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The production of a top-antitop quark pair in association with a W boson (tt̄W) is one of the heaviest
signatures currently probed at the Large Hadron Collider. Since the first observation reported in 2015, the
corresponding rates have been found to be consistently higher than the standard model predictions, which
are based on next-to-leading order calculations in the QCD and electroweak interactions. We present the
first next-to-next-to-leading order QCD computation of tt̄W production at hadron colliders. The calculation
is exact, except for the finite part of the two-loop virtual corrections, which is estimated using two different
approaches that lead to consistent results within their uncertainties. We combine the newly computed next-
to-next-to-leading order QCD corrections with the complete next-to-leading order QCD plus electroweak
results, thus obtaining the most advanced perturbative prediction available to date for the tt̄W inclusive
cross section. The tension with the latest ATLAS and CMS results remains at the 1σ-2σ level.
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Introduction.—The final state of a W� boson produced
in association with a top-antitop quark pair (tt̄W) represents
one of the most massive standard model (SM) signatures
accessible at the Large Hadron Collider (LHC). Since the
top quarks rapidly decay into a W boson and a b quark,
the tt̄W process leads to two b jets and three decaying
W bosons. This in turn gives rise to multilepton signatures
that are relevant to a number of searches for physics beyond
the standard model. In particular, tt̄W production is one of
the few SM processes that provides an irreducible source of
same-sign dilepton pairs. Additionally, the tt̄W signature is
a relevant background for the measurement of Higgs boson
production in association with a top-antitop quark pair
(tt̄H) and for four-top (tt̄tt̄) production.
Measurements of tt̄W production carried out by the

ATLAS and CMS collaborations at center-of-mass energies
of

ffiffiffi
s

p ¼ 8 TeV [1,2] and
ffiffiffi
s

p ¼ 13 TeV [3–5] lead to rates
consistently higher than the SM predictions. A similar
situation holds for tt̄W measurements in the context of
tt̄H [6,7] and tt̄tt̄ [8,9] analyses. The most recent mea-
surements [10,11], based on an integrated luminosity of

about 140 fb−1, confirm this picture, with a slight excess at
the 1σ-2σ level.
In this context, it is clear that the availability of precise

theoretical predictions for the tt̄W SM cross section is of
the utmost importance. The next-to-leading order (NLO)
QCD corrections to tt̄W production have been computed
in Refs. [12–14], and electroweak (EW) corrections in
Refs. [15,16]. Soft-gluon effects were included in
Refs. [17–20]. NLO QCD effects to the complete off-shell
tt̄W process have been considered in Refs. [21–23], while
the complete off-shell NLO QCDþ EW computation was
reported in Ref. [24]. Very recently, even NLO QCD
corrections to off-shell tt̄W production in association with
a light jet were computed [25]. A detailed investigation of
theoretical uncertainties for multilepton tt̄W signatures has
been presented in Ref. [26] (see also Ref. [27]). Current
experimentalmeasurements are comparedwithNLOQCDþ
EWpredictions supplemented with multijet merging [28,29],
which are still affected by relatively large uncertainties. To
improve upon the current situation, next-to-next-to-leading
order (NNLO) QCD corrections are necessary.
In this Letter we present the first computation of tt̄W

production at NNLO in QCD. While the required tree-level
and one-loop scattering amplitudes can be evaluated with
automated tools, the two-loop amplitude for tt̄W produc-
tion is yet unknown. In this Letter, we estimate it by using
two different approaches. The first parallels the approach
successfully applied in Ref. [30] to tt̄H production, and is
based on a soft-W approximation, which allows us to
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extract the tt̄W amplitude from the two-loop amplitudes for
top-pair production [31] (see also Ref. [32]). The second
is based on the NNLO calculation of Ref. [33], where an
approximate form of the two-loop amplitude for the
production of a heavy-quark pair and aW boson is obtained
from the leading-color two-loop amplitudes for a W boson
and four massless partons [34,35] through a massification
procedure [36–38]. We demonstrate that the two approx-
imations, despite their distinct conceptual foundations and
the fact that they are used in a regime where their validity is
not granted, yield consistent results within their respective
uncertainties. Finally, we combine the computed NNLO
QCD corrections with the complete NLO QCDþ EW
result, thus obtaining the most accurate theoretical pre-
diction for this process available to date.
Calculation.—The QCD cross section for tt̄W produc-

tion can be written as σ ¼ σLO þ ΔσNLO þ ΔσNNLO þ…,
where σLO is the leading-order (LO) cross section, ΔσNLO
the NLO QCD correction, ΔσNNLO the NNLO QCD
contribution, and so forth.
In addition to the inherent challenges involved in

obtaining the relevant scattering amplitudes, the imple-
mentation of a complete NNLO calculation is a difficult
task because of the presence of infrared (IR) divergences
at intermediate stages of the calculation. In this work
NNLO IR singularities are handled and canceled by using
the qT subtraction formalism [39], extended to heavy-quark
production in Refs. [40–42]. According to the qT sub-
traction formalism, the differential cross section dσ can be
evaluated as

dσ ¼ H ⊗ dσLO þ ½dσR − dσCT�: ð1Þ

The first term on the right-hand side of Eq. (1) corresponds
to the qT ¼ 0 contribution. It is obtained through a con-
volution, with respect to the longitudinal-momentum frac-
tions z1 and z2 of the colliding partons, of the perturbatively
computable function H with the LO cross section dσLO.
The real contribution dσR is obtained by evaluating the
cross section to produce the tt̄W system accompanied by
additional QCD radiation that provides a recoil with finite
transverse momentum qT . When dσ is evaluated at NNLO,
dσR is obtained through an NLO calculation by using
the dipole subtraction formalism [43–45]. The role of the
counterterm dσCT is to cancel the singular behavior of dσR in
the limit qT → 0, rendering the square bracket term in
Eq. (1) finite. The explicit form of dσCT is completely known
up to NNLO: it is obtained by perturbatively expanding the
resummation formula of the logarithmically enhanced con-
tributions to the qT distribution of the tt̄W system [46–50].
Our computation is implemented within the MATRIX

framework [51], suitably extended to tt̄W production,
along the lines of what was done for heavy-quark pro-
duction [41,42,52]. The method was recently applied
also to the NNLO calculation of tt̄H [30] and bb̄W [33]

production, for which the contributions from soft-parton
emissions at low transverse momentum [53] had to be
properly extended to more general kinematics [54]. The
required tree-level and one-loop amplitudes are obtained
with OpenLoops [55–57] and RECOLA [58–60]. In order to
numerically evaluate the contribution in the square bracket
of Eq. (1), a technical cutoff rcut is introduced on the
dimensionless variable qT=Q, where Q is the invariant
mass of the tt̄W system. The final result, which corresponds
to the limit rcut → 0, is extracted by computing the cross
section at fixed values of rcut and performing the rcut → 0
extrapolation. More details on the procedure and its
uncertainties can be found in Refs. [49,51].
The purely virtual contributions enter the first term on

the right-hand side of Eq. (1), and more precisely the hard
function H (related to H through H ¼ Hδð1 − z1Þ×
δð1 − z2Þ þ δH) whose coefficients, in an expansion in
powers of the QCD coupling αSðμRÞ, are defined as

HðnÞ ¼
2Re

�
MðnÞ

fin ðμR; μIRÞMð0Þ�
�

jMð0Þj2

������
μR¼Q

: ð2Þ

Here, μR is the renormalization scale, and MðnÞ
fin are the

perturbative coefficients of the finite part of the renormal-
ized virtual amplitude for the process ud̄ðdūÞ → tt̄Wþð−Þ,
after the subtraction of IR singularities at the scale μIR,
according to the conventions of Ref. [61]. In order to obtain
an approximation of the NNLO coefficient Hð2Þ, we use
two independent approaches, applied to both the numerator
and the denominator of Eq. (2). The first relies on a soft-W
approximation. In the high-energy limit, in which the
colliding quark and antiquark of momenta p1 and p2

radiate a soft-W boson with momentum k and polarization
εðkÞ, the multiloop QCD amplitude in d ¼ 4 − 2ϵ dimen-
sions behaves as

Mðfpig; k; μR; ϵÞ ∼
gffiffiffi
2

p
�
p2 · ε�ðkÞ
p2 · k

−
p1 · ε�ðkÞ
p1 · k

�

×MLðfpig; μR; ϵÞ; ð3Þ

where g is the EW coupling and MLðfpigÞ the qLq̄R → tt̄
virtual amplitude. In the second approach the two-loop
coefficientHð2Þ is approximated in the ultrarelativistic limit
mt ≪ Q by using a massification procedure [36–38]. We
start from the massless W þ 4-parton amplitudes Mmt¼0

evaluated in the leading-color approximation [35,62] to
obtain

Mðfpig; k; μR; ϵÞ ∼ Zðmtj0Þ
½q�

�
αSðμRÞ;

mt

μR
; ϵ

�

×Mmt¼0ðfpig; k; μR; ϵÞ; ð4Þ
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where Z are perturbative functions whose explicit
expression up to NNLO can be found in Ref. [37]. This
procedure [63] was successfully applied to evaluate NNLO
corrections to bb̄W production in Ref. [33].
In order to use Eq. (3) to approximate the tt̄W amplitudes,

we need to introduce a prescription that, from an event
containing a tt̄ pair and a W boson, defines a corresponding
event in which the W boson is removed. This is accom-
plished by absorbing the W momentum into the top quarks,
thus preserving the invariant mass of the event. On the other
hand, for the application of Eq. (4) we map the momenta
of the massive top quarks into massless momenta by
preserving the four-momentum of the tt̄ pair. In both cases
we reweight the respective two-loop coefficients with the
exact Born matrix elements. This approach effectively
captures additional kinematic effects, which we expect to
extend the region of validity of the approximations well
beyond where it may be assumed in the first place.
For our numerical studies, we consider the on-shell

production of a W boson in association with a tt̄ pair in
proton collisions, at a center-of-mass energy of

ffiffiffi
s

p ¼13TeV.
We set the pole mass of the top quark to mt ¼ 173.2 GeV,
while for theWmasswe usemW ¼ 80.385 GeV.Wework in
theGμ scheme for the EWparameters, withGμ ¼ 1.166 39 ×
10−5 GeV−2 andmZ ¼ 91.1876 GeV. We consider a diago-
nal Cabibbo-Kobayashi-Maskawa matrix. We use the
NNPDF31_nnlo_as_0118_luxqed set for parton dis-
tribution functions (PDF) [64] and strong coupling, which is
based on the LUXqed methodology [65] to determine the
photon density. We adopt the LHAPDF interface [66] and use
PineAPPL [67] grids through the new MATRIX+PineAPPL inter-
face [68] to estimate PDFandαS uncertainties. For our central
predictions we set the renormalization (μR) and factorization
(μF) scales to the value μ0 ¼ mt þmW=2≡M=2, and
evaluate the scale uncertainties by performing a seven-point
variation, varying them independently by a factor of 2 with
the constraint 1=2 ≤ μR=μF ≤ 2.
In order to test the quality of our approximations, we

apply them to evaluate the contribution of the coefficient
Hð1Þ to the NLO correction, ΔσNLO;H. In Fig. 1 (upper
panel) the two approximations are compared to the exact
result, as functions of the cut on the transverse momenta of
the top quarks, pT;t=t̄. We observe that both approximations
get closer to the exact result if a harder cut is imposed, since
the large-pT;t=t̄ region corresponds to a kinematical con-
figuration where both of them are expected to reproduce
the full amplitude. In particular, we observe that the soft
approximation tends to undershoot the exact result, while
the massification approach overshoots it. Remarkably, both
approaches provide a good approximation also at the
inclusive level.
We now move on to the contribution of the coefficient

Hð2Þ to the NNLO correction, ΔσNNLO;H. In Fig. 1 (lower
panel) the two approximations are compared, normalized to

their average. The uncertainties of the soft and massifica-
tion results are also depicted. These are evaluated starting
from the assumption that the uncertainty of each approxi-
mation of ΔσNNLO;H is not smaller than the relative differ-
ence betweenΔσapproxNLO;H and the exact NLO result. We obtain
a first estimate of the uncertainty on ΔσNNLO;H by con-
servatively multiplying ΔσapproxNLO;H by a factor of 2. As an
additional estimate, we consider variations of the subtrac-
tion scale μIR, at which our approximations are applied, by
a factor of 2 around the central scale Q (adding the exact
evolution from μIR to Q). For each of the two approx-
imations, the uncertainty is defined as the maximum
between these two estimates. From Fig. 1 we see that
the two approximations are consistent within their respec-
tive uncertainties. We therefore conclude that our approach
can provide a good estimate of the true NNLO hard-virtual
contribution. Our best prediction for ΔσNNLO;H is finally
obtained by taking the average of the two approximations
and linearly combining their uncertainties. We note that
with such procedure the central values of the two approx-
imations are enclosed within the uncertainty band of the
average result. The final uncertainty on ΔσNNLO;H turns out
to be at theOð25%Þ level. (We note that a similar control on
the two-loop contribution is obtained in recent calculations

FIG. 1. Results for ΔσNLO;H (upper panel) and ΔσNNLO;H (lower
panel), in the case of tt̄W− production, obtained with the two
approximations presented in this Letter, for different cuts on the
transverse momenta of the top quarks. At NLO the approxima-
tions are normalized to the exact result, while at NNLO to their
average. The uncertainties of each approximation at NNLO
are presented, as well as their combination. Similar results are
obtained for tt̄Wþ.
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for massless 2 → 3 processes employing the leading-color
approximation, see, e.g., Ref. [69].) As we will observe in
what follows, this leads to an uncertainty of the NNLO
prediction which is significantly smaller than the residual
perturbative uncertainties.
Results.—We now focus on our numerical predictions for

the LHC. Our results for the total tt̄Wþ and tt̄W− cross
sections are presented in Table I. In the first three rows
we consider pure QCD predictions, which are labeled
NnLOQCD with n ¼ 0, 1, 2. The results in the fourth
row, dubbed NNLOQCD þ NLOEW, represent our best
prediction. They include additively also EW corrections
and all subleading (in αS) terms up to NLO, originally
computed in Ref. [16,70]. We recompute them here
within the MATRIX framework, after validation against a
recent implementation in WHIZARD [71]. Predictions for
the sum and the ratio of the tt̄Wþ and tt̄W− cross
sections are also provided, and their scale uncertainties
are evaluated by performing seven-point scale variations
for each of them, keeping μR correlated, while the values
of μF for the tt̄Wþ and tt̄W− cross sections are allowed
to differ by at most a factor of 2. (The uncertainty due
to the approximation of the two-loop corrections is
expected to largely cancel in the ratio.) Finally, the
most recent results by the ATLAS [11] and CMS [10]
collaborations are quoted.
We start by discussing the pattern of QCD corrections.

The NLO cross section for both tt̄Wþ and tt̄W− production
is about 50% larger than the corresponding LO result. The
NNLO corrections are moderate, and increase the NLO
result by about 15%, showing first signs of perturbative
convergence. The ratio between the two cross sections
shows a very stable perturbative behaviour. The size of
the scale uncertainties is substantially reduced at NNLO, in
line with the observed smaller corrections to the central
prediction. The impact of the two-loop contribution is
relatively large, about 6%–7% of the NNLO cross section.
Nonetheless, we find that the ensuing uncertainty on our

prediction is Oð�2%Þ, i.e., significantly smaller than the
remaining perturbative uncertainties.
In addition to the value μ0 ¼ M=2 used in Table I, we

have also considered alternative choices for the central
scale, specifically μ0 ¼ M=4, HT=2, and HT=4, where HT
is the sum of the transverse masses of the top quarks and the
W boson. Results for the different perturbative orders in the
QCD expansion are presented in Fig. 2. At each order,
the four predictions are fully consistent within their
uncertainties, and in particular the μ0 ¼ M=2 and μ0 ¼
HT=4 bands cover the central values of the other scale
choices that have been considered. We note that sym-
metrizing the band of the μ0 ¼ M=2 prediction at NNLO
leads to an upper bound that is almost identical to that of the
μ0 ¼ M=4 and μ0 ¼ HT=4 scale variations. Therefore, to
be conservative, the perturbative uncertainties affecting our
final NNLOQCD þ NLOEW results are estimated by sym-
metrizing the scale variation error. More precisely, we
take the maximum among the upward and downward
variations, assign it symmetrically, and leave the nominal
prediction unchanged.
The EW corrections increase our NNLOQCD cross

sections by about 5%. While smaller than the NNLO
QCD corrections, their inclusion is crucial for an
accurate description of this process, as their magnitude
is comparable to the NNLOQCD scale uncertainties. The
PDF (αS) uncertainties, not shown in Table I, on the tt̄Wþ
and tt̄W− cross sections amount to �1.8% (�1.8%) and
�1.7% (�1.9%), respectively. [We consider 68% confi-
dence level PDF uncertainties, while the αS uncertainties
are computed as half the difference between the corre-
sponding sets for αSðmZÞ ¼ 0.118� 0.001.] The PDF
uncertainty on their ratio, derived by recalculating the ratio
for each replica, is �1.7%. Its αS uncertainty is negligible.
The current theory reference to which experimental

data are compared is the FxFx prediction of Ref. [29],
which reads σFxFxtt̄W ¼ 722.4þ9.7%

−10.8% fb. Our NNLOQCD þ
NLOEW prediction for the tt̄W cross section in Table I is

TABLE I. Inclusive cross sections for tt̄Wþ and tt̄W− production at different perturbative orders, together with
their sum and ratio. The uncertainties are computed through scale variations and for our best prediction,
NNLOQCD þ NLOEW, are symmetrized as discussed in the text. Where NNLO QCD corrections are included, the
error from the approximation of the two-loop amplitudes is also shown. The numerical uncertainties on our
predictions are at the per mille level or below. The corresponding experimental results from the ATLAS [11] and
CMS [10] collaborations are also quoted, with their statistical and systematic uncertainties.

σtt̄Wþ [fb] σtt̄W− [fb] σtt̄W [fb] σtt̄Wþ=σtt̄W−

LOQCD 283.4þ25.3%
−18.8% 136.8þ25.2%

−18.8% 420.2þ25.3%
−18.8% 2.071þ3.2%

−3.2%

NLOQCD 416.9þ12.5%
−11.4% 205.1þ13.2%

−11.7% 622.0þ12.7%
−11.5% 2.033þ3.0%

−3.4%

NNLOQCD 475.2þ4.8%
−6.4% � 1.9% 235.5þ5.1%

−6.6% � 1.9% 710.7þ4.9%
−6.5% � 1.9% 2.018þ1.6%

−1.2%

NNLOQCD þ NLOEW 497.5þ6.6%
−6.6% � 1.8% 247.9þ7.0%

−7.0% � 1.8% 745.3þ6.7%
−6.7% � 1.8% 2.007þ2.1%

−2.1%

ATLAS [11] 585þ6.0%
−5.8%

þ8.0%
−7.5% 301þ9.3%

−9.0%
þ11.6%
−10.3% 890þ5.6%

−5.6%
þ7.9%
−7.9% 1.95þ10.8%

−9.2%
þ8.2%
−6.7%

CMS [10] 553þ5.4%
−5.4%

þ5.4%
−5.4% 343þ7.6%

−7.6%
þ7.3%
−7.3% 868þ4.6%

−4.6%
þ5.9%
−5.9% 1.61þ9.3%

−9.3%
þ4.3%
−3.1%
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fully consistent with this value, with considerably
smaller uncertainties.
We now compare our theoretical predictions to the

measurements performed by the ATLAS and CMS collab-
orations in Refs. [10,11], which represent the most precise
experimental determination of the tt̄W� cross sections to
date. From Table I we observe that the individual mea-
surements for the tt̄Wþ and tt̄W− cross sections are
systematically above the theoretical predictions, but all
within 2 standard deviations of our central results, except
for the tt̄W− measurement by the CMS Collaboration.
The measurement of the ratio σtt̄Wþ=σtt̄W− by the ATLAS

Collaboration is in excellent agreement with our prediction,
whereas the CMS result exhibits some tension.
Finally, we present in Fig. 3 our NNLOQCD þ NLOEW

results with their perturbative uncertainties in the
σtt̄Wþ − σtt̄W− plane, together with the 68% and 95%
confidence level regions obtained by the two collaborations.
The subdominant uncertainties due to the approximation
of the two-loop corrections are also shown.When comparing
to the data, we observe an overlap between the NNLOQCD þ
NLOEW uncertainty bands and the 1σ and 2σ contours of the
ATLAS and CMS measurements, respectively.
Summary.—In this Letter we have presented the first

calculation of the second-order QCD corrections to the
hadroproduction of a W boson in association with a top-
antitop quark pair. Our results are exact, except for the finite
part of the two-loop virtual corrections, which is computed
by using two independent approximations. While these
approximations are completely different in their concep-
tion, they lead to consistent results, thereby providing a
strong check of our approach.
We have combined our results with the NLO EW correc-

tions, obtaining the most precise theoretical determination of
the inclusive tt̄W� cross section available to date. Our results
significantly reduce the size of the perturbative uncertainties,
allowing for a more meaningful comparison to the results
obtained by the ATLAS and CMS collaborations. The high
level of precision attained by our theoretical predictions will
enable even more rigorous tests of the SM, as more precise
experimental measurements become available.
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