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Abstract

Objective. Online adaptive radiotherapy aims to fully leverage the advantages of highly conformal
therapy by reducing anatomical and set-up uncertainty, thereby alleviating the need for robust
treatments. This requires extensive automation, among which is the use of deformable image
registration (DIR) for contour propagation and dose accumulation. However, inconsistencies in DIR
solutions between different algorithms have caused distrust, hampering its direct clinical use. This
work aims to enable the clinical use of DIR by developing deep learning methods to predict DIR
uncertainty and propagating it into clinically usable metrics. Approach. Supervised and unsupervised
neural networks were trained to predict the Gaussian uncertainty of a given deformable vector field
(DVE). Since both methods rely on different assumptions, their predictions differ and were further
merged into a combined model. The resulting normally distributed DVFs can be directly sampled to
propagate the uncertainty into contour and accumulated dose uncertainty. Main results. The
unsupervised and combined models can accurately predict the uncertainty in the manually annotated
landmarks on the DIRLAB dataset. Furthermore, for 5 patients with lung cancer, the propagation of
the predicted DVF uncertainty into contour uncertainty yielded for both methods an expected
calibration error of less than 3%. Additionally, the probabilisticly accumulated dose volume histograms
(DVH) encompass well the accumulated proton therapy doses using 5 different DIR algorithms. It was
additionally shown that the unsupervised model can be used for different DIR algorithms without the
need for retraining. Significance. Our work presents first-of-a-kind deep learning methods to predict
the uncertainty of the DIR process. The methods are fast, yield high-quality uncertainty estimates and
are useable for different algorithms and applications. This allows clinics to use DIR uncertainty in
their workflows without the need to change their DIR implementation.

1. Introduction

Intensity modulated photon and proton therapy, as well as volumetric modulated arc therapy, offer high
conformality of the dose to the tumor and therefore spare healthy tissue more than traditional radiotherapy
techniques (Lomax 1999, Bortfeld 2006, Otto 2008, Tran et al 2017, Moreno et al 2019). However, the effectiveness
of these techniques depends on accurate dose delivery, which can be compromised by changes in the patient’s
anatomy or set-up variations. Such variations are especially important for proton therapy, where the location of the
dose peak is highly sensitive to tissue densities along the beam path (Lomax 2008, Zhang et al 2011). To compensate
for these uncertainties, treatment plans are often made more robust by adding margins around the target area
(Albertini efal 2011) or using robust optimization techniques (Liu et al 2012, Unkelbach et al 2018). Whereas these
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approaches can help to ensure sufficient target coverage, they also increase the dose to healthy tissue and therefore
diminish some of the potential benefits of conformal therapy.

Instead of accounting for anatomical and set-up uncertainty, adaptive radiotherapy aims to reduce it by
acquiring a 3D image shortly before the treatment. Reoptimizing the treatment plan based on this daily
information reduces the need for robustness, and, hence, lowers the dose to the healthy tissue. To minimize the
uncertainty about the treated anatomy, the time between image acquisition and treatment needs to be as short as
reasonably possible, in the order of minutes. This excludes manual execution of many adaptation steps, so
adaptive therapy requires extensive automation.

One tool enabling adaptive therapy is deformable image registration (DIR), i.e. finding a (deformable)
transformation that maps one image to another. DIR is used for three distinct applications in adaptive therapy:
contour propagation, dose accumulation and synthetic CT generation (Rigaud et al 2019, Paganetti et al 2021).
For contour propagation, the planning CT is registered to the daily image and the resulting transformation is
applied to the planning contours of the organs-at-risk (OARs) and target volumes (TVs). This results in contours
on the daily image, which are necessary for reoptimization of the treatment plan. As this needs to happen
between image acquisition and treatment, it should be relatively fast, i.e. in the order of minutes. Several works
have shown great potential for DIR for contour propagation, both geometrically and dosimetrically (Hardcastle
etal 2013, Kumarasiri et al 2014, Smolders et al 2023a, 2023b).

Another application of DIR is dose accumulation, i.e. the process of summing up doses from different time
points on a common reference anatomy (Murr et al 2023). Dose accumulation has many applications outside
adaptive therapy, e.g. to correctly evaluate the cumulative delivered dose in case of re-irradiation. In adaptive
therapy, it is even more important. Due to the daily reoptimization, the treatment plan varies from day to day.
To ensure that the total treatment adheres to the prescribed dose, all the daily doses have to be accumulated.
Contrary to contour propagation, dose accumulation does not need to happen during the patient appointment.
It could be part of an offline quality assurance (QA) procedure, e.g. after the patient treatment or once per week,
so the time constraint is less stringent.

Whereas DIR has a large potential, its clinical use is currently limited. Due to the technical limitations of
medical imaging (such as resolution and contrast), the corresponding points on two images of the same anatomy
cannot be found in an unambiguous manner. This requires practical DIR algorithms to impose additional
constraints (e.g. smoothness) in the optimization. Since the implementation and strength of these constraints
vary between DIR algorithms, their solutions usually differ (Brock eral 2017).

To overcome the distrust in DIR and enable its use in the clinic, several works have developed methods to
predict the uncertainty of a DIR solution. Some authors have proposed probabilistic DIR algorithms that
directly output a distribution of solutions rather than a unique solution (Simpson et al 2013, Heinrich et al
2016). The downside of these models is that they are often relatively slow, that the quality of the solutions does
not reach those of non-probabilistic algorithms or that their implementations are complex, so they are rarely
used in practice. Otherwise, Monte-Carlo (MC) sampling could be used to quantify DIR uncertainty. By
sampling the uncertain input parameters, such as regularization strength, or sampling from different DIR
algorithms, the spread in DIR solutions can be quantified. However, such sampling would require many
independent DIR runs, which, given the long DIR runtimes, would be inadequate for adaptive therapy. Another
work tried to predict the uncertainty of a given DIR solution using linear regression (Amstutz e al 2021).
Whereas this method is fast and has the advantage of being independent of the DIR algorithm itself, the
uncertainty prediction is solely based on the magnitude of the transformation and disregards any image
information.

In our work, we develop deep learning based uncertainty prediction methods for DIR. This has, to the best of
our knowledge, not yet been attempted. The methods do not calculate the registration, but aim to predict the
uncertainty of a given DIR solution. We focus on CT to CT registration, therefore either assuming that the daily
image is a CT or that a daily synthetic CT is available. A supervised, unsupervised and combined model are
trained and their results are compared for both contour propagation and dose accumulation. The network
architecture, loss functions, datasets and training parameters are detailed in section 2. Section 3 discusses the
model calibration and compares the performance for the respective applications. These results are followed by a
discussion in section 4 and a general conclusion in section 5.

2. Materials and methodology

2.1. Gaussian deformable vector field (DVF)

Our work aims to predict the uncertainty of a given DVF, the output of a DIR algorithm. The DVF together with
its uncertainty can be considered as a probabilistic DVF z. Whereas z can in principle have any distribution, it is
here assumed to be a multivariate Gaussian, i.e.
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z~q(z) = Mu, X) 1)

with z the mean DVF given by an existing DIR algorithm and X the covariance matrix. In 3D, y contains
3 x H x W x D elements, with H, W, D the dimensions of the image. Our methods aim to predict >, which has
(3 x H x W x D)?elements, containing not only the variance of each vector, but also its covariance with other
vectors. For an average CT of size 512 x 512 x 100, storing X in float precision would require 24 petabytes,
which is impossible for practical applications.

Therefore, we further assume a fixed correlation matrix p between neighboring voxels, i.e.

¥ = GpGT 2

with G a diagonal matrix with its elements representing the standard deviations o, ,, 0,,,and 7, ; of each
component of each vector of the DVFE. The models only predict G, whichhas 3 x H x W x D nonzero elements,
requiring only 314 MB of storage for an average CT. Lastly, we define p as

p=C,CJ ©)
with C,, the matrix corresponding to Gaussian smoothing with kernel width o, which correlates vectors that are

spatially close (Dalca et al 2019). The larger o, the larger the correlation between the vectors which results in
smoother DVF samples. With these assumptions, DVF samples z; can be generated as

zr = p + GCy €x 4)

with € ~ N(0, 1), atensor of uncorrelated standard normally distributed elements (Kingma et al 2015). The
matrix product C,, ¢ does not need to be calculated explicitly: after reshaping e into the DVF shape

(3 X H x W x D), itis simply a Gaussian smoothing of e correlating the neighboring elements (Dalca et al 2019).
Note that the elements of C,, need to be rescaled with the sum of the squared elements of the smoothing kernel,
so that the individual elements of C,, ¢ remain standard normally distributed and only correlated with their
neighbors.

2.2.DIR algorithms

The neural networks predicting G were trained using plastimatchb-spline (Sharp et al 2010), but other DIR
algorithms were included in the evaluation to verify whether the approach can be generalized to other DIR
algorithms without retraining. The included DIR algorithms are shortly detailed hereafter:

+ Plastimatch b-spline: many (commercial) DIR algorithms use a b-spline approach because it is fast and
generally yields good results (Rueckert et al 1999, Sotiras et al 2013). Our models were trained using the
plastimatchb-spline algorithm because it is scriptable and publicly available. Recent work further
showed good results for contour propagation for OAR contours in both head and neck and lung cancer
patients (Smolders et al 2023b). Another advantage is that the hyperparameters can be changed, which is
necessary for our supervised training (see further). Unless stated otherwise, the optimization used mean-
squared-error (MSE) as similarity criterion, two consecutive resolutions with grid spacing s respectively 40
and 20 mm and regularization A\, = 0.002 (Nenoff et al 2020).

+ Plastimatch demons: demons is a commonly used DIR algorithm (Thirion 1998). Contrary to the b-spline
algorithm, itis a non-parametric method. Here, plastimatch demons was used. The implementation
details can be found in the supplementary material of Nenoff et al (2020).

* Velocity: the Velocity DIR algorithm (Varian Medical Systems, Palo Alto, USA) was further included as it is
clinically used DIR at the Center for Proton Therapy (CPT).

Three additional commercial DIR algorithms were used to benchmark dose accumulation uncertainty. These
include Raystation Anaconda (RaySearch Laboratories AB, Stockholm, Sweden), Mirada (Mirada Medical,
Oxford, UK), and a preclinical DIR algorithm provided by Cosylab (Cosylab, d. d., Control System Laboratory,
Ljubljana, Slovenia).

2.3. Datasets

This work uses 4 different datasets (table 1). The first dataset contains CT scan pairs of patients treated at CPT
between 2013 and 2021 and was used to train the neural networks. A total of 50 patients were included, which,
because some had more than one repeated CT, yielded a total of 63 scan pairs. Since each scan of a pair can be
considered once as the fixed and once as the moving image, this results in 126 input instances. All scan pairs were
initially rigidly registered using the E1 ast i x toolbox (Klein et al 2010) and resampled to a fixed resolution

1.95 x 1.95 x 2 mm.
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Figure 1. Schematic network architecture.

Table 1. Overview of the datasets.

Name No. patients No. scans Anatomical region

CPT dataset 50 106 head and neck (64%), thorax (14%), abdomen (22%)
DIRLAB dataset (Castillo et al 2009, 2010) 10 20 thorax

NSCLC dataset 5 50 thorax

HNC dataset 5 33 head and neck

The performance of the models was quantitatively assessed using the public DIRLAB dataset (Castillo et al
2009, 2010). It contains 10 patients with in- and exhale CT scans with each 300 manually annotated landmarks
(LMs). 4 patients were used for hyperparameter tuning, and 6 for evaluation.

The last two datasets contain each 5 patients with respectively non-small cell lung cancer (NSCLC) and
various indications of head and neck cancer (HNC). None of them were included in the training dataset. This
data has been described in Smolders et al (2023b). All patients each have one planning CT and several repeated
CTs, all with manually contoured OARs and clinical target volumes (CTV). The NSCLC patients each had 9
repeated CTs and OARs including lungs, heart, spinal cord and esophagus. The HNC patients had 4-7 repeated
CTs, and the OARs included in this work consist of the eyes, optic nerves, chiasm, brainstem, parotids, spinal
cord and thyroid. Even though these patients were not treated with adaptive therapy, the repeated scans can be
considered as example daily CTs in an adaptive treatment.

For the NSCLC and HNC datasets, an adaptive proton therapy treatment was simulated by reoptimizing the
treatment plan on each repeated CT. Only the spot positions and weights were reoptimized, and the field angles
and OAR constraints were kept the same. The NSCLC plans delivered a 2 Gy RBE fraction dose with three fields
with angles and constraints specific for each patient to maximize organ sparing. The HNC plans delivered 1.6 Gy
RBE with a 2.2 Gy RBE to a boosted region and all had the same 3-field configuration with gantry angles 65°,
180° and 295°. OAR constraints were imposed in line with standard clinical objectives and were the same for all
patients. This yields for each patient a series of different daily dose distributions, which can be accumulated on a
reference CT to validate the entire treatment.

2.4. Model architecture
The deep learning models predicting G are based on a 3D UNet architecture (figure 1) (Cigek e al 2016). The
fixed and moving images are given as input to an existing DIR algorithm and the resulting DVF is considered as
the mean field 1. This DVF is concatenated to both images, yieldinga 5 x H X W x D tensor as network input
(appendix A). Based on this input, which contains information about the magnitude of the deformation and the
local image contrast, the network aims to predicta3 x H x W x D tensor G, containing the voxel-wise standard
deviations 0,4, 0, and o, , of the DVF. Gis in part directly used in the loss function. For unsupervised training,
G is additionally used together with y to generate DVF samples (equation (4)), which are used to warp the
moving image in the spatial transformer network (Jaderberg et al 2015). These sampled moved images are also
used in the loss function to compare to the fixed image.

The 3D UNet has an initial convolution creating 16 feature maps, which are doubled in each of the 3
consecutive encoder blocks. Each encoder and decoder block consists of 2 convolutional layers with kernel 3 and
stride 1, each followed by a ReLU activation function. Downsampling between the blocks is done with max

4
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pooling with kernel 2 and stride 2. Upsampling uses nearest-neighbour interpolation. A final convolution with
kernel 1 x 1 x 1isused to convert the 16 features into G.

2.5. Loss function
The above network architecture is used in three ways, with the only difference being the loss function used
during training: supervised, unsupervised and a combination of both.

2.5.1. Supervised learning
The plastimatch b-spline algorithm has two important hyperparameters: the grid spacing s, i.e. the distance
between the b-spline control points, and the regularization )\, a hyperparameter in the objective function
regulating the importance of the smoothness of the DVF. Depending on the patient, anatomical location and
magnitude of the deformation, different hyperparameters are optimal. Instead of using a single value for A, ands,
we can assume probability distributions p(s) and p(},), and this uncertainty in hyperparameters can be
propagated using MC sampling to the corresponding DVF uncertainty (Smolders et al 2022b). Even though this
is too slow in practice, it can be used to generate standard deviation labels G, which can be used to train a neural
network.

For each image in the training set, p(s) and p(\,) were sampled 100 times and the b-spline algorithm was run
with the sampled hyperparameters, yielding 100 DVF samples. G, was then calculated as the standard deviation
of these samples with respect to the mean DVF

1Y 5
Gy = ﬁk;(Zk — 1) ©)

with N = 100 the number of samples. Note that j is not calculated as the mean over these 100 samples, but as the
algorithm’s output when run with hyperparameters y;and 1), , as would be the case upon inference. The
network is then trained with the mean absolute error (MAE), i.e.

ES(\IJ> f: m, ,u) - IG - thl (6)

with fand m respectively the fixed and moving images, 1+ the mean DVF and W the network parameters.

To sample p(s) and p()\,), their parameters need to be specified. Since grid spacings below the voxel spacing
or above the image size are pointless, s is naturally bound and p(s) is therefore assumed uniform. Because A, > 0,
but is not bound in magnitude, we assumed a lognormal distribution. Even though s is naturally bound, very
high or low values likely result in inaccurate DVFs for all practical applications, and should therefore not be
considered. To find reasonable parameters of both distributions, the b-spline algorithm was run for a range of
parameters sand A, on the DIRLAB validation scans, and for each hyperparameter set, the target registration
error (TRE) was evaluated. Hyperparameters for which the TRE is high are less likely to be the optimal ones, so
the parameters of the distributions were chosen based on this TRE.

2.5.2. Unsupervised learning

Following Dalca et al (2019), the unsupervised model is trained based on a variational Bayes method. With z the
DVF, the network aims to minimize the Kullback—Leibler (KL) divergence between the posterior probability p(z|
f, m) and the Gaussian DVF g(z). It is additionally assumed that:

* fisanoisy observation of the transformed moving image moz: p(f|m, z) = N(moz, o31);

+ the prior probability is given by p(z) = N(0, X,), with ¥! = A, = A(D — A), Aahyperparameter, D the
graph degree matrix and A the adjacency matrix;

+ q(z) = N, GpGT)with p = C,, CUTC,as indicated above.

Minimizing the KL divergence with the above assumptions yields a loss function (Dalca et al 2019, Smolders et al
2022a):

1
Eu \Ij) > m, = — mogz 2
W, f, m, p) 2U%K;Hf il

i A
+> > (E(D - A)ini,jGi,iGj,j)

i=1jEN()

— %log(IGGTl) + cte (7)
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with K the number of samples (equation (4)), i, j respectively the rows and columns of 3, i.e. indexing the voxels,
and N(i) the neighbouring voxels of voxel , including itself. By construction, (D — A);; = 6ifi= jand

(D — A);j = —1ifi= j. Because of the fixed p, the components p; jhave only to be computed once at the
beginning of the training. K was set to 1 to limit GPU memory usage.

The unsupervised loss function contains two hyperparameters: Aand 2. Their value influences both the
magnitude of the predicted uncertainty as well as the trade-off between contrast and uncertainty. To tune these
hyperparameters, the probability of observing the moving landmarks X,, given the predicted probabilistic DVF
was maximized for the DIRLAB validation scans. This can be calculated as

CTs LM
p(Ms) =TT T] pGisIDVE), ®)

4 J

assuming that each landmark is independent of the others, which is reasonable if the landmarks are sufficiently
far apart. Because the Gaussian distribution is continuous, the probability of observing exactly X, is
infinitesimally small. We therefore maximized the probability that X,,, is observed within a cube of I mm
around it with a homogeneous probability density, which is equal to the probability density at X,,. The 1% points
with the lowest probability were further discarded, because p(LMs) is heavily affected by these outliers. The mean
log p(LMs) is reported, making the metric independent of the number of landmarks.

The width o, of the Gaussian smoothing during sampling is not learned but taken as a constant value for the
whole image and dataset. However, its value needs to be tuned: an overly large value would result in overly
smooth DVF samples, and a too-small value could lead to folding voxels. Furthermore, the larger o, the larger
the width of the smoothing kernel has to be, increasing the sampling time. o was therefore iteratively increased
until the average fraction of folding voxels on the DIRLAB data was below 0.01% for the model with optimal A
and O’%. The final values were 0. = 15 voxels and kernel width 61, which are used for all models in this work.

3

2.5.3. Combining super- and unsupervised models

The super- and unsupervised methods are based on different assumptions and quantify the uncertainty
differently. The one is likely more accurate in some cases and anatomical regions, and the other one in other
cases. As itis a priori difficult to predict which method would be most appropriate for each case, a conservative
approach is to predict the maximum uncertainty of both methods.

In principle it should be possible to change the loss function during training to predict this maximum
directly. However, we found that the resulting discontinuity in the loss around the maximum impeded smooth
convergence, even by setting different weighting factors for both loss terms We therefore opted to combine the
results of both the super- and unsupervised in postprocessing by taking the maximum o, for each individual
voxel. This technique is referred to as the combined model. Even though this doubles the inference time of the
neural network, the total runtime of the applications (see later) is affected much less since inference accounts for
only a minor fraction of the total runtime.

2.6. Training

All models were implemented in Pytorch and trained for 250 epochs with an initial learning rate 5e — 4, which
was halved every 50 epochs. Adam was used for optimization (Kingma and Ba 2014). All models used random
cropping as data augmentation, with patch size 256 x 256 x 96, and the unsupervised model additionally used
axis-aligned flipping. The models were trained using NVIDIA RTX 2080 Ti GPUs with 12 GB VRAM.

The training of the unsupervised network sometimes failed and diverged because of the sampling process
used to calculate the loss function. To limit GPU memory, we only used one sample to calculate the loss
function. If this sample is at the tails of the distribution, this might cause a very high loss and hence sudden
divergence of the training, especially if this happens early during training when the predicted uncertainties are
not necessarily reasonable. Using more samples would avoid this, but requires more GPU memory. Instead, for
the hyperparameter tuning, model training was restarted using, as initial weights, the parameters of the initially
converged unsupervised network, which simplified convergence as the predicted uncertainties are already in a
reasonable range.

2.7.Evaluation

Since a complete ground truth deformation does not exist for patient images (Brock et al 2017), DIR accuracy is,
for clinical purposes, often evaluated using manually annotated landmarks (Brock et al 2005, Weistrand and
Svensson 2015, Kadoya et al 2016, de Vos et al 2019, Hering et al 2023) or contours (Klein et al 2009, Weistrand
and Svensson 2015, Balakrishnan et al 2019, de Vos et al 2019, Hering et al 2023). Similarly, DIR uncertainty can
also be evaluated using landmarks and contours. Here, the DVF uncertainty was directly evaluated using the
landmarks on the DIRLAB test scans. The uncertainty prediction was additionally evaluated for both contour
propagation and dose accumulation. For both applications, it is first explained how DVF uncertainty can be

6
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propagated into contour or dose uncertainty, after which the evaluation methods are explained. The runtime of
the applications was evaluated using an NVIDIA RTX 2080 Ti GPU with 12 GB VRAM.

2.7.1. Landmark uncertainty

The quality of the uncertainty prediction was assessed by splitting the predicted standard deviations o, into bins,
and grouping all landmarks within each bin together, similar to a reliability diagram (Guo et al 2017). For an
infinite number of landmarks and a Gaussian distribution of DVFs, the root-mean-squared error (RMSE) of the
landmarks within each group should be equal to the mean o, of that group. We compared o, to the RMSE to
assess the quality of the uncertainty prediction and to compare different models. Analogous to the expected
calibration error (see further and Guo et al 2017), we define the landmark expected calibration error (LECE) as

M
LECE = 3 Bl |RMSEB,) — 0, (B, ©)
m=1 n

with B,, abin of landmarks, M the number of bins, | B,,| the number of landmarks in the bin, # the total number
of landmarks, RMSE(B,,,) the root-mean-squared error of the landmarks and o, (B,,) the average predicted
uncertainty in the bin. In this work, the width of each bin is set to 0.25 mm.

2.7.2. Contour propagation

Contours can be propagated by sampling the DVF distribution (equation (4)) and warping the contours with the
DVF sample. By doing this several times, like MC sampling, a set of potential contour samples are obtained on
the daily CT, hereafter referred to as probabilistic contour propagation. For each voxel, the proportion of samples
for which it lies within the contour sample yields an estimate of the confidence that this voxel is part of the
contour, i.e. the contour uncertainty. For example, if a voxel lies within 65 out of 100 contour samples, the
confidence that this voxel is part of the corresponding structure is considered 65%.

To evaluate the accuracy of these confidences, the planning contours of the NSCLC and HNC patients were
probabilistically propagated to each repeated CT, using 100 samples. For each voxel in every repeated CT, this
results in one confidence per propagated contour (OARs and CTV). Similar to the evaluation of o, the predicted
confidences can be split up into intervals, and the voxels with confidence within each interval can be grouped
together. Using the manual contours, the proportion of voxels of each group that were inside the respective
contour can be calculated. For a well-calibrated model, the average confidence of each group should be equal to
this proportion. We evaluated our trained models for contour propagation by comparing the predicted
confidence to the target proportions using a reliability diagram, as well as by calculating the expected calibration
error (ECE) (Guo et al 2017). Only voxels with confidences between 1% and 99% are considered in the ECE,
because otherwise it would be artificially low due to the high number of voxels very far from the contour, for
which it is easy to predict 0% confidence.

2.7.3. Dose accumulation

Similar to contour propagation, the DVF distributions can be sampled to obtain an accumulated dose sample.
However, several DVFs need to be sampled to obtain one accumulated dose sample (figure 2). First, each dose on
the repeated CT's is warped with a sample of its corresponding DVF to the planning CT. This means that n
different probabilistic DVFs are each sampled one time. Secondly, these warped doses on the planning CT are
accumulated, yielding one accumulated dose sample. Repeating this K times yields K accumulated dose samples,
which allows to calculate the accumulated dose uncertainty. We refer to this process as probabilistic dose
accumulation.

As each accumulated dose sample requires one DVF sample for each repeated CT, acquired at different times
through the treatment course, additional assumptions need to be taken about the temporal correlation between
these DVF samples. This correlation is highly complex and depends on the patient, anatomical location and DIR
algorithm. For simplicity, only two cases are considered: fully correlated (FC) and not correlated (NC). In the case
of full correlation, the same ¢; is used for each DVF sample of the different CTs (equation (4)). Without
correlation, ¢, is sampled independently for each DVF.

The doses of the repeated CT's were probabilistically accumulated on the planning CT with 50 samples for
each NSCLC and HNC patient, once fully correlated and once not correlated. For each accumulated dose sample,
a dose volume histogram (DVH) was created. These DVHs were combined in a probabilistic DVH , with the
lower and upper bound of the DVH representing for each volume increment the 2.5th and 97.5th percentile of
all sampled doses.

Whereas manual contours allow the evaluation of contour uncertainty, evaluating the dose accumulation
uncertainty is difficult because the ground-truth accumulated dose is unknown. However, the uncertainty can
still be evaluated by considering how well it matches a set of plausible deformation samples. In previous work
(Nenoff et al 2020, Amstutz et al 2021, Smolders ef al 2023c), the solutions of several independent DIR

7
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Figure 2. Schematic overview of probabilistic dose accumulation.

algorithms were assumed to be plausible deformations and were used to quantify DIR and accumulated dose
uncertainty. Similarly, we accumulated the dose with 6 different DIR algorithms (section 2.2) and evaluated the
volume fraction for which the DVHs of these accumulated doses lie within the error bounds of the probabilistic
DVH, hereafter referred to as the encompassed volume fraction EVF. An accurate EVF, i.e. close to 95%, therefore
means that our prediction matches well the uncertainty resulting from accumulating with different DIR
algorithms. For this evaluation, a threshold of 0.1% was added to both bounds. This is necessary because
homogeneous dose regions cause both bounds and the DVHs of other DIR algorithms to lie very close to each
other. In that case, interpolation effects can cause the DVHs to lie outside the bounds, but the difference is
clinically insignificant, and should therefore not be reflected in the metrics.

3. Results

3.1. Hyperparameter tuning
The procedure to tune the hyperparameters of the supervised and unsupervised models can be found in
appendix B.

3.2. Model comparison

The magnitude and spatial distribution of the predicted uncertainty of the unsupervised, supervised and
combined models is different (figure 3). This is due to the different assumptions on which the models are based.
The supervised model predicts high uncertainty in regions with large deformation or non-correspondences, as
the DIR solutions of the b-spline model vary strongly with the hyperparameters in those regions. The
unsupervised model predicts high uncertainty in regions with low contrast and inversely, and is not affected by
the magnitude of the deformation. In the following, the models are quantitatively compared for landmark
prediction, contour propagation and dose accumulation in combination with the b-spline algorithm. For the
unsupervised model, the results using other DIR algorithms are also included.

3.2.1. Landmark uncertainty prediction

For all models, there is a positive correlation between the predicted uncertainty o, and the RMSE, i.e. the errors
are on average larger for landmarks with higher uncertainty (figure 4). For the supervised model, the landmark
RMSE is systematically above the predicted uncertainty o,,, meaning that this model underestimates the
uncertainty in the DIRLAB landmarks (figure 4(a)). This is because the uncertainty in hyperparameters does not
cover the total DIR uncertainty. The LECE of the unsupervised and combined models is 0.65 and 0.64 mm
respectively, much lower than the LECE = 1.34 mm of the supervised model. That means that their uncertainty
prediction is more accurate. In case of large uncertainty, both models underestimate the uncertainty

(RMSE > o, for the right part of figure 4(a)), but this is only for a limited number of landmarks. The difference
between the unsupervised and combined model is small, as the unsupervised model mostly predicts a higher
uncertainty than the supervised model.
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Figure 3. Visualization of the predicted uncertainties with the different models: (a) fixed (purple) and moving (green) image together
with the mean DVF (red arrows); (b) supervised model; (c) unsupervised model; (d) combined model.
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Figure 4. Landmark reliability diagram for the three models for b-spline (a) and the unsupervised model for demon and (b) velocity
(). The line plots represent the root-mean-squared error (RMSE, left axis), and the histograms depict how many landmarks were
within the respective bin (11,ndmarks right axis).

Furthermore, the unsupervised model can predict with similar accuracy the uncertainty of the velocity DIR
(LECE = 0.63 mm) and even with higher accuracy the uncertainty of demons (LECE = 0.41 mm) (figures 4(b)
and (c)). For both DIRs, the hyperparameter tuning results in a larger uncertainty prediction than for b-spline, as
the b-spline algorithm has a higher accuracy on the DIRLAB landmarks.

3.2.2. Probabilistic contour propagation

The propagated contour confidences are spread out over the interval [0, 1] where the contours are crossing
regions with high DIR uncertainty (figure 5). For the NSCLC patients, probabilistic contour propagation with
the supervised model is generally overconfident (figure 6(a)). For voxels with low predicted probabilities, i.e.
voxels for which the model is relatively certain that they are outside the contour, a part was actually inside the
contour. This partis larger than the predicted probability. The model is therefore overconfident, i.e. too certain
that these voxels were outside the contour. Similarly, for voxels with high predicted probabilities, a part was
actually outside the contour. This means that the uncertainty is underestimated, similar to what was found for
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Figure 5. Visualization of the resulting propagated contour confidences of the left lung together with the manual contours for example
in figure 3.
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Table 2. Expected calibration error (ECE) for the different models [%]. The ECE is reported for the
individual structures as well as averaged over all. The lungs were omitted as the manual contouring
was inconsistent with regard to including the CTV into the lung structure or not.

CTV Esophagus Heart Spinal cord All

B-spline Supervised 15.5 9.3 9.0 10.4 11.2
Unsupervised 7.7 1.6 2.9 5.5 2.8
Combined 3.7 2.7 4.4 3.6 2.6
Demons Unsupervised 7.1 3.8 4.3 5.7 3.0
Velocity Unsupervised 5.6 3.1 6.0 6.0 3.7

the DIRLAB landmarks. The expected calibration error (ECE) is 11.2% on average, and even 15.5% for the CTV
(table 2).

Contrarily, the unsupervised and combined models are slightly underconfident (figure 6(a)). For voxels with
low probabilities (<0.5), the actual fraction of voxels inside the contour is even lower, i.e. model should have
been more certain that these voxels were outside the contour. However, both models are much better calibrated
than the supervised model, with average ECEs respectively 2.8% and 2.6% (table 2). That means that for alarge
enough group of voxels with confidence x, we can expect the proportion of voxels within the contour to be
within x + 2.8%. Even though the difference in average ECE between both models is small, the unsupervised
model has a much larger ECE for the CTV (7.7% versus 3.7%) and spinal cord (5.5% versus 3.6%), showing the
superiority of the combined model.
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Figure 8. Example probabilistic DVHs (shaded areas) compared to the corresponding DVHs using 6 different DIR algorithms (dashed
lines) for not correlated accumulation (a) and fully correlated accumulation (b).

Similarly, the tuned unsupervised models for demons and velocity are also underconfident but relatively well
calibrated for contour propagation (figures 6(b) and c). Their ECEs are respectively 3.0% and 3.7%, slightly
worse than the corresponding results for b-spline.

The total runtime of the algorithm, including model inference, generating 100 DVF samples and warping the
7 contours to the repeated CT's, was on average 37 s for the supervised and unsupervised models. For the
combined model, inference has to be run twice, resulting in 44 s runtime.

Even though the models were tuned on deformation in the thorax region, their ECE averaged for all organs is
only slightly worse for the HNC data (table C1 in the appendix). The supervised model again underestimates the
uncertainty, but the unsupervised and combined models yield good results. However, the ECE for the individual
structures varies significantly, indicating that the model is only well-tuned on average, but not for each
individual organ. Specifically, the model overestimates the DIR uncertainty in regions with low contrast in the
skull. The low contrast causes the unsupervised model to predict large DIR uncertainty, but since there is only
little deformation, the registration is relatively well-defined. This effect is especially visible for the brainstem
(figure 7). Therefore, before using the model on HNC data, the hyperparameters would have to be retuned.

3.2.3. Probabilistic dose accumulation
The predicted 95% confidence bounds of the probabilistically accumulated DVHs are largely dependent on the
assumed correlation between the DVF samples of the repeated CT's (figure 8). Assuming that the samples are not
correlated, dose differences cancel out, resulting in narrow bounds (figure 8(a)). Comparing these bounds with
the accumulated DVHs for other DIR algorithms, we find that they are too narrow. For all models, the EVF of
the accumulated DVH with other DIR algorithms is ranging between 29.9 and 62.4%, well below 95%, meaning
that these bounds do not encompass such potential accumulated doses (table 3). Since the uncertainty
prediction for a single DVF is well-tuned for both landmarks and contour propagation, this means that
considering DVF samples as independent is inaccurate.

Contrarily, assuming that the samples are fully correlated, the DVF samples exhibit systematic errors which
result in systematic dose differences, leading to wider DVH bounds (figure 8(b)). For all models and DIR
algorithms, except the supervised model, the EVF is close to 95%, which is the target given the 95% confidence
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Figure 9. Mean accumulated dose (left) and standard deviation (right) for the patient depicted in figure 3.

Table 3. Average encompassed volume fraction (EVF) of each structure in the NSCLC dataset for which the accumulated DVH lies within
the predicted accumulated probabilistic DVH [%]. The results are averaged over 5 DIR algorithms, excluding the 6th algorithm which was
used to create the probabilistic DVH. The fractions are shown for each model and reference DIR algorithm, both for not correlated (NC) and

fully correlated (FC).
CTV Eso-phagus Heart Leftlung Rightlung Spinal cord All
B-spline Supervised NC 68.4 36.9 14.3 13.5 16.2 30. 29.9
FC 86.3 66.2 24. 30.5 31.2 63.5 50.3
Unsupervised NC 61.1 77.2 63.5 36.9 48.9 75.8 60.6
FC 93.8 97.6 99.6 90.8 94.2 95.5 95.3
Combined NC 56.9 80.2 62.8 42.8 48.2 83.4 62.4
FC 96.7 98. 100. 97.3 98.7 96.4 97.8
Demons Unsupervised NC 32.2 66.2 58.7 27.6 45.6 65.5 49.3
FC 82.8 98.3 100. 91.6 96.2 98.9 94.6
Velocity Unsupervised NC 29.2 59. 64.7 32.9 32.7 64.3 47.1
FC 76.2 99.9 100. 97.2 99.9 98.9 95.3

bounds. The DVH bounds with the combined model are slightly too wide, as the EVF is larger than 95%. This
means that the uncertainty is likely overestimated, similar to what was found for contour propagation.

Even though the fully correlated models on average capture the DVH uncertainty from accumulating with
different DIR algorithms, the EVF differs for the individual structures. For example, the unsupervised model
combined with velocity predicts too wide bounds for all OARs (EVF >95%) and too narrow ones for the CTV
(EVF <95%), although yielding a well-tuned prediction on average. The effect is less pronounced for the other
models and DIRs, but it shows the importance of evaluating the uncertainty on a structure-by-structure basis.
Additionally, it can be visualized spatially, which shows that the accumulated dose uncertainty is high in regions
where both the dose gradient and DIR uncertainty are high (figure 9).

The probabilistic dose accumulation for a single patient with 9 repeated CT's takes on average 3.5 min for the
supervised and unsupervised networks: 91 s for running the 9 times model inference, 68 s for warping and
accumulating the doses and 53 s for creating the probabilistic DVH. The combined model takes on average 5 min,
as model inference has to be run twice.

Also for the HNC data, we find that the supervised model underestimates the DIR uncertainty (EVF < < 95 %)
and that fully correlated samples yield better results than not correlating (table C2 in the appendix). Even though
the fully correlated unsupervised and combined models average EVFs close to 95%, the EVF for the individual
organs clearly shows that the models are not well-tuned. For the OARs, the EVF is always close to 100%, showing
that error bounds are too wide, i.e. overestimate the DIR uncertainty. This is in line with the results for contour
propagation.

For the CTV, the EVF is too low. Interestingly, this is also caused by an overestimation of the DIR
uncertainty. Inside the CTV, the dose is relatively homogeneous, and it drops only outside the CTV. When the
DIR uncertainty is high, warping the dose at the CTV edge with DVF samples will sometimes result in the dose
sampled inside the CTV and sometimes outside the CTV. Since the dose is homogeneous towards the inside of
the CTV, and drops towards the outside of the CTV, the dose will only drop and never increase (contrary to

12



10P Publishing

Phys. Med. Biol. 68 (2023) 245027 A Smolders et al

100

98 1

96

94

Volume fraction [%]

92 A

90— | | . | | K
86 88 90 92 94 96 98 100
Dose [%]

Figure 10. Zoom of the probabilistic DVH (shaded area) of the CTV of a HNC patient together with the DVHs of 5 different DIR
algorithms (black lines).

OARs). Since the CTV is large, there will always be some regions on the edge where the dose warping yields a
lower dose, causing the probabilistic DVH to shift downward in the low dose area (figure 10). It was verified that
reducing the DIR uncertainty indeed increases the EVF, even though the width of the error bounds decreased.
This again shows that the hyperparameters of the model should be retuned before using it for HNC.

4. Discussion

Despite the assumptions of Gaussian DVF uncertainty and a fixed correlation matrix, the unsupervised and
combined models accurately predict landmark and contour uncertainty, and accumulated dose uncertainty
resulting from running different DIR algorithms. Indeed, the predicted contour confidences deviate on average
less than 3% from the expected values and the probabilistic DVHs encompass close to 95% of the DVHs
accumulated with different DIR algorithms. This indicates that approximating the DIR uncertainty with a
Gaussian is sufficient for practical applications, even though the underlying DIR uncertainty may not be
Gaussian. Future work could investigate whether more complex distributions, such as skewed Gaussians, or
learning the correlation matrix could further improve the performance.

The supervised model yields too low uncertainty estimates. This is because the uncertainty in the considered
hyperparameters only accounts for part of the total DIR uncertainty, while other factors such as the
transformation model and similarity criterion are ignored. This was further verified by generating G, for
the DIRLAB scans, which showed that G, as defined in this work underestimates the landmark uncertainty
(figure D1 in appendix D). The approach, however, is general. In future work, the MC sampling method used to
generate G, can be expanded to include different DIR algorithms, transformation models, and similarity
criteria, thereby accounting for a greater fraction of the DIR uncertainty.

The expected calibration error and encompassed volume fraction show that the unsupervised and combined
models on average produce reliable uncertainty estimates. However, the metrics are worse when evaluating
individual organs. This highlights a general problem for uncertainty evaluation: averaging results over many
instances can conceal inaccuracies on the individual level. For example, in a hypothetical case with only two
voxels, one in the middle of a contour and one very far from the contour, a model that predicts 50% confidence
for both voxels would be considered perfectly calibrated (ECE = 0), even though these confidences are
intuitively highly unlikely. Although our models would not make such predictions and many more voxels are
considered, a similar averaging cannot be avoided during evaluation as it is inherently linked to quantifying
uncertainty. Itis therefore important to also assess these metrics for individual organs. In this case, this shows the
superiority of the combined model over the unsupervised model, since the ECEs and EVFs for the individual
organs are more uniform.

The advantage of the unsupervised model is that, even though it is trained with b-spline, it can be used to
predict the uncertainty of other DIR algorithms. Indeed, for all applications studied here, the quality of the
models for demons and Velocity is similar to the one for b-spline. This suggests that other DIR algorithms could
use this network without the need for retraining, it would only require finding the optimal hyperparameters out
of aset of already converged models. To tune the hyperparameters, we trained models with a wide variety of
hyperparameters, so such converged models are already available and easy to share.
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The unsupervised (and combined) models are slightly underconfident for contour propagation, meaning
that the predicted uncertainties are a bit too large. This is because the model is tuned on the DIRLAB landmarks,
and not on the NSCLC data itself. Since some DIRLAB scans contain larger deformations than the NSCLC scans,
the DIR uncertainty is generally larger, so tuning on the DIRLAB scans results in a slight overestimation of the
uncertainty for the NSCLC scans. This means that the models are on the conservative side, which is likely best for
radiotherapy in general. However, by adjusting the hyperparameters, the predicted uncertainty can be decreased
resulting in a lower ECE, which indicates that retuning the hyperparameters for a specific task or anatomy can
improve the uncertainty estimation.

The runtime of the probabilistic contour propagation is below one minute and therefore suitable for online
adaptive therapy. This means that future work can aim to use the predicted voxel-wise contour probabilities in
combination with robust optimization, enabling the use of DIR for contouring in adaptive therapy. Probabilistic
dose accumulation takes several minutes, which is significantly longer, as the inference and sampling procedure
needs to be executed for each repeated scan. However, as part of an adaptive therapy workflow, this task can be
performed offline and hence a runtime of several minutes is acceptable for clinical use in adaptive therapy. Also,
the results can be stored after each fraction, requiring only the daily dose to be added, which would require
approximately only two minutes each day.

The results clearly show that fully correlating DVF samples from different time points is more accurate than
not correlating them. However, the accumulation only consisted of 9 daily doses, which is less than normally
fractionated treatments. If there is a random component in the DVFs from different time points in most DIR
algorithms, this random component will cancel out more when accumulating over more fractions. Therefore,
future work should verify whether fully correlating DVF samples also yields realistic DVH bounds when
accumulating over a more realistic number of fractions. Additionally, other models for temporal correlation
should be tested, such as partially correlating a sample to the sample of the previous time point or linearly
decreasing correlation.

The evaluation of the probabilistic dose accumulation relies on the assumption that the solutions of other DIR
algorithms are potential samples of the deformation distribution, since the ground truth is unknown. The high
EVF we find therefore mainly means that we can predict the uncertainty of such samples, rather than the
underlying deformation uncertainty. The analysis could be extended in future work by the use of (digital)
phantom data, where the ground truth deformation is known. Whereas we believe that this is an important
extension, the results of such a study should be treated with care. Similar to our assumption that several DIRs
span the actual deformation uncertainty, using phantom data requires the assumption that the phantom
deformations span the actual patient deformations. Digital phantoms mostly rely on simplified deformation
models, and therefore, might not cover all the modes of deformation plausible in a patient.

The accuracy of intensity-based DIR algorithms depends on the regularization strength. The optimal
strength depends on the tissue type (Zhang et al 2021) or even the application (Kirby et al2013). The
performance of a model tuned for one anatomical region therefore generally drops when applied to another one.
Similarly, our model was tuned for thorax deformation, and evaluation in the head and neck region shows that
the performance drops. More specifically, our results indicate an overestimation of the predicted uncertainty.
This is not surprising, as deformation in the thorax is generally larger which causes the DIR uncertainty to be
larger. This means that the model is not directly applicable to other anatomical regions. In future work, this
downside could be overcome by changing the hyperparameters of the unsupervised network. By either
increasing A or decreasing oy, the predicted uncertainty decreases which might improve the results on the HNC
data. Since the unsupervised model has already been trained for a wide range of hyperparameters in this work,
using it for another anatomy would not require retraining, only the evaluation of the ECE and EVF for the library
of already converged models.

Finally, our work focuses on CT-to-CT registration. However, in most cases, a daily CBCT or MRI is
acquired instead of a daily CT. Our approach could remain useable in case such daily images are converted into a
synthetic CT, which is anyway mostly necessary for reoptimization of the treatment plan. However, as the
quality of synthetic CTs differs from actual CTs, future work should validate whether the DIR uncertainty
prediction also works for synthetic CTs. Additionally, the loss function could be adjusted for intramodality
registration, which would allow e.g. probabilistic contour propagation from CT to CBCT, or even probabilistic
generation of a synthetic CT. For the supervised model, this would simply require running b-spline
intermodality with different hyperparameters. For the unsupervised model, this could be attempted by changing
the first term in equation (7) by an intermodality similarity criterion, such as mutual information.
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5. Conclusion

In this work, deep learning models were developed to quantify DIR uncertainty to estimate propagated contour
and accumulated dose uncertainty. The results show that the unsupervised and combined models predict the
DIR uncertainty more accurately than the supervised model in the thorax region. Evaluating the propagation of
the uncertainty predicted by these models into contour uncertainty yields expected calibration errors of
respectively 2.8% and 2.6%. Furthermore, propagation of DIR uncertainty into probabilistic accumulated
DVHs yields encompassed volume fractions close to the expected 95%. Combined with acceptable runtimes,
this demonstrates that the models are promising for use in adaptive radiotherapy, even though hyperparameter
retuning and validation will be necessary when the model is used for different anatomical regions or in
combination with other DIR algorithms.
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Appendix A. Model input

All models in this work predict the DVF uncertainty based on three inputs: the fixed image, the moving image
and a (mean) DVF calculated by another DIR algorithm. This DVF is included in the input for two main reasons:

(i) If the DVF were not included, the networks would not know where the mean field is exactly pointing. That
would also mean that it does not know how well the fixed and the moved image match given the mean field,
and it could therefore not as accurately predict the uncertainty of the DIR.

(ii) The DVF contains the magnitude of the deformation. Especially for the supervised model, we find that the
predicted uncertainty is very strongly correlated with this magnitude, and therefore the model could again
not predict as accurately the DIR uncertainty.

This last point can be shown by comparing the results of the supervised network with and without the DVF as
input (table A1).

Table A1l. Mean absolute error (MAE) for the supervised model with and
without the mean DVF as input. The results are shown for the testand
validation set of the CPT dataset, containing each approx. 10% of

the data.

With DVF

input Without DVF input
Validation MAE [voxels] 0.14 0.18
Test MAE [voxels] 0.14 0.21
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Appendix B. Hyperparameter tuning

The hyperparameters of the supervised model consist of the parameters of the probability distributions of the
b-spline regularization A, and grid spacing s, and need to be tuned before training. B-spline was run for the
validation scans of the DIRLAB dataset for a range of A, and s, and for each set the target registration error was
evaluated (figure B1).

The TRE is minimal for A, = 0.1. It increases strongly for A, > 1, but is not strongly affected by A, < 0.01,
because in that case the regularization does not affect the solution anymore. This leads to the choice of
distribution log;, A, ~ N(—1.5, 1.25) (figure B1(a)). The optimal grid spacing is s = 13 mm. The TRE increases
strongly when s is decreased, and increases much slower when sis increased. This leads to the choice of
distribution s ~ U(5, 50) mm (figure B1(b)). For both hyperparameters, the bounds were purposely set
relatively wide, as these could be necessary for other anatomical regions or magnitudes of deformation.

Unsupervised training was repeated for several combinations of the hyperparameters A and 0% and the
posterior probability of the DIRLAB landmarks p(LM) of the validation set was evaluated (figure B2(a)). For
b-spline, it is maximal when A =20and o7 = 2 - 10~%.

Since the model is unsupervised, it should principally be able to predict the uncertainty of any DVF, not only
of those resulting from a b-spline algorithm, and DVFs from other algorithms can also be used as input.
However, depending on the quality of that algorithm, different hyperparameters are optimal. Evaluating the p
(LM) for demons, we find that the optimal hyperparameters are A = 10 and 0’% = 2 - 10~%. For velocity, A = 20,
o7 =10"%and A= 5, 0% = 3 - 10~ *yield similar optimal results, and the latter is used in the following,
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Figure B1. Target registration error TRE for the landmarks in the DIRLAB validation set for different values of the regularization \,
(left) and grid spacing s (right). For the left plot, the TRE is averaged over all values of s, and for the right one averaged over .. The
corresponding selected probability densities are visualized on the right axis.
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Figure B2. Mean log of the posterior probability of observing the moving DIRLAB landmarks for different values of the
hyperparameters A and 0’% for unsupervised learning. Results are shown individually for (a) b-spline, (b) demon and (c) velocity.
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Appendix C. Results head and neck cancer patients

C.1. Probabilistic contour propagation

A Smolders et al

Table C1. Expected calibration error (ECE) for the different models in the HNC dataset [%]. The ECE is reported for the individual
structures as well as averaged overall.

CTV ~ CTVboost Spinalcord  Brainstem  Chiasm  Eyes  Parotids  Opticnerves All

B-spline Supervised 15.2 16.4 14.1 17.1 19.8 13.7 18.1 12.9 15.4
Unsupervised 2.5 5.7 3.5 7.8 2.8 3.6 6.9 3.1 2.4

Combined 2.5 4.6 2.0 8.2 2.7 3.7 5.6 3.3 2.5

Demons  Unsupervised 4.4 4.9 3.6 8.8 2.0 6.5 4.0 3.7 4.1
Velocity ~ Unsupervised 4.8 4.5 1.5 9.3 1.4 7.6 43 3.6 4.7

C.2. Probabilistic dose accumulation

Table C2. Average encompassed volume fraction (EVF) of each structure in the HNC dataset for which the accumulated DVH lies within the
predicted accumulated probabilistic DVH [%)]. The results are averaged over 5 DIR algorithms, excluding the 6th algorithm which was used
to create the probabilistic DVH. The fractions are shown for each model and reference DIR algorithm, both for not correlated (NC) and fully

correlated (FC).
CTV Spinal Optic
CTV boost cord Brainstem  Chiasm  Eyes  Parotids nerves All
B-spline  Supervised NC 647 95.9 51.1 24.3 43.0 37.5 32.2 43.0 45.8
FC 79.7 97.0 74.6 44.3 61.4 66.7 56.9 63.0 66.4
Unsupervised NC  53.6 81.0 81.9 99.3 82.3 100.0 90.0 91.9 87.4
FC 86.0 99.0 98.1 100.0 100.0 100.0 100.0 100.0 98.5
Combined NC 483 76.5 82.0 99.4 78.2 98.6 92.4 92.1 86.4
FC 76.7 99.0 99.6 100.0 99.9 100.0 100.0 99.3 97.6
Demons  Unsupervised NC  50.2 80.0 86.7 99.5 93.8 100.0 94.4 94.7 89.9
FC 81.9 98.9 100.0 100.0 100.0 100.0 99.8 100.0 98.2
Velocity ~ Unsupervised NC  31.4 53.8 92.2 99.4 98.9 97.8 89.5 90.3 84.6
FC 58.7 98.3 99.9 100.0 100.0 100.0 100.0 99.9 96.1
Appendix D. G, for DIRLAB scans
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Figure D1. Comparison of the DIRLAB landmark uncertainty between the supervised model prediction and G, derived by creating
100 samples varying the b-spline parameters.
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