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1 Introduction

The anomalous magnetic moment of the muon 𝑎𝜇 = (𝑔 − 2)𝜇/2 has received a lot of attention over
the past years, as the current experimental value [2, 3]

𝑎
exp
𝜇 = 116 592 061(41) × 10−11 (1.1)

already has an impressive precision of 0.35 ppm and further improvements from the Fermilab
experiment are expected in the near future. In order to fully exploit this progress on the experimental
side, the theoretical prediction within the Standard Model (SM) needs to achieve a similar level of
precision. The experimental value (1.1) is in 4.2𝜎 tension with the SM prediction

𝑎WP
𝜇 = 116 591 810(43) × 10−11 , (1.2)

as published in the 2020 White Paper (WP) [4]. The theoretical uncertainty is completely dominated
by hadronic effects, in particular by hadronic vacuum polarization (HVP), which in eq. (1.2) is
determined via dispersion relations and experimental input on the photon-inclusive 𝑒+𝑒− → hadrons
cross sections. The WP result (1.2) has been challenged by the first lattice-QCD result achieving
sub-percent precision [5]. Moreover, the new 𝑒+𝑒− data set on the two-pion channel by CMD-3 [6]
differs significantly from the input used in the WP.

Here, we summarize the current status of the SM prediction for 𝑎𝜇, which now needs to address
a multitude of discrepancies and tensions (see ref. [7]). We focus on the hadronic contributions,
describing recent progress on the sub-leading hadronic light-by-light (HLbL) scattering in section 2,
before discussing several aspects of HVP in section 3.

2 Hadronic light-by-light scattering

The HLbL contribution to 𝑎𝜇 is determined by the hadronic four-point function of electromagnetic
currents

Π𝜇𝜈𝜆𝜎 (𝑞1, 𝑞2, 𝑞3) = −𝑖
∫

𝑑4𝑥 𝑑4𝑦 𝑑4𝑧 𝑒−𝑖 (𝑞1 ·𝑥+𝑞2 ·𝑦+𝑞3 ·𝑧) ⟨0|𝑇{ 𝑗 𝜇em(𝑥) 𝑗 𝜈em(𝑦) 𝑗𝜆em(𝑧) 𝑗𝜎em(0)}|0⟩ ,

(2.1)
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where 𝑞4 = 𝑞1 + 𝑞2 + 𝑞3. A tensor decomposition

Π𝜇𝜈𝜆𝜎 (𝑞1, 𝑞2, 𝑞3) =
54∑︁
𝑖=1

𝑇
𝜇𝜈𝜆𝜎

𝑖
Π𝑖 (𝑠, 𝑡, 𝑢), (2.2)

into a redundant set of 54 Lorentz structures was derived in refs. [8, 9], in such a way that the
structures 𝑇 𝜇𝜈𝜆𝜎

𝑖
individually satisfy the Ward-Takahashi identities, while at the same time the scalar

functions Π𝑖 are free of kinematic singularities and zeros, leading to a master formula for the HLbL
contribution to 𝑎𝜇 directly in terms of the hadronic scalar functions Π𝑖 ,

𝑎HLbL
𝜇 =

2𝛼3

3𝜋2

∫ ∞

0
𝑑𝑄1

∫ ∞

0
𝑑𝑄2

∫ 1

−1
𝑑𝜏

√︁
1 − 𝜏2𝑄3

1𝑄
3
2

12∑︁
𝑖=1

𝑇𝑖 (𝑄1, 𝑄2, 𝜏)Π̄𝑖 (𝑄1, 𝑄2, 𝜏) , (2.3)

where 𝑇𝑖 are known integration kernels and only 12 independent linear combinations Π̄𝑖 of the
Π𝑖 contribute. Further, the decomposition (2.2) allowed us to set up a dispersive framework for
HLbL in four-point kinematics, which enabled the evaluation of the dominant contributions to
HLbL with controlled and much reduced uncertainties, in particular of the pseudoscalar-pole
and two-pion contributions. The uncertainty on HLbL is now dominated on the one hand by
the contributions of hadronic resonances in the (1–2) GeV range, which were estimated using
hadronic models, on the other hand by the matching to short-distance constraints (SDCs) that follow
from the operator-product expansion (OPE). Therefore, since the publication of the WP, efforts
were directed towards an improved evaluation of these sub-dominant contributions, addressing
scalar resonances beyond the 𝑓0(500) [10], axial-vector resonances [11–14], tensor resonances and
𝐷-waves [15, 16], which require a modification of the dispersive framework itself [17], as well as the
SDCs on HLbL [12, 18–20]. Work is in progress to combine all these developments, together with
improvements of the 𝜂, 𝜂′ pole contributions [21–24], into a full data-driven evaluation of 𝑎HLbL

𝜇 .
Since the WP publication, the HLbL contribution has also been evaluated within lattice QCD

with competitive uncertainties. The results of refs. [25–27] are compatible with the phenomenological
WP value, but point to a slightly larger central value. In order to meet the final experimental precision
goal, the uncertainties in HLbL should be further reduced to the level of about 10%, which seems
feasible for both phenomenological and lattice-QCD evaluations. However, all these improvement in
the HLbL evaluation will only have a real impact once the tensions in the evaluations of HVP are
resolved, to which we turn next.

3 Hadronic vacuum polarization

The discrepancy between the experimental value for 𝑎𝜇 (1.1) and the SM evaluation (1.2) is reduced
to only 1.5𝜎 if the evaluation of HVP is replaced by [5]

𝑎HVP, LO, BMWc
𝜇 = 7 075(55) × 10−11 . (3.1)

However, this number is in 2.1𝜎 tension with the WP evaluation based on 𝑒+𝑒− cross-section data.
The resolution of this tension is crucial in order to update the WP prediction and to reach a single
competitive SM prediction for 𝑎𝜇 [28]. The current puzzling situation has triggered intense scrutiny
of both the lattice and dispersive evaluations. So-called window quantities, obtained by introducing

– 2 –
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Discrepancy 𝑎𝜋𝜋
𝜇

��
[0.60,0.88] GeV 𝑎𝜋𝜋

𝜇

��
≤1 GeV int window

SND06 1.8𝜎 1.7𝜎 1.7𝜎
CMD-2 2.3𝜎 2.0𝜎 2.1𝜎
BaBar 3.3𝜎 2.9𝜎 3.1𝜎
KLOE′′ 5.6𝜎 4.8𝜎 5.4𝜎
BESIII 3.0𝜎 2.8𝜎 3.1𝜎
SND20 2.2𝜎 2.1𝜎 2.2𝜎

Combination 4.2𝜎 [6.1𝜎] 3.7𝜎 [5.0𝜎] 3.8𝜎 [5.7𝜎]

Table 1. Significance of the discrepancies between fits to CMD-3 and the other experiments, taking into
account the correlations due to the systematics in the dispersive representation, as well as the 𝜒2 inflation of
the fit errors. For the combined fit, the discrepancies in square brackets exclude the systematic effect due to
the BaBar-KLOE tension.

weight functions in the Euclidean-time integral of the coordinate-space representation of HVP [29],
have proved useful, as the intermediate window is much less affected by lattice systematics than
the entire HVP contribution to 𝑎𝜇. The BMWc value for this quantity is in 3.7𝜎 tension with the
cross-section data [30] and several lattice collaborations have now confirmed this result [31–34].

The information from the window quantities as well as the constraints on the hadronic running of
𝛼 imply that the differences mainly come from the region below ≈ 2 GeV [35–40]. In the low-energy
region, the two-pion channel completely dominates and modifications of the cross-section data
can be confronted with the constraints of analyticity and unitarity on the pion vector form factor
(VFF) [39]. We are using the representation for the VFF [41]

𝐹𝑉
𝜋 (𝑠) = Ω1

1(𝑠) × 𝐺𝜔 (𝑠) × 𝐺𝑁
in (𝑠) , (3.2)

where Ω1
1(𝑠) denotes the Omnès function with the elastic 𝜋𝜋-scattering 𝑃-wave phase shift 𝛿1

1 (𝑠) as
input, 𝐺𝜔 (𝑠) accounts for the resonantly enhanced isospin-breaking 𝜌–𝜔 interference effect, and
further inelastic contributions are parametrized by a conformal polynomial 𝐺𝑁

in (𝑠). Although this
dispersive representation only depends on a few parameters, there is enough freedom to describe
all major experiments individually — in particular, the constraints of analyticity and unitarity
do not resolve the tension between BaBar [42] and KLOE [43], see ref. [41]. Similarly, even
modifications of the cross-section data well beyond the BaBar-KLOE tension can be accommodated
by the dispersive constraints, with rather uniform shifts in the two-pion cross section leading to
a correlated shift in the pion charge radius [39], which potentially could provide an independent
cross check if an improved lattice determination of the pion charge radius became available. Exactly
such a shift in the cross-section data is indeed realized in the recent measurements by CMD-3 [6].
In ref. [1], we present updated results for the fit of the dispersive representation (3.2) to the major
experiments, including CMD-3. We find a 𝑝-value of 20% for the fit to CMD-3: the data are
compatible with the dispersive constraints. Our representation also allows us to quantify the tension
to the other experiments for the full energy range up to 1 GeV, shown in table 1. As noted in ref. [44],
SND20 [45] is the only experiment that cannot be fit with a good 𝑝-value, while BaBar, KLOE,
BESIII [46], SND06 [47], and CMD-2 [48] do permit acceptable fits.

– 3 –
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Figure 1. Left: results for 𝑎𝜋𝜋
𝜇 in the energy range ≤ 1 GeV. Right: results for the phase of the 𝜌–𝜔 mixing

parameter, 𝛿𝜖 . The smaller error bars refer to the fit uncertainties, inflated by
√︁
𝜒2/dof, the larger error

bars to the total uncertainties. The gray bands correspond to the combined fit to NA7 and all 𝑒+𝑒− data sets
apart from SND20 and CMD-3, with the largest band including the additional systematic effect due to the
BaBar-KLOE tension.

The discrepancies among the different 𝑒+𝑒− experiments are shown in figure 1. For 𝑎𝜇 itself,
the discrepancy between CMD-3 and the combination of the other experiments by far exceeds the
BaBar-KLOE tension or the one between BMWc and the WP, amounting to 5𝜎 for the HVP integral
up to 1 GeV and even more around the 𝜌 peak or in the intermediate window. Further tensions are
visible directly in the fit parameters, e.g., the complex phase 𝛿𝜖 of the 𝜌–𝜔 mixing parameter 𝜖𝜔,
an observable generated by radiative channels such as 𝜌 → 𝜋0𝛾 → 𝜔 [44], differs widely among
the experiments.

4 Conclusions

The evaluation of the hadronic contributions to 𝑎𝜇 has been the subject of intense research efforts.
While recent work on HLbL promises to reach the precision goal set by the Fermilab experiment, the
interpretation of the SM prediction is currently complicated by the presence of a multitude of puzzles
in the HVP contribution: the disagreement between lattice QCD and hadronic cross sections on the
one hand, but also a new discrepancy between CMD-3 and all other 𝑒+𝑒− → 𝜋+𝜋− experiments
on the other. We presented updated fit results of our dispersive representation of the pion vector
form factor to the 𝑒+𝑒− → 𝜋+𝜋− data sets. The fit to the CMD-3 data did not reveal any conflict
with the dispersive constraints, yet the discrepancies to the other experiments are substantial: when
compared to the combination they amount to 5𝜎 for the entire energy range below 1 GeV, even
more for some partial quantities, see table 1. Forthcoming results from ongoing 𝑒+𝑒− → 𝜋+𝜋−

analyses, a reinvestigation of radiative corrections, and further lattice-QCD computations scrutinizing
the BMWc result for the full HVP contribution will be indispensable to understand the current
puzzling situation.
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