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A B S T R A C T

The accurate calculation and uncertainty quantification of the characteristics of spent nuclear fuel (SNF)
play a crucial role in ensuring the safety, efficiency, and sustainability of nuclear energy production, waste
management, and nuclear safeguards. State of the art physics-based models, while reliable, are computationally
intensive and time-consuming. This paper presents a surrogate modeling approach using neural networks (NN)
to predict a number of SNF characteristics with reduced computational costs compared to physics-based models.
An NN is trained using data generated from CASMO5 lattice calculations. The trained NN accurately predicts
decay heat and nuclide concentrations of SNF, as a function of key input parameters, such as enrichment,
burnup, cooling time between cycles, mean boron concentration and fuel temperature. The model is validated
against physics-based decay heat simulations and measurements of different uranium oxide fuel assemblies
from two different pressurized water reactors. In addition, the NN is used to perform sensitivity analysis and
uncertainty quantification. The results are in very good alignment to CASMO5, while the computational costs
(taking into account the costs of generating training samples) are reduced by a factor of 10 or more. Our
findings demonstrate the feasibility of using NNs as surrogate models for fast characterization of SNF, providing
a promising avenue for improving computational efficiency in assessing nuclear fuel behavior and associated
risks.
1. Introduction

The total amount of spent nuclear fuel worldwide sums up to
392 000 tons of heavy metal in storage and reprocessing (int, 2022).
Given the high levels of radioactivity, it is crucial to focus on safety
considerations regarding fuel handling, transportation, storage, and
disposal. Therefore, it is important to understand the characteristics
of spent nuclear fuel (SNF) and accurately predict their uncertainties,
because they can provide valuable information about the behavior of
the fuel and the potential risks. To ensure the safe storage and disposal
of SNF, characteristics like nuclide concentrations and decay heat (DH)
must be predicted in advance for the next thousands of years.

The topic of SNF characterization from the neutronics aspect was
discussed in Rochman et al. (2023), comparing measured nuclide con-
centrations and decay heat to simulation results. In addition the paper
provides recommendations for best practices, biases, uncertainties, and
improvement of code prediction capabilities for SNF modeling.

Since measurements of nuclide concentrations and decay heat over
a very long time period are obviously not possible, these quantities
are usually predicted by means of computational models. Examples

Abbreviations: decay heat, (DH); end of life, (EOL); fuel assembly, (FA); neural network, (NN); pressurized water reactor, (PWR); uncertainty quantification,
(UQ); sensitivity analysis, (SA)
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E-mail address: romana.boiger@psi.ch (R. Boiger).

of such models are stated in Rochman et al. (2023), e.g. CASMO5,
EVOLCODE, SCALE/Polaris, ALEPH, MURE or TRITON. Within this pa-
per specifically, the physics-based modeling software CASMO5 (Rhodes
et al., 2006) was used, an advanced lattice physics code designed for
the modeling of pressurized water reactor (PWR) and boiling water
reactor fuel. It is specifically optimized to handle complex fuel design,
including high mixed-oxide concentrations and high burnable poison
concentrations.

Several studies have used such computational models in the past
to investigate the uncertainty of SNF, e.g. in Shama et al. (2023, 2022)
the biases, uncertainties, and correlations of calculated decay heat from
SNF using the Polaris and ORIGEN codes were analyzed, finding that
both codes exhibited insignificant biases and similar uncertainties and
correlations influenced by fuel assembly (FA) burnup and cooling time.
The study also made use of machine learning models and the MOCABA
algorithm for predicting biases and verifying results. In Jang et al.
(2021) a two-step analysis to quantify the uncertainty and sensitiv-
ity of decay heat and nuclide densities in a depleted light-water FA
was conducted. It was found that the cooling time affects the decay
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heat uncertainty, while nuclear data and assembly design parameters
contribute the most to the uncertainty, with a few nuclides playing a
significant role. Uncertainty sources from technological uncertainties,
modeling assumptions, modeling resolution and nuclear data uncertain-
ties on PWR nuclide inventories for severe accidents were analyzed
in Ichou et al. (2023). They found that the nuclear data and the
‘‘infinite lattice approximation’’ have the biggest influence on the bias
and uncertainties. To reduce the latter one, in Seidl et al. (2023) the
potential of making the prediction of decay heat and other source terms
for spent nuclear fuel more accurate was considered.

The major drawback of such physics-based models is that they are
computationally intensive, CASMO5 needs minutes or even hours for
one forward simulation for one single FA, depending on the details
of the irradiation history (note that CASMO5 is one of the fastest
available physics-based codes). Furthermore, if the calculations are to
be accompanied with uncertainties and sensitivity analysis, the number
of required simulations for a single FA can increase by more than 100.
So in order to be able to predict uncertainties of SNF characteristics
for thousands of FAs for the next thousands of years, there is a high
demand for faster methods for such calculations.

Therefore, machine learning approaches, like surrogate models to
replace time-consuming, complex calculations, offer new possibilities
in various disciplines. A popular ansatz to construct surrogate models
is the use of neural networks (NN). They can approximate any func-
tion according to the universal approximation theorem (Hornik et al.,
1989). An overview of the applications of machine learning methods,
like neural networks, specifically for the disposal of high-level nuclear
waste, is given in Hu and Pfingsten (2023), whereas in Nissan (2019),
a review of artificial intelligence methods for in-core fuel management
was conducted.

In Bae et al. (2020) a neural network model to predict the com-
position of PWR SNF based on initial enrichment and burnup was
trained with data coming from the SNF Storage, Transportation &
Disposal Analysis Resource and Data System Unified Database. The
trained model was validated with the U.S. SNF inventory profile and
showed errors of less than 2% and fast computation time of 0.27s
for 100 predictions. Similar models, predicting nuclide concentration
based on enrichment and burnup, were used in Lei et al. (2021, 2022),
where the DRAGON code was used to generate training samples. In that
case the constructed models were linear, random forest, plain NNs, and
NNs with dropout regularization. It was found that the latter method
outperformed the rest, although benchmarking was done only with the
DRAGON simulations.

In Ebiwonjumi et al. (2021), surrogate models of three types,
namely NNs, Gaussian processes, and support vector machines, were
trained on experimental measurements and used to predict the decay
heat and perform an uncertainty quantification. In that case however,
the quality of the surrogates was limited by the small amount of
experimental data available. As a remedy, it was attempted to increase
the amount of data by generating so-called ‘‘synthetic data’’, based on
the same experimental data. However, results showed no significant
improvement when using synthetic data versus the experimental data.

The approach in the present work was similar to Ebiwonjumi et al.
(2021), and even used some of the same data for benchmarking the NN,
but differed in a crucial aspect: instead of using scarce experimental
data, or synthetic data that might not make physical sense, we used
reliable physics-based simulations with CASMO5, to create a dataset for
training the NN. The advantage of this approach is that we were able
to generate a larger and more representative training dataset, without
the noise from experimental measurements. The generated dataset
included only one specific FA from a PWR, with randomly sampled
2

characteristics. The trained neural network was then a surrogate model
for characterizing SNF, which could be described as the following map:

𝑓 ∶

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝙴𝚗𝚛𝚒𝚌𝚑𝚖𝚎𝚗𝚝

𝙱𝚞𝚛𝚗𝚞𝚙

𝙲𝚘𝚘𝚕𝚒𝚗𝚐 𝚝𝚒𝚖𝚎 𝚋𝚎𝚝𝚠𝚎𝚎𝚗 𝚌𝚢𝚌𝚕𝚎𝚜
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Input: Fresh fuel characteristics and irradiation history

→
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𝙰𝚌𝚝𝚒𝚗𝚒𝚍𝚎 𝚌𝚘𝚗𝚌𝚎𝚗𝚝𝚛𝚊𝚝𝚒𝚘𝚗

𝙲𝚘𝚗𝚌𝚎𝚗𝚝𝚛𝚊𝚝𝚒𝚘𝚗 𝚘𝚏 𝟷𝟹𝟽𝙲𝚜 𝚊𝚗𝚍 𝟿𝟶𝚂𝚛
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Output: SNF characteristics

,

ith time 𝑡 ∈ [2, 1000] years, and the nuclide concentrations being
redicted at the end of life (EOL) of the FA.

The previous works (Bae et al., 2020; Lei et al., 2021, 2022) trained
imilar models from physics-based simulations, although they only had
wo input parameters, namely the enrichment and the burnup. Here
e found that including more input parameters played an important

ole, especially in the prediction of certain nuclides, as will be shown
n the sensitivity analysis of Section 3.3. Further novelties in our work
re the comparison of the NN predictions to experimental results, and
he application of the NN for uncertainty and sensitivity analysis. The
atter application is especially promising, since it is a case where a
arge number of simulations are required, and the NN as a cheap
odel, in terms of computation time (one forward simulation lasts
⋅ 10−4 s), could lead to substantial improvements in computational

osts. The results of uncertainty quantification and sensitivity analysis
ere validated against CASMO5 to ensure accuracy and reliability.

The goal of this paper is to show the feasibility of using surrogate
odels, specifically neural networks, trained on physics-based simula-

ions to predict SNF characteristics with reduced computational cost
ut the same accuracy as physics-based models.

The paper is organized in the following way. First, the methodol-
gy, including the experimental data, physics-based data, as well as
eural networks, sensitivity analysis and uncertainty quantification are
xplained in detail. In the results section, the performance of the NN
s presented. Different hyperparameters and dataset sizes for training
he NN are tested and compared to each other. The NN predictions are
ompared to the available measurements and to physics-based simula-
ions. Finally, sensitivity analysis and uncertainty quantification carried
ut with the NN and CASMO5 are compared in terms of accuracy and
omputational time. Concluding remarks finish the paper.

. Material and methods

.1. Neural network

Neural networks are machine learning models inspired by the struc-
ure and function of the human brain. They consist of interconnected
eurons, organized in layers, that process and transform data through
eighted connections and biases and activation functions. By leverag-

ng these connections and using non-linear activation functions, NN can
earn arbitrarily complex patterns in the data, Hornik et al. (1989).
or the hidden layers we used the non-linear activation function ReLU,
eLU(𝑥) = max(0, 𝑥) . The goal of training a NN is to reproduce a
iven output as accurately as possible, by adjusting the weights and
iases. This is done by formulating an optimization problem, where
he loss function is minimized w.r.t. weights and biases. The choice
f loss function is highly dependent on the problem to model. As we
alue the accuracy of all 53 outputs equally, we chose a general mean
quared error (MSE) as loss function for the regression problem, given
y MSE = 1

𝑁
∑𝑁

𝑖=1(𝑦𝑖 − �̂�𝑖)2 where 𝑦𝑖 is the predicted value and �̂�𝑖 is the
true value.

As stochastic optimizer we chose the ADAM method (Kingma and
Ba, 2017). It takes into account the second moment of the gradient
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which can allow for faster convergence of the optimization problem
than with basic stochastic gradient descent.

We implemented the NN with PyTorch, a highly customizable ma-
chine learning framework with GPU acceleration capabilities (Paszke
et al., 2019). To compare the performance of different networks, we
split the dataset into training and test datasets, meaning that we sepa-
rated 200 samples for testing from the beginning. The training dataset
was further split into the training and validation datasets, with a ratio
of 80%−20%. While we trained the network on the training dataset, we
sed the validation dataset only to track performance during training.
f the loss on the validation dataset does not improve we can abort
he training process as the network has converged, so early stopping
s utilized. It is common practice to normalize the input and output
ata to have a mean of 0 and a standard deviation of 1. This reduces
he risk of introducing biases from quantities with a large difference in
agnitude.

Parameters that describe the architecture and learning process of
he network are called hyperparameters. The hyperparameters in this
tudy are the number of hidden layers, number of neurons per layer,
atch size, learning rate (used in the optimization algorithm). The
hoice of hyperparameters depends on the problem and is crucial as
t determines the accuracy of a model.

.2. CASMO5 lattice code

The training samples for the NN were obtained from physics-based
imulations with the neutron transport code CASMO5 (Rhodes et al.,
006), a deterministic 2D lattice code from the Studsvik Core Manage-
ent System. This code takes as input the characteristics, geometry,

nd irradiation history of a fresh FA, and simulates its irradiation
istory up to its end of life by repeatedly solving the neutron transport
quation and the decay (Bateman) equation, with a predictor–corrector
cheme. Each simulation provides a plethora of information as output
egarding reactor operation and fuel characteristics. Of these outputs,
he quantities of interest in this work were the DH at several cooling
imes and a number of nuclide concentrations at EOL. Section 2.3
ontains further details on the outputs of interest.

Previously, in Shama et al. (2022), CASMO5 was already used
or predicting the FAs measured at the Clab facility (Sturek et al.,
006), in a study where several neutron transport codes were validated
gainst decay heat measurements. In that study it was reported that
he CASMO5 simulations overpredicted the DH with an average bias of
0.9%, with respect to experiments (note that in Shama et al. (2022)

he employed nuclear data library was ENDF/B-VII.1, and results may
iffer from the present paper where ENDF/B-VII.0 was used instead).

Regarding the technical details of the computations, the FAs were
ssumed to have a 4-fold symmetry (see Fig. 1) and hence only one
uarter of the geometry was simulated. Reflecting boundary conditions
ere used, and the guiding tubes were assumed to be filled with
ater, since no information was available regarding the control rods.
he nuclear data library used for CASMO5 was based on ENDF/B-
II.0 (Chadwick et al., 2006), and the default 19 discrete energy groups
ere used. As was done in Sturek et al. (2006), Shama et al. (2022), all

he cooling and burnup cycles were simulated as single steps with cycle-
verage parameters, i.e. for each cycle CASMO5 performed a single
urnup (or depletion) step, where the values of the power, boron con-
entration, and fuel temperature were the average of these quantities
n the current cycle. Due to this last convention, the simulations of
he FAs in the Clab report (Sturek et al., 2006) were performed with

small number of timesteps, between 3 and 8 steps, and were thus
elatively computationally cheap. The average computation time for
he simulations in this work was (58 ± 11) s, and were carried out on
ingle CPU cores, specifically on Intel Xeon Gold 6152 processors at
.10 GHz with 4 GB of RAM. Nevertheless, it should be noted that
ommonly CASMO5 calculations use a more detailed burnup history
ith multiple small burnup steps within each cycle, and in such cases
3

single simulation requires significant longer computational time. T
Table 1
Ranges used for uniform random sampling of the input quantities of the training dataset

Input Quantity Range

Enrichment [%] [1.5, 5.5]
Burnup [MWd/kgU] [5, 70]
Fuel temperature [k] [750, 950]
Mean boron concentration [ppm] [100, 1000]
Cooling time between cycles [days] [50, 3200]

2.3. Training data

The training dataset was generated by executing a large number of
CASMO5 simulations with randomly sampled input parameters. The
varied parameters were enrichment, burnup, mean fuel temperature,
mean boron concentration in the coolant, and total number of cooling
days in-between burnup cycles. The remaining input parameters of the
simulations were kept constant, and were based on the assembly C20
from the Clab report (Sturek et al., 2006). The ranges of the uniformly
sampled input parameters are shown in Table 1, which were chosen to
include the parameters of all the FAs presented in the Clab report. A
detailed explanation of how the CASMO5 input files were written can
be found in the Appendix A.

The C20 assembly, which was used as a basis for the training
dataset, was a 15 × 15 UO2 FA (Fig. 1(a)) burned in a PWR for 4 burnup
cycles. Therefore all the simulations from the training dataset were for
this specific type of FA, with only variations in the aforementioned
input parameters. Any FAs with a different pin arrangement, number
of cycles, fuel density, or other differences were not represented in this
dataset. Despite this, as will be shown in the results Section 3.1, the
resulting NN was successfully applied to a wide variety of FAs, even
those outside of the training dataset range.

Regarding the output of the simulations, the quantities of interest
that were gathered were the decay heat, the concentration of actinides,
and the concentration of the radioactive nuclides 90Sr and 137Cs. The
uclide concentrations were only calculated at EOL, whereas the decay
eat was calculated at 2,5,10,11,12, . . . ,28,29,30,100,1000 years of
ooling after EOL. This choice of cooling time was motivated by the
easurements presented in Sturek et al. (2006), where all the measured

As had a cooling time ranging between 12 and 27 years (see Table 2).

.4. Experimental data

To validate the trained NN, the decay heat of several existing FAs
as calculated with the NN and neutron transport codes, and compared

o experimental measurements performed on these FAs. For this valida-
ion study, 34 depleted uranium oxide (UO2) FAs were considered, from
wedish PWRs. These FAs were part of several measurement campaigns
n 2003 and 2004, the results of which can be found in a Clab report
rom 2006 (Sturek et al., 2006). In total, 43 measurements were carried
ut for the 34 studied FAs from PWRs, with some assemblies being
easured multiple times on different dates.

Additionally, Sturek et al. (2006) also contains the detailed burnup
istory, cooling cycles, and initial characteristics of the FAs (pages 264–
66 and 271–273). In the report, the FA data was used to produce
omputational models of each FA with the SCALE code system (Rearden
nd Jessee, 2018) and predict the DH, which could then be validated
gainst experiments. It was reported that the SCALE calculations over-
redicted the DH with an average bias of +2% with respect to the
easurements.

The studied FAs were of two types: 23 came from the Ringhals-2
WR, with a 15 × 15 arrangement of 204 UO2 pins with zirconium
lloy (Zr) cladding and 21 empty Zr-guiding tubes, and the other 20
ame from the Ringhals-3 PWR with a 17 × 17 arrangement of 264
uel pins and 25 guiding tubes. Fig. 1 shows a 2D slice of each FA type.

able 2 shows the ranges of the reported FA characteristics.
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Fig. 1. Slices of the FAs from the Clab report (Sturek et al., 2006). The guiding tubes are simulated as being filled with water.
Table 2
Range of characteristics of the FAs measured in Sturek et al. (2006).

Characteristic Range

Enrichment [%] [2.1, 3.4]
Burnup [MWd/kgU] [19.7, 51.0]
Fuel temperature [k] [750, 950]
Mean boron concentration [ppm] [287.0, 430.8]
Fuel density [g/cm3] [10.0, 10.4]
Pellet diameter [mm] [8.2, 9.3]
Rod diameter [mm] [9.5, 10.75]
Cladding thickness [mm] [0.57, 0.73]
Cooling time between cycles [days] [96, 3128]
Cooling time when measured [years] [12.9, 23.2]
Measured decay heat [W/t] [498.8, 1583.6]

2.5. Uncertainty quantification and sensitivity analysis

The goal of uncertainty quantification (UQ) is to study the output
quantities of simulations or experiments with undetermined inputs.
In the context of SNF, these uncertainties around input parameters
are related to many factors, such as the uncertainty in parameters of
importance during the irradiation history and limited measurement
precision.

Sensitivity analysis (SA) aims to find the contribution of each input
parameter for every output. A detailed understanding of uncertainties
and the importance of all input parameters makes it possible to improve
performance by reducing the uncertainty of specific parameters.

We performed uncertainty quantification and sensitivity analysis
with Monte Carlo (MC) methods. Specifically, we considered a mul-
tivariate normal distribution with 5% standard deviation around all
relevant input parameters of two fuel assemblies C01 and C20 from
the Clab report (Sturek et al., 2006). The accuracy of this approach
is dependent on the number of samples 𝑁 used. As MC methods
converge as 1

√

𝑁
, increasing the number of samples is computationally

inefficient when running expensive CASMO5 calculations. An NN with
fast evaluation times allows us to perform these methods with a signif-
icantly larger number of samples. Note, that an uncertainty of 5% on
every quantity is not necessarily physical and was chosen arbitrarily to
demonstrate the capabilities of neural networks.

To validate the UQ done with the NN, the modeled mean and stan-
dard deviation were directly compared to CASMO5 simulations over
1000 samples. For SA we generated 1536 samples for every FA and used
the Sobol’ method (Sobol’, 1993) provided by the open source library
SALib (Iwanaga et al., 2022; Herman and Usher, 2017). Sobol’ analysis
4

Table 3
Hyperparameter domain to explore. The learning rate is sampled in log steps.

Hyperparameter Space

Hidden layers {𝑙 ∈ N ∣ 1 ≤ 𝑙 ≤ 5}
Neurons {𝑑 ∈ N ∣ 50 ≤ 𝑑 ≤ 1000}
Learning rate [0.0001, 0.005]
Batchsize {8, 16, 32, 64, 128}
Epochs 1000

is a variance-based method that assumes the output variance can be
attributed to fractions of the variance of the different input quantities.
The Sobol’ method allows the calculation of first-order indices that
indicate the direct contribution of variance from one input to one
output. Additionally, the total-order indices can be calculated, which
represent the complete influence of input to output variance taking into
account higher order interactions between input parameters.

3. Results and discussion

3.1. Performance of the neural network

The performance of the neural networks was evaluated through
comparison with measurements of FAs from the Clab report (Sturek
et al., 2006) as well as calculations based on the same FAs by CASMO5.

The choice of hyperparameters of the NN is considered as an op-
timization problem to find the model with the highest prediction
accuracy. We define the space of possible hyperparameters in Table 3
which we explore with a Tree-structured Parzen Estimator as provided
by the open source python library Optuna (Akiba et al., 2019). This
method uses Bayesian optimization in an attempt to find the hyper-
parameters that minimize the average MSE on the validation dataset
over the last 1000 batch iterations, where a batch iteration describes
one evaluation of the network and consequent weight adjustment.
A training epoch is complete after the entire training set has been
evaluated once.

Table 4 lists the best hyperparameters for four networks trained
with different training and validation dataset sizes. The optimal hy-
perparameters do not differ significantly among these networks. We
compared the performance of different models by calculating the MSE
on a normalized test dataset of 200 samples. Additionally, we use the
coefficient of determination 𝑅2 as a metric of how well the model
predicts given outcomes. The 𝑅2 score can take values up to 1, which
corresponds to an exact match of predicted and true values. For the
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Fig. 2. MSE on normalized test dataset (200 samples) of best models reported in Table 4. The single numbers indicate the DH after 𝑥 years.
Fig. 3. Decay heat measurements and network prediction with uncertainties as 2 standard deviations. Measurements and SCALE calculations obtained from Sturek et al. (2006).
Table 4
Best hyperparameters and performance for neural networks with different number of
samples (training + validation). The normalized test dataset consists of 200 samples
not included in any other datasets.

Number of samples (training + validation) 250 500 750 1800

Hidden layers 1 1 1 1
Hidden dimension 682 827 676 682
Learning rate [×10−4] 2.34 1.31 1.33 1.37
Batch size 16 8 8 16

MSE on test dataset (200 samples) [×10−5] 182.66 52.78 22.17 4.11
𝑅2 on test dataset (200 samples) 0.9982 0.9995 0.9998 0.9999

four NN models the match is very good with an 𝑅2 score higher than
0.99. Models with more training data perform better overall with only
small improvements for large datasets.

Fig. 2 shows the MSE on the test dataset of every output for the
best networks reported in Table 4. The error of the decay heat is
generally lower than most of the nuclide concentrations. Some of the
nuclide outputs, such as 242Am and 246Cm, exhibit a much larger error,
ndependent of the model used.

As the generation of training data relies on computationally ex-
ensive CASMO5 simulation we must choose the model carefully to
ind the balance between accuracy and computational cost. For further
5

valuations we chose the best model obtained with 500 samples. t
Table 5
Average bias of decay heat prediction from different models with respect to
experimental measurements from Clab report (Sturek et al., 2006).

Ringhals 2 Ringhals 3

SCALE +1.47% +3.31%
CASMO5 −2.15% −1.57%
Network −1.72% −2.31%

To compare the network with experimental data we present the
ratio 𝐶∕𝐸 between calculated DH 𝐶 and measurements 𝐸. Fig. 3
shows 𝐶∕𝐸 of all 43 measurements from the Clab facility for the
NN and CASMO5. The SCALE calculations from the Clab report were
also included for reference; note that the SCALE calculations in the
report were carried out with the SAS2 sequence, more specific details
on that can be found in the report, Sturek et al. (2006). Table 5
reports the average bias of the calculations. The network predicts the
DH with a similar accuracy to the computational models. As with all
computational tools, the reported bias has to be taken into account
when using the network for safety assessment of SNF management.

3.2. Speedup

The computational speedup could be calculated as 𝑇𝐶
𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛

with 𝑇𝐶
he time required for a CASMO5 simulation and 𝑇 that of an
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
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Fig. 4. Distribution and relative standard deviation of three outputs over 1000 samples around FA C20. CASMO5 simulation in blue, network prediction in orange.
Fig. 5. Distribution and relative standard deviation of three outputs over 1000 samples around FA C01. CASMO5 simulation in blue, network prediction in orange.
Fig. 6. Predicted relative standard deviation against CASMO5 for FA C01 (blue) and
C20 (orange). Statistical variations obtained from bootstrapping 10000 samples are too
small to be visible.

NN evaluation, which would correspond to a speedup of approximately
105. However, this calculation is biased as it does not take into account
the computational cost of training the network and generating the
training samples. Therefore, we define the speedup 𝑆 gained with the
NN compared to CASMO5 as a function of the number of samples to
evaluate 𝑁 as

𝑆(𝑁) =
𝑁 ⋅ 𝑇𝐶

𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑁)
(1)

where 𝑇𝐶 = 58 ± 11 s is the CASMO5 simulation time and the network
time 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 is defined as

𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘(𝑁) = 𝑇𝑡𝑟𝑎𝑖𝑛 +𝑁 ⋅ 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 +𝑁𝑡𝑟𝑎𝑖𝑛 ⋅ 𝑇𝐶 ,

where 𝑇𝑡𝑟𝑎𝑖𝑛 = 105 ± 0.6 s is the time required to train the network,
𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 = (5±0.4) ⋅10−4 s is the time required for a forward prediction
with the NN, and 𝑁𝑡𝑟𝑎𝑖𝑛 = 500 is the number of required training
samples with CASMO5. When evaluating a large number of samples,
or when the CASMO5 simulation time is large, the speedup behaves
like 𝑁∕𝑁 as the network evaluation and training time become
6

𝑡𝑟𝑎𝑖𝑛
negligible. Note, that we exclude the time needed to find optimal hy-
perparameters when discussing the speedup. The reported uncertainties
are statistical variations obtained by repeated measurements. As an
example in this work, where two UQ and SAs were carried out, i.e. 𝑁 =
5072 in (Eq. (1)), the total speedup was of more than 10.

3.3. Uncertainty quantification and sensitivity analysis

For UQ, we compared the network predicted and CASMO5 calcu-
lated distribution of outputs. Therefore, 1000 samples for FA C20 were
taken with an input uncertainty of 5%. Fig. 4 shows the DH after
20 years and the concentration of 90Sr and 241Am for both NN and
CASMO5 simulations. The mean and standard deviation of the network
predictions are consistent with the predictions of CASMO5. This was
the FA the network was trained for. In addition the UQ was performed
for FA C01. Fig. 5 shows the distributions of the same outputs around
FA C01. The DH and 90Sr concentration agree well with CASMO5
simulations. However, the predicted and simulated distributions of
241Am concentration differ largely. The mean of the network predicted
distribution is larger by about 11%, whereas the standard deviation
is similar and also the shape of the distribution. Looking at Fig. 2 we
would expect less accurate predictions for 241Am compared to DH after
20 years and 90Sr. Considering that the training dataset for the network
was based on FA C20, it is also reasonable to assume that the network
performs worse around other FAs. Nonetheless, the predicted relative
standard deviation 𝜎∕𝜇 agrees with the calculated one.

Fig. 6 shows the NN predicted relative standard deviation 𝜎∕𝜇
against CASMO5 simulations for several outputs from FAs C01 and
C20. The plotted values were obtained via bootstrapping by resampling
1000 samples 10000 times and measuring the mean and variance of the
standard deviation. We observe, that most predicted values coincide
with the calculated ones for both FAs. Although the accuracy of the
predicted mean value depends on the MSE of the outputs, we can
see that the predicted relative standard deviation is comparable to
CASMO5 simulations.

In addition to UQ we were also interested in finding the most influ-
encing input parameters for each output. Hence a sensitivity analysis
was conducted. Fig. 7 shows the total-order Sobol’ SA index based on
1536 samples evaluated with the network for FAs C01 and C20. Specifi-
cally, shown is the importance of every input to some output quantities,

137
such as the DH after 100 years and the isotopic concentration of Cs.
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Fig. 7. Total-order Sobol’ index based on the network prediction of 1536 samples with 5% uncertainty around FAs C01 and C20. The single numbers indicate the DH after 2, 5,
10, 100 and 1000 years.
For both analyzed FAs, the Sobol’ method returns practically identical
results between samples evaluated by the network and CASMO5. When
analyzing the DH, we observe that the burnup is considerably more
important than all other inputs. This implies that to best reduce the
uncertainty of DH one should aim to reduce the uncertainty of the
burnup. When devising safety measures for nuclear waste management,
a small uncertainty in DH is crucial as this comes with a reduction of
SNF canisters and associated costs (Rochman et al., 2023; Solans et al.,
2020). Furthermore, we observe that the cooling time has a bigger
impact on the concentration of 241Am for C20 fuel assembly.

4. Conclusion

In this paper we have presented a surrogate modeling approach
for the characterization of spent nuclear fuel using neural networks.
By training the NN with data generated from CASMO5 lattice calcu-
lations, we achieved accurate predictions of decay heat and nuclide
concentrations of SNF as a function of key input parameters, including
enrichment, burnup, cooling time, mean boron concentration and fuel
temperature. The training dataset consisted of 500 CASMO5 simula-
tions, and once trained, the NN could be evaluated in less than a
millisecond. Although the NN achieved a mean squared error of less
than 10−2 for all predicted quantities, it performed notably better at
predicting the decay heats than nuclide concentrations. For certain
nuclides the prediction error was an order of magnitude larger than
for the decay heat. For future work it could be of interest to investigate
these differences, and consider training separate networks for the decay
heat and nuclide concentrations.

The NN predictions demonstrated a deviation within 3% from exper-
imentally measured decay heat, indicating a similar level of accuracy to
CASMO5 and SCALE computational models. Importantly, this accuracy
was consistent across different fuel assemblies of the same or similar
architecture.

Moreover, the NN was utilized for uncertainty quantification and
sensitivity analysis, exhibiting comparable results to CASMO5, while
significantly reducing computational time. A speedup of a factor 10 was
achieved for the uncertainty quantification and sensitivity analysis of
two assemblies. Note however that the computational costs would be
reduced even further if UQ and SA were carried out for more assem-
blies. This remarkable computational efficiency greatly accelerates the
analysis process compared to traditional physics-based models without
compromising accuracy. Hence, the findings presented in this paper
suggest that the NN approach has the potential to enhance efficiency in
assessing nuclear fuel behavior and associated risks. However, further
investigations should explore the capability of the NN approach to a
broader range of SNF types, such as mixed oxide fuel or boiling water
7

reactor fuel.
To further improve the accuracy of the predictions with respect to
measurements, one possible direction would consist in incorporating
available measurements of SNF, like the ones used for model validation
in this work, in the training dataset, in addition to physics-based
models. This could improve prediction accuracy and potentially reduce
the number of CASMO5 simulations required for training. Another
approach for increasing the accuracy could be to use several different
codes for generating the training dataset in order to get rid of the bias
introduced by CASMO5.

Within this work the uncertainty quantification was a proof-of-
concept, assuming that the uncertainty of each quantity is 5% to
demonstrate the capabilities and speedup of the NN. To address real-
world applications, it is important to consider the real uncertainties
associated with input parameters during uncertainty quantification.

Overall, this study underscores the potential of NNs as surrogate
models in advancing the field of SNF characterization and contributing
to the safety and efficiency of nuclear waste management.
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Table A.6
Reported burnup history of the C20 assembly in the Clab report. Note that in the case
of burnup cycles, the duration is omitted as it would be redundant, since it can be
calculated with 𝑏𝑢𝑟𝑛𝑢𝑝

𝑝𝑜𝑤𝑒𝑟
.

Cycle type Duration
[days]

Burnup
[MWd/kgU]

Boron
concentration
[ppm]

Power
[W/gU]

Burnup – 11.247 143 10.9
Cooling 85 – – –
Burnup – 9.377 459 35.1
Cooling 56 – – –
Burnup – 7.454 342 23.9
Cooling 1927 – – –
Burnup – 7.642 299 28.7

Total = 2068 Total = 35.72 Mean = 310.72

Table A.7
Burnup history in a given sample of the training dataset. The duration of the burnup
cycles is omitted since it is calculated from the power and burnup.

Cycle type Duration [days] Burnup
[MWd/kgU]

Boron
concentration
[ppm]

Power
[W/gU]

Burnup – 11.247
35.72

⋅ 𝚋𝚞𝚛𝚗𝚞𝚙 143
310.75

⋅ 𝚋𝚘𝚛 10.9
Cooling 85

2068
⋅ 𝚌𝚘𝚘𝚕𝚃𝚒𝚖𝚎 – – –

Burnup – 9.377
35.72

⋅ 𝚋𝚞𝚛𝚗𝚞𝚙 459
310.75

⋅ 𝚋𝚘𝚛 35.1
Cooling 56

2068
⋅ 𝚌𝚘𝚘𝚕𝚃𝚒𝚖𝚎 – – –

Burnup – 7.454
35.72

⋅ 𝚋𝚞𝚛𝚗𝚞𝚙 342
310.75

⋅ 𝚋𝚘𝚛 23.1
Cooling 1927

2068
⋅ 𝚌𝚘𝚘𝚕𝚃𝚒𝚖𝚎 – – –

Burnup – 7.642
35.72

⋅ 𝚋𝚞𝚛𝚗𝚞𝚙 299
310.75

⋅ 𝚋𝚘𝚛 28.7

Appendix A. Generation of input files for training data

The simulations for the training dataset were all done with a mod-
ified version of the input file for the C20 assembly. This FA was one
of the 34 PWR assemblies presented in the Clab report (Sturek et al.,
2006). It was a 15 × 15 UO2 FA (204 fuel rods, 21 water rods), and was
burned in the PWR Ringhals 2 during 4 cycles. It had an enrichment
of 3.095%, and an average fuel temperature of 887 K. Its fuel history
is shown in Table A.6, from which the burnup can be calculated to be
35.72 MWd/kgU, the number of cooling days 2068, and the average
boron concentration 310.75 ppm.

To generate different input files for the training dataset, only the
five input quantities of interest (Table 1) were modified from the C20
input file. These five input quantities, mentioned in Section 2.3, were
enrichment, fuel temperature, mean boron concentration, cooling time
between cycles, and burnup. The former two quantities are given by a
single value, and could be trivially changed in the input file. However,
the three latter quantities are calculated as a sum of terms from the
burnup history as in Table A.6, and could not be modified with a single
change of number in the input file. The approach taken was to multiply
the boron concentration, cooling time, and burnup in each cycle by a
factor, such that the overall average quantities would be modified for
each simulation, but the ratio between the cycles was kept constant.

To clearly illustrate the procedure, let the randomly sampled quan-
tities be enrichment, fuelTemp, bor, coolTime, and burnup.
Then, the generated CASMO5 input file would have an enrichment
enrichment, a fuel temperature fuelTemp for all cycles, and a
burnup history as shown in Table A.7.
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