives the gist of the idea.
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l∣∣ ~ 10μm (Fig. 1b and Methods). When the crossbar is stopped, the
density of bound quasiparticles carrying themomentum imbalance, n,
reflects the flow velocity along the crossbar surface immediately
before the wire is stopped. We estimate this distribution as
n / vfl / cosθ. Solving the diffusion equation for this initial state
yields exponential recovery of equilibrium n with the time constant
τ =R2/D ~ 10ms (see Methods). We emphasise that the time constant is
tied to the population gradient arising from the flow velocity profile
and, hence, to non-local diffusion.

We can probe the diffusive bound-state redistribution by varying
the delay Δt between the two cycles of motion. Fewer quasiparticles
are released in the second cycle if the susceptible population has been
depleted during the first cycle. The replenishment of the deficit begins
during the deceleration and continues until the velocity reaches full
velocity again upon subsequent acceleration. According to the diffu-
sion picture, the energy released in the second acceleration is
q 1� expð�ðΔt + t0Þ=τÞ
� �

, where t0 = 6ms is the combined acceleration
anddeceleration time. The total energy release from the up–up cycle is
detailed in Methods. The measured Δt dependence, shown in Fig. 6,
confirms the exponential equilibration with the fitted value
τ = 6 ± 3ms4 in good agreement with the theoretically estimated time
constant.

When the first motion cycle depletes the bound quasiparticles
available for bulk escape, nonewill be released if the cycle follows with
no intermediate recovery time. That is, the fitted q should be con-
sistent with that extracted by temperature extrapolation above. The
blue lines in Fig. 6 fit with τ = 6ms at two different temperatures, with
the average value q = 11 ± 5 pJ. This is in good agreement with
q = 12 ± 3 pJ obtained above with the temperature extrapolation.
Combining this with the observation detailed below that q does not
depend on bulk temperature yields two immediate conclusions. First,
starting the second cycle before the bound state recovery is complete
provides a quantitative snapshot of bound quasiparticles’ dynamics.
Second, the bound state population available for bulk escape at this
velocity is fully depleted by the first cycle of motion.

We also note that none of the measured dissipation originates
from the direct creation of bulk quasiparticles. That is, the tempera-
ture extrapolation yields the total magnitude of dissipation at zero
bulk temperature, which matches the magnitude of the diffusion
process that ties the observed dissipation to the bound state dynamics
and, thus, to the bound state escape process. This is despite the fact
that a large bulk superfluid volume flows at speeds exceeding the
Landau critical velocity when thewire ismoved, andwemight expect a
direct pair-breaking mechanism to arise23: In the laboratory frame, the
superflow around the crossbar exceeds vL up to 80μm above and
below thewire vertices. As the crossbarmoves across 0.5mm, the bulk
volume where the full Landau velocity is at least momentarily excee-
ded is, therefore, two orders of magnitude larger than the entire
volume of the quantum well around the crossbar that contains the
bound quasiparticles.We can speculate that there is nomechanism for
the bulk quasiparticles to carry away momentum from the crossbar
(unlike the direction-selective escape process of the bound quasi-
particles). Thus, bulk quasiparticle creation may be prohibited by the
lack of a mechanism to extract energy from the moving crossbar. This
observation provides a perspective to experiments carried out in the
polar phase of superfluid 3He,24–26, where exceeding the bulk Landau
velocity in a large volume potentially causes no observable dissipation
either, contrary to theoretical expectation27,28.

Reversing the direction of motion for the second cycle (up–down
cycle, see Fig. 3) results in a temporary excess of bound quasiparticles
available for escape during the acceleration of the down cycle. This
scenario is illustrated schematically in the Supplementary Fig. S1. The
measured data shown in Fig. 6 confirms this excess. Applying the dif-
fusion picture, we expect the excess bound quasiparticle emission to
be removedby diffusion asqdown expð�ðΔt + t0Þ=τÞ, in goodagreement

Fig. 3 | Schematic illustration of the crossbar motion. The wire can be moved
across 0.5 mmwith a steady velocity, here 45mms−1, and then paused (green line).
After a wait of Δt, the process can be repeated with a further up movement (“up
cycle” blue line) or reversed back to the starting point (“down cycle”, red line). The
combination of the green and blue lines is denoted “up-up cycle” and that of the
green and red lines “up-down cycle”. The vertical bands of colour indicate where
surface quasiparticles are emitted from the wire during acceleration and decel-
eration. The emitted quasiparticles increase the temperatureof the bulk superfluid,
which is detected using a separate thermometer.

Fig. 4 | Snapshots of the quasiparticle transport in an up–up cycle. a As the
crossbar starts to move (blue line), the bound quasiparticles in the quantum well
(red pillars) are Doppler-shifted up for quasiparticles with momenta along the
superfluid and down for momenta against the flow direction. This raises the most
energetic bound quasiparticles above the minimum energy in the bulk superfluid,
allowing the quasiparticles to escape into the bulk as a sudden burst (yellow star
and arrow). During the motion, the quasiparticle deficit created on the right-hand
side band can only be filled slowly from the transport of quasiparticles along the
potential well.When themotion ceases, the bands return to their original positions
allowing another sudden burst of quasiparticles to escape. At the end of the whole
velocity cycle, the left-hand side band is left with a deficit. b If the initial up cycle is
followed with no delay by another up cycle, the second cycle will start with a
quasiparticle deficit allowing no quasiparticle emission during the acceleration.
Therefore, only one pulse of quasiparticles is emitted from the deceleration.
Allowing for (partial) recovery by delaying the second cycle by Δt and measuring
the amount of emitted quasiparticles thus allows us to take snapshots of the bound
quasiparticle diffusion.
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with the data shown in Fig. 6. The low-temperature fitted qdown ≈ 30pJ
is consistent with a temporary population excess that is removed by
diffusion, as detailed in Methods. At higher temperatures, the hys-
teretic effect explained in ref. 4 distorts the measurement.

Diffuse boundaries
We can decrease the number of bound quasiparticles susceptible to
the bulk flow by removing the 4He coating of the surface and thus
taking the specularity close to zero7. Reducing the surface specularity
moves the density of states towards states with lower momenta in the
plane of the wire surface. States with zero in-planemomentum gain no
energy from vfl and therefore cannot escape to the bulk. Repeating the
extrapolation to Δf =0 as before yields q ≈ 7 pJ (Fig. 5). Assuming the
escape process is equally effective with and without 4He, this implies
that the susceptible bound state density is roughly twice higher with
4He coating than without it. This is qualitatively in line with the theo-
retical prediction in ref. 7. The slope of Q(T) is 10% larger with 4He
coating than without it. This is because surface specularity does not
change the bulk quasiparticle density at a given temperature, and the
drag force F at large velocities v increases slowly with growing
specularity29–31. Change in the surface specularity has no effect on the
diffusion time constant process within experimental uncertainties4.
That is, quasiparticle-quasiparticle collisions remain negligible
regardless of changes in the density of states, substantiating the
assumption that themean freepath is determinedgeometrically by the
thickness of the surface layer and the curvature of the wire crossbar.
Note that we can obtain a coarse estimate of themean free path where
limited by quasiparticle-quasiparticle collisions from the known bulk A
phase mean free path, which is ~10 mm extrapolated to these
temperatures32.

To add further evidence for the independence of the surface
dynamics, we can extract q and qdown by varying Δt at different bulk
temperatures (no 4He, Fig. 6b). The bulk quasiparticle density changes
by two orders of magnitude over the temperature range studied but,
remarkably, the bound state process remains undisturbed, indicated
by the constant energy release. This shows that the snapshot

Fig. 5 | Direct measurement of bound quasiparticle heat release. The heat Qtot

released in an up cycle (green points) depends linearly on the thermal bulk drag
force, proportional to the resonance width Δf of the vibrating wire thermometer in
the same superfluid volume. The dashed lines are linear fits to the measured data.
The black line shows an estimate of the heating from the drag force due to thermal
bulk quasiparticles (Methods) in good agreement with the slope of the green data
considering the estimate is obtained by extrapolating the Andreev reflection
force–velocity dependence to four times the velocity where it can be directly
measured. Extrapolating the green line to zero Δf =0 yields the bound state con-
tribution q = 14 ± 3 pJ (intersection with the y-axis is at 2q). For an up-up cycle with
Δt > 25ms (blue points), the slope is doubled because the distance travelled is twice
longer, and the Δf =0 intersection yields 4q = 60 ± 4 pJ. These experiments were
carried out with 4He preplating. Up–up cycles measured without 4He preplating
(magenta points) show a 10% reduction in the slope, and the linear fit extrapolates
to 4q ≈ 28pJ.

Fig. 6 | Diffusion in the two-dimensional superfluid. aWe record the total energy
released to the bulk superfluid as a function of the recovery time Δt. Blue circles
show the result for an up–up cycle at two different bulk temperatures, and red
circles for a corresponding up–down cycle. The fitted exponential time depen-
dencies describe the diffusion process that redistributes quasiparticles until equi-
librium is recovered. This allows inferring themagnitudeof theboundquasiparticle
depletion (or excess for the up–down cycles) that results from the first up cycle.
Fitted parameter values q and qdown are indicated in the figure with errors corre-
sponding to 68% confidence intervals. Data in this panel was measured with an
applied 4He coating on the crossbar surface. b The number of bound quasiparticles
released is approximately halvedwhen the crossbar surface is not coatedwith solid

4He. We vary the bulk temperature to show that −q (blue points) and qdown (red
points) are independent of the quasiparticle density in the bulk. The top x-axis
shows the thermometer wire resonancewidth, which is proportional to the density
of bulk quasiparticles. Dashedhorizontal lines are a guide to the eye corresponding
to −q = −6 pJ (blue line) and qdown = 9 pJ (red line). At temperatures higher than
0.19mK, Q becomes larger than q or qdown, thus causing difficulties in extracting q
and qdown reliably. Error bars show the 68% confidence interval of the exponential
fits. Additionally, the crossing of the exponential tails seen for the 0.22mK data in
panel a is due to a hysteresis effect4, proportional to Δf. This acts to increase the
apparent qdown. The magnetic field was 136mT and v = 45mm/s in both panels.
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technique reliably probes the bound quasiparticles’ dynamics and that
there is no coupling between the bound quasiparticles and thermal
bulk quasiparticles.

Discussion
The phases of superfluid 3He are differentiated by different broken
symmetries. Each separate superfluid phase has its own order para-
meter structure that describes the broken symmetries. The B phase
order parameter amplitude (superfluid gap) is uniform in all momen-
tum directions, and thus thermal excitations (normal fluid) vanish
exponentially as temperature decreases to zero. In the superfluid A
phase, the superfluid gap is zero in one momentum direction, and in
the superfluid polar phase, in a plane perpendicular to a specific
momentum direction. Thus, in these phases the thermal excitation
density does not go to zero exponentially but instead follows a
power law32.

The components of the B phase order parameter amplitude are
suppressed within the quantum well near container walls. The gap
components are not all uniformly zero in the surface layer, which
would be the case for normal fluid1,6. For specular boundaries, only the
gap component formomenta perpendicular to the wall goes to zero at
the wall. For a diffuse boundary, all components are suppressed, but
the in-plane components do not go to zero. Thus, the surface region is
a superfluid condensate but with a gap spectrum different from the
bulk phases21. The quasiparticle density in the 2D superfluid can be
expected to decreasewith a power-law temperature dependence. If we
assume the bound quasiparticle density is similar to that in the bulk A
phase, their mean free path becomes several millimetres32, and the
thermal quasiparticle population is negligible for the purposes of this
Article.

Our experiments show that the 2D layer is characterised by well-
defined quasiparticle transport independent of the bulk system. The
observed transport time constant is determined by the bound state
group velocity ~vL, which arises from the gapnot being uniformly zero,
and the estimatedbound state release to the bulk is consistentwith the
increaseddensity of quasiparticles in the surface layer, arising from the
suppressed gap spectrum. The diffusive transport is much faster than
the recondensation of the quasiparticles bound to the surface, which is
why the added energy is carried away diffusively and re-equilibrated
elsewhere on the container walls and the enormous surface area of the
sintered heat exchangers.

Heat in this system is contained by the quasiparticles, and thus
quasiparticle transport is also heat transport. At energies below the
superfluid gap, the surface therefore provides a preferential path for
heatflowbetweenhot and coldobjects immersed in the superfluid and
a direct interaction channel between immersed mechanical probes.
These conclusions are supported by anomalous heat transport in
superfluid 3He observed independently at Cornell33, which we suggest
results from the flow of heat along the walls of the container and onto
the thermometer fork used. In other words, the surface system forms
an independent two-dimensional superfluid that, at the zero-
temperature limit, determines the thermo-mechanical properties
of 3He.

Confining a fermion gas at a low temperature to a high-purity two-
dimensional solid-state system has led to the discovery of a variety of
quantum Hall phases and topological quantum states. Similarly, the
spontaneous formation of ultra-cold superfluid 3He, an extremely pure
fermionic system, into a two-dimensional surface system is likely to
yield a diversity of physics to be explored. For example, the bound
quasiparticles’ possible interactions with the sub-gap bosonic excita-
tions or bulk topological defects span at least 7 orders ofmagnitude in
energy below the superfluid gap and some 18 degrees of freedom32,34.
Our results imply that devising suitable nanoprobes that fit within the
two-dimensional superfluid should tap into long-range quasiparticle
transport that can be studied in varying topological configurations,

such as across different bulk superfluid phases and interfaces, via
controlled confinement provided by engineered nanostructures33,35–41,
or across the free surface42–47. It may also be possible to access these
phenomenabyengineering the topology of themechanical probes48,49.
Finally, the surface layer is also expected to host Majorana zero
modes7,50–53 that detailed transport measurements may reveal. These
researchavenues have the potential to transformour understandingof
this versatile macroscopic quantum system.

Methods
All experimental data and parameter values in this Article are for the
saturated vapour pressure, which is vanishingly small at ultra-low
temperatures. The superfluid transition temperature at this pressure is
Tc ≈ 930μK. The superfluid sample is contained in a box made from
Stycast paper composite containing sintered silver heat exchangers,
surroundedbya guardcell alsofilledwith cold 3He54. Themotionof the
goal-post wire55 in the cell is illustrated schematically in Fig. 7.

Thermal drag force acting on the goalpost wire
Changes in the bulk thermal quasiparticle density can be measured
using a superconducting NbTi 4.5μm-thick vibrating wire immersed in
the same superfluid volume as the goalpost wire. The resonance width
of the thermometer wire follows29,31,56,57

Δf =
F4μm

2v4μm
ρπ2, ð1Þ

where the resonance width depends on temperature as
Δf / expð�Δ=kBTÞ, F4μm is the peak drag force acting on the reso-
nator per cross-sectional area of the resonator in the direction of
motion,Δ is the superfluid gap and kB the Boltzmann constant, and T is
the superfluid temperature. The ratio F/v is approximately the same for
all probesmoving in the superfluid (geometric corrections of the order
of one do apply), provided the velocity of the probe is smaller than

Detection coils

Moving wire

Fig. 7 | The goal-post shapedwire.Wecanmove the crossbar of the goal-post wire
at a constant speed over a distance of severalmm, as indicatedby the yellow arrow,
enabling the current experiments18. The wire is surrounded by a volume of super-
fluid used as a bolometer for detecting the heat released from the motion of the
wire4. The detection coils are used for calibrating the velocity of the wire crossbar.
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roughly 1mms−1. Δf is measured by operating the thermometer wire
well below this threshold.

At velocities larger than 1 mms−1, the ratio F/v decreases because
of nonlinear effects that arise owing to Andreev reflection of quasi-
particles. We estimate this effect for the goalpost wire (v = 45mms−1)
using Equation 17 in ref. 29 (see also ref. 31). Note that this strictly
speaking applies to specular surface scattering only. The diffusemodel
gives F/v ratios approximately twice smaller at v = 45mms−1.

We can use this to estimate the thermal drag force acting on the
goalpost-shaped wire. That is, the power dissipated by the thermal
drag force acting on the goalpostwire is Fv. This implies that for a fixed
distance travelled, the total energy dissipated is Q(T)∝Δf with the
proportionality constant determined by the ratio of the probe dia-
meters, densities, and the probe velocity as described above. Esti-
mating Q(T) this way yields the black line in Fig. 5, in good agreement
with measured Q(T) + 2q (green points and line), considering that no
fitting parameters were used, precise surface specularity is not known,
and only the drag force experienced by the crossbar is included in the
estimate (wire legs are excluded). Note that direct verification of the
thermal scattering force in this velocity regime is difficult because of
the emission of surface-bound quasiparticles that begins at much
lower velocities.

Vibrating wire thermometry and bolometry
The heat release due to ejected bound quasiparticles is monitored
by using the surrounding superfluid volume as a bolometer. Changes
in temperature are measured using the thermometer wire resonator.
Typical bolometer data curves are shown in Fig. 8. The temperature
is stable before the goalpost wire is moved at t = 0, and the peak of
the bulk temperature increase occurs well after the wire motion
ends. This is because the bolometer readout time, determined by the
thermometer wire resonance width Δf and by the thermalisation time

of the bolometer58, is of the order of a second. Comparing the twodata
curves with the delay between the two cycles of crossbarmotion equal
to 0 and 30ms, the temperature peak maximum shifts according to
delay Δt added between the two cycles.

The bolometer is calibrated using resonant AC measurements of
the goalpost-shaped wire59, where the energy output can be directly
recorded with a four-point measurement. The data obtained is fitted
with the BCS heat capacity32 using the effective volume of the sample
as a fitting parameter. The fitted volume is 16 cm3, which falls between
the free volume of the sample container, 15 cm3, and the total volume
of the sample container, including the volume within the heat
exchangers, 32 cm3.

Escape condition and the critical velocity
All fermionic quasiparticles in superfluid 3He move at the Fermi velo-
city (≈50m s−1). However, the bound quasiparticles are nearly perfectly
retroreflected from the edge of the surface quantum well owing to
Andreev reflection. If reflection from the wire surface is specular, the
resulting bound quasiparticle dispersion is the Dirac dispersion
E = vLp∣∣. The corresponding group velocity vL is the drift speed arising
from the minute misalignment of the inbound and outbound trajec-
tories in the Andreev reflection process60.

Let us assume that the bound quasiparticle system is in equili-
brium at zero temperature. This means that the quasiparticle disper-
sion bands are filled up to the Fermi energy, selected to be equal to
zero for simplicity in the schematic Figs. 4, 2 and S1. If the wire is
accelerated instantaneously to velocity v, the energetic escape con-
dition for the highest-energy bound quasiparticles in vector form is
vfl � p̂in ≥Δ=pF +v � p̂out where p̂in is a unit vector that corresponds to
the bound quasiparticle’s momentum during the increase in vfl and
p̂out is the direction of momentum for the quasiparticle escaping to
bulk. The local flow velocity near the wire surface follows
vfl = 2v cosðθÞθ̂, where θ̂ is the azimuthal unit vector perpendicular to
the cylinder radius.

For increasing v, the escape condition is first satisfied for p̂in|vfl
and p̂in "# p̂out for quasiparticles at the wire vertices (θ =0)
where vfl reaches its maximum. In this case, we get the well-known
critical cross-bar velocity

vc =Δ=ð3pFÞ= vL=3: ð2Þ

This process is schematically illustrated in Fig. 2. Note that a similar
process acts on quasiholes, but they escape in the opposite
direction because their momentum and velocity point in opposite
directions. We can use similar arguments for deceleration from a
steady state configuration at nonzero vfl, obtaining the critical velo-
city v0c =Δ=ð2pFÞ= vL=2.

At velocities significantly higher thanvc, the vector picture ismore
complicated. For simplicity, the main text and Figs. 2 and S1 only dis-
cuss scalar quantities along the direction of the external flow. At
v = 45mms−1, the bulk escape process concerns about 90% of the
crossbar surface (see Fig. 1b), but the largest contribution of the bound
state escape originates from the vicinity of the vertices where vfl is the
largest. Precise calculation of the distribution requires a three-
dimensional treatment of the system, and such numerical simula-
tions are left for the future.

We note that oscillatory motion has been speculated to overheat
the bound state system enough to result in observable bound state
escape below vL/3,61, but no such “pumping” is observed in our
experiments. Thepumpingof quasiparticles towardshigher energies is
unlikely because the quasiparticle redistribution is governed by dif-
fusion, as discussed below.

Fig. 8 | Temperature evolution of the bulk liquid after a double cycle. The
superfluid temperature is stable before the crossbar motion starts at t =0. The
crossbar motion takes less than 30ms for Δt =0, but the superfluid bolometer
reacts slowly to this sudden quasiparticle release. If we lookfirst at theΔt =0msup-
up data, only three pulses of bound quasiparticles are emitted, producing the
smallest rise in temperature (measured as a change in the thermometer resonance
widthΔf). For theΔt = 30msdata, four pulses of quasiparticles are emitted, giving a
larger temperature swing of the bulk liquid. For comparison, reversal of the
direction results in increased (as opposed to depleted) boundquasiparticle release,
as shown in the Δt =0 ms up–down data. We can use these curves as transfer
functions to infer the level of filling of the left-hand bound state band after the first
cycle as a function of the delay time. The right y-axis is drawn so that the peak value
of each curve corresponds to the total energy released to the bulk liquid. The
temperature of the bulk superfluid was 0.22mK in this measurement. The peaks
correspond to roughly 1.7μK temperature increase in the superfluid.

Article https://doi.org/10.1038/s41467-023-42520-y

Nature Communications |         (2023) 14:6819 7



Diffusion rate
Assuming there are no quasiparticle-quasiparticle collisions, we can
estimate themean free path in the surface layer as the longest distance
that a quasiparticle can travel without changing the direction of the
group velocity. This distance is ljj =2

ffiffiffiffiffiffiffiffiffiffiffi
2Raξ

p
, where R is the crossbar

radius, ξ is the coherence length, andaξ is the effective thickness of the
surface layer (see Fig.1b). If we assume a = 3 as an estimate of the
surface layer edge where the most energetic quasiparticles (the ones
that the experiment is sensitive to) would be reflected5, then l∣∣ ≈ 12μm
at zero pressure. This yields the diffusion constantD ~ l∣∣vqp = l∣∣vL. Note
that along the length of the crossbar cylinder, the system is homo-
geneous, and the diffusion experiment is not sensitive to themean free
path in this direction.

We can now solve the diffusion equation ∂tn =D∇2n. Here n stands
for the part of the quasiparticle population that is out of equilibrium,∇2

is the Laplace operator, and ∂t stands for the time derivative. The Fermi
sea seen in Fig. S1 at t=0 at energies below zero is uniformly filled, and
there are no quasiparticles above zero energy. Thus, in that case, n =0.
The population carrying the momentum imbalance when the wire is
stopped depends on the details of the dispersion relation, but we esti-
mate that it initially follows the local flow velocity so that nðθÞ∼ cos θ.
The resulting time dependence is nðt,θÞ=nðt =0,θÞ expð�tD=R2Þ,
yielding the diffusion time constant τ =R2/D. Inserting R =63.5μmgives
τ ≈ 13ms. On the other hand, fitting a to the experimentally observed
timeconstant givesa ≈ 10,whichexceeds the theoretical expectationby
a factor of ~25. The feasibility of these values a is discussed in the next
section.

Heat release from bound quasiparticles
The total energy released during the measurement cycle “up–up”
(green + blue lines in Fig. 3) is Qup�up

tot = ½Q+2q�+ ½Qup +qup +q�, where
the brackets separate the contributions from the first and second
phases of crossbar motion. Here Q and Qup are due to the drag force
from collisions with thermal bulk quasiparticles. The bulk thermal
quasiparticle density increases by less than 10% in the course of a
typical up cycle, thus Qup ≈Q. Note also that Qup is independent of Δt,
which means that the small difference between Q and Qup can be
ignored in the analysis of the bound state dynamics.

The first acceleration phase and each deceleration phase release
approximately the same amount of heat originating from the bound
quasiparticle system, denoted q. That is, the critical velocity for qua-
siparticle release from the acceleration is vL/3 while that from the
deceleration is v0c = vL=2. This means that the deceleration should
release fewer quasiparticles than the acceleration, but the difference
can be ignored if the wire moves at a speed much higher than vc (here
5vc). In the above expression for Qup�up

tot we have thus approximated
that the heat released from the deceleration is equal to that from the
acceleration.

The heat release from the second acceleration phase is
qup =qð1� expð�ðΔt + t0Þ=τÞÞ. That is, the bound state population
available for ejection during acceleration is depleted by the first cycle.
Full depletion of the bound quasiparticles that are available for bulk
escape implies qup = 0, and after a long enough recovery time qup = q.
For intermediate values of Δt, the bound state population available for
bulk ejection recovers exponentially owing to the diffusion with time
constant τ. Note that the bound state recovery starts as soon as the
deceleration at the end of the first up cycle begins and continues until
the same velocity is reached again during the following acceleration.
This process is approximately accounted for by adding t0 = 6 ms (sum
of the acceleration and deceleration times) to the recovery time Δt in
the exponential decay expression.

For an “up-down" cycle (green+red lines in Fig. 3), the energy
release is expected initially to be larger than for up-up cycles (see Fig.
S1), decreasing as a function of Δt and reaching the same level as the
“up–up” cycles at large Δt. The time dependence is determined by the

same diffusion process as detailed above. The total energy released is
therefore Qup�down

tot = ½Q+2q�+ ½Qdown + �qdown + 2q�. With similar argu-
ments as above, Qdown ≈Q. Note, however, that Qup >Qdown owing to
hysteresis in the distance covered by the crossbar4. This effect is pro-
portional to the density of thermal bulk quasiparticles and therefore
vanishes at the lowest temperatures measured in this Article.

The diffusion picture does not determine the magnitude of the
time-dependent excess of bound quasiparticles ejected by the accel-
eration in the up-down cycle. Separating the asymptotic bound state
contribution from the decaying excess, the excess heat release from
the second phase ofmotion is denoted �qdown = qdown expð�ðΔt + t0Þ=τÞ.
The number of bound quasiparticles released is a faster-than-linear
function of velocity v at v > vc4, which hints that qdown > q, as confirmed
in the main text.

We can estimate the available quasiparticle energy release from
the surface layer as follows. The gap suppression region around the
crossbar has the volume V = 2πRaξL (L is the crossbar length). Taking
the diffusion calculation above literally yields the self-consistent
thickness of the layer aξ with a ≈ 10. The Doppler shift energy bridges
the bulk escape at crossbar velocity v = vc. If we assume the surface
layer is populated according to the normal state density of statesN(0),
then the energy release from the entire crossbar surface is
q∼VNð0ÞΔ2ðv=vc � 1Þ2≈13 pJ for v = 45mms−1, in decent agreement
with both the measured value with (12 pJ) and without (7 pJ) 4He pre-
plating of the wire surface. Choosing a more conservative a = 3 yields
q ≈ 4 pJ. We emphasise that this estimate neglects many important
contributions, such as the quasiparticle release from the legs of the
moving superconducting wire (the inclusion of which would increase
the energy) and the fact that a significant part of the crossbar surface
has a smaller flow velocity than the maximum at the vertices, which
corresponds to vc (thus, decreasing the released energy). Furthermore,
according to ref. 61, page 296, the gap suppression near the wire is
significantly expanded by the increased density of quasiparticles when
v > 2vc, which would act to increase the quasiparticle emission. This
effect may explain why the fitted parameter a appears so large.

Coupling between bulk and surface superfluids
Once a number of bound quasiparticles have been emitted from the
surface to the bulk superfluid, equilibrium is slowly recovered between
the entire surface of the container and the bulk liquid. We have mea-
sured that in our experimental volume, the bulk superfluid tempera-
ture returns to the original level exponentially with a time constant of
the order of τ0 ~ 1 s

54. This process involves the entire surface area of
the sample container, which is dominated by the silver sinter heat
exchangers.

We can put a lower bound on the time constant that couples the
bulk back to the surface. This process cannot be faster than the rate at
which thebulk temperature recovers its original value. It can be slower,
though, if the bulk primarily couples to the phonons in the heat
exchanger sinters. If we scale theobserved τ0 by the ratio of the surface
areas of the goalpost wire crossbar and the entire sample container,
this puts a lower bound on the direct re-equilibration onto the cross-
bar. Theperformance of the sinters in this sample container is analysed
in ref. 54. It is not clear whether one should use the wall area covered
by the sinter (called geometric sinter area in that reference) or the
microscopic area of the sinters (which is orders of magnitude larger),
but for a pessimistic estimate, we choose the smaller of the two, which
is the geometric area (36 cm2). This yields a lower limit of τ ~ 103 s for
the direct equilibration of the surface system on the crossbar via
interaction with bulk quasiparticles.

This means thermal equilibrium between the bulk superfluid and
the 2D surface system is likely re-established via the sinters. This is
facilitated by the flow of quasiparticles along the legs of the goalpost
wire. An experiment similar to ours but with a probe completely
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detached from thewalls, e.g. levitating sphere,48,49 will allowmeasuring
the equilibration time between 2D and 3D superfluids directly.

Kapitza resistance and bound quasiparticle lifetime
The experimentally determined thermal Kapitza resistance between
phonons in metal and superfluid 3He quasiparticles in the bulk super-
fluid is in the range RK ~ 104 to 105 Km2W−1. Here the upper end of the
range corresponds to a 4He preplated and the lower end to pure 3He
interface between the fluid and the solid. These values are obtained by
extrapolation to 1mK using the data in ref. 62. The temperature of the
surface-bound quasiparticles is not above 1mK because otherwise,
they would escape to the bulk. For lower temperatures, the Kapitza
resistance increases as RK ~ 1/T54. For a pessimistic estimate of the
decoupling of the crossbar phonons and the bound quasiparticles, we,
therefore, take the measured pure 3He RK and assume the bound
quasiparticle system is at 1mK temperature during the decay descri-
bed by τ in the main text.

The decay of energy via the Kapitza resistance is exponential with
the time constant τRK

=RKC. Here C is the heat capacity of the body of
heat equilibrating via RK. If we approximate the bound quasiparticle
system to be a layer of normal fluid of thickness aξ at 1mK right after
the crossbar has stopped (consistent with the temperature chosen
above), the resulting quasiparticle lifetime (decay rate of energy) in the
bound quasiparticle system is τRK

≈12 s for a = 3. Thus, even in a pes-
simistic estimate, exaggerating the heat flow, the bound quasiparticles
exchange a negligible amount of energy with the wire phonons.

Data availability
The data generated in this study have been deposited in the Lancaster
University data repository at https://doi.org/10.17635/lancaster/
researchdata/63763.
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