Corrosion in soil: investigation on archaeological iron artifacts Brambilla Laura¹, Cocen Ocson^{1,4}, Granget Elodie¹, Shakoorioskooie Mahdieh², Mannes David², Krieg Myriam³, Blanc Pierre³ ¹Haute Ecole Arc Conservation-Restauration, HES-SO University of Applied Sciences and Arts Western Switzerland ²Paul Scherrer Institute (PSI), Switzerland ³Site et musée romain d'Avenches, Switzerland ⁴Tribology and Interfacial Chemistry Group, EPFL, Switzerland ### The project: CORINT "Elucidating Corrosion by In-situ Tomography" aims to make a breakthrough in fundamental understanding of iron corrosion process occurring in opaque porous media. - 6 Swiss partners: EPFL, ETHZ, PSI, HE-Arc CR, Nagra, SMRA - 4 years: 2022-2026 ### Problem statement - > Very limited access to observe corrosion phenomena happening inside opaque burial media, e.g., concrete, soil. - > Post-excavation, traditional analytical techniques usually involves removal of burial medium surrounding artifacts. - \succ Soil removal = artifacts are exposed to a new environment \rightarrow different O₂ and H₂O concentration before vs. after excavation. - \succ New environment = new equilibrium \rightarrow corrosion products may transform \rightarrow (ir)relevant analyses results vs. as-buried condition? ## Methodology Combine Neutron and X-rays Computed Tomography (N&X-CT) imaging to characterize undisturbed archaeological iron artifacts still embedded in soil Ad-hoc archaeological excavation ## DATA INTERPRETATION: 2 parallel approaches The authors greatly acknowledge the funding of the CORINT project by the Swiss National Science Foundation https://corrosion-corint.ch/