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A B S T R A C T   

Background and purpose: Deep learning techniques excel in MR-based CT synthesis, but missing uncertainty 
prediction limits its clinical use in proton therapy. We developed an uncertainty-aware framework and evaluated 
its efficiency in robust proton planning. 
Materials and methods: A conditional generative-adversarial network was trained on 64 brain tumour patients 
with paired MR-CT images to generate synthetic CTs (sCT) from combined T1-T2 MRs of three orthogonal planes. 
A Bayesian neural network predicts Laplacian distributions for all voxels with parameters (μ, b). A robust proton 
plan was optimized using three sCTs of μ and μ ± b. The dosimetric differences between the plan from sCT (sPlan) 
and the recalculated plan (rPlan) on planning CT (pCT) were quantified for each patient. The uncertainty-aware 
robust plan was compared to conventional robust (global ± 3 %) and non-robust plans. 
Results: In 8-fold cross-validation, sCT-pCT image differences (Mean-Absolute-Error) were 80.84 ± 9.84HU 
(body), 35.78 ± 6.07HU (soft tissues) and 221.88 ± 31.69HU (bones), with Dice scores of 90.33 ± 2.43 %, 95.13 
± 0.80 %, and 85.53 ± 4.16 %, respectively. The uncertainty distribution positively correlated with absolute 
prediction error (Correlation Coefficient: 0.62 ± 0.01). The uncertainty-conditioned robust optimisation 
improved the rPlan-sPlan agreement, e.g., D95 absolute difference (CTV) was 1.10 ± 1.24 % compared to 
conventional (1.64 ± 2.71 %) and non-robust (2.08 ± 2.96 %) optimisation. This trend was consistent across all 
target and organs-at-risk indexes. 
Conclusion: The enhanced framework incorporates 3D uncertainty prediction and generates high-quality sCTs 
from MR images. The framework also facilitates conditioned robust optimisation, bolstering proton plan 
robustness against network prediction errors. The innovative feature of uncertainty visualisation and robust 
analyses contribute to evaluating sCT clinical utility for individual patients.   

Introduction 

Proton therapy, a state-of-the-art technology in radiotherapy, is 
garnering increasing attention [1]. Its exceptional characteristic of high- 
dose conformity underscores the critical importance of accurately rep-
resenting the patient’s geometry in proton therapy planning. Conse-
quently, obtaining the most up-to-date geometric model of the patient 
through frequent daily imaging is essential to harness the full potential 
of proton physics. Meanwhile, MR-based radiotherapy has emerged as 

an auspicious approach, marked by the commercialization of the MR- 
Linac technology and its active clinical implementation. This innova-
tive method not only eliminates the need for MR to CT registration 
[3,4,5], but also significantly reduces the additional radiation exposure 
associated with more repeated CT scans [6]. These advantages are 
particularly important for vulnerable populations like children and in 
the context of daily adaptive proton therapy [2]. 

Enabling MR-based treatment planning requires accurate CT-like 
data generation from MRI geometry [7,8]. This can be traditionally 
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achieved through atlas-based methods [9,10], which initially segmented 
MRI voxels into distinct tissue regions and subsequently assigned pre-
defined HU values to each region [10]. The atlas-based method [9] 
involved registering atlas-MRIs to new MR images and warping the atlas 
CTs with displacement vector field (DVF), which depends highly on the 
accuracy of the deformable registration result [11]. In the new era of 
artificial intelligence, deep learning (DL) has become the predominant 
approach in computer vision and pattern recognition [12]. Synthetic CT 
generation based on deep learning has also emerged as a popular 
research topic [13,14]. By leveraging their exceptional ability to extract 
informative features from input images, deep neural networks have 
achieved remarkable results in MR-based CT synthesis tasks [7]. Various 
network architectures have been proposed to learn voxel mapping from 
MR intensity to CT Hounsfield Units [15–21], and several works have 
also explored the incorporation of synthesised CT into the workflow of 
proton therapy [19–25] or carbon ion therapy [26]. Due to the large size 
of full-resolution CTs, it was often infeasible to feed the entire 3D image 
into a single neural network. Consequently, different strategies have 
been employed to split the volume by overlapping or non-overlapping 
2D patches, 2D slices, 2.5D slices or 3D patches [27], which were then 
transformed by the networks individually and subsequently merged to 
achieve the final estimation. 

For well-aligned MR-CT pairs, conditional generative adversarial 
networks (cGANs) [15] have achieved significantly lower image-level 
errors than conventional methods [9], but obtaining large-scale paired 
images remains to be challenging. Furthermore, registration methods 
exhibit limited performance, hindering the flawless registration of cross- 
modality images [28,29]. In such scenarios, CycleGAN-based CT syn-
thesis was proposed [16], demonstrating superior image quality 
compared to Pix2pix methods when paired images are unavailable 
[17,18]. These approaches yielded satisfactory results at both the image- 
level and the dosimetric-level, highlighting the immense potential of 
MR-only treatment planning [8,30]. Nevertheless, as data-driven 
methods, DL-based approaches can experience substantial perfor-
mance declines when applied to new data with significant distribution 
changes compared to the training dataset [31]. Therefore, the ability to 

automatically detect these failures and estimate the associated uncer-
tainty of both data and network was considered compulsory for the 
clinical use of these methods [32], particularly for proton therapy 
applications. 

In this paper, we present a novel uncertainty-aware MR-based proton 
therapy framework. As shown in Fig. 1, it consists of the MR-to-CT 
synthesis neural network with uncertainty estimation and the 
uncertainty-conditioned robust plan optimisation. The framework can 
not only predict a high-quality synthetic CT (sCT) but also estimate the 
voxel-wise uncertainty for the predicted Hounsfield Unit (HU). Subse-
quently, the predicted uncertainty can be incorporated into the proton 
robust optimisation process [33]. Furthermore, this framework offers 
both image-level and dosimetric-level robustness analysis, assisting 
physicians in making decisions on the clinical usefulness of generated 
sCT. The structure of this paper follows the guidelines for AI in medical 
physics [34]. 

Materials and methods 

Image dataset 

The dataset utilised in this paper comprises images from a population 
of patients with brain tumours previously treated at PSI from 2017 to 
2020. Paired scans from 74 adult (n = 29) and pediatric (<18 years; n =
35) patients were collected, among which 64 cases were used for cross- 
validation, and 10 were reserved as hold-out data for testing. Before 
treatment planning, each patient underwent at least one MRI and CT 
scan. Of note, there were pronounced anatomic differences between the 
image acquisition processes, as patients were normally fixated using a 
bite block for CT imaging but not for MR imaging. CT acquisitions were 
carried out with a Siemens Sensation Open CT scanner (with tube 
voltage 120 kV) with resolutions of 1 × 1 × 2 mm or 1 × 1 × 3 mm. MR 
images were acquired using 1.5 T Siemens Aera and Siemens Skyra MR 
scanners, with voxel size 1 × 1 × 1 mm. T1-weighted MP-RAGE and T2- 
weighted FLAIR sequences were used for network training. As pre- 
processing, MR images were registered to the corresponding CT 

Fig. 1. Overview of the proposed uncertainty-aware MR-based proton therapy framework.  

X. Li et al.                                                                                                                                                                                                                                        



Radiotherapy and Oncology 191 (2024) 110056

3

images using mutual information-based rigid registration provided by 
the open-source software ITK SNAP [35]. The MR images were subse-
quently resampled to match the resolution of the corresponding CT. This 
study adhered to ethical standards for research involving human data. 
Informed consent was obtained from all patients for the use of their 
anonymized data in scientific research. The anonymization process was 
conducted prior to the analysis to ensure confidentiality and compliance 
with ethical guidelines. 

MR-based CT synthesis with uncertainty estimation 

We employed Pix2pix as the image generation approach, as it can 
outperform CycleGAN on brain images when images are roughly aligned 
[36]. CT synthesis was achieved through a UNet-shape deep neural 
network [37], which took paired T1 and T2 images as inputs and 
generated synthetic CT (sCT) as output. Additionally, an uncertainty 
map with the same shape as sCT was predicted, measuring the voxel- 
wise uncertainty of the predicted sCT in the HU unit. Consequently, 
we predicted the distribution of the HU value of each voxel in the sCT 
instead of inferring a fixed value by the traditional methods 
[11,17,27,30,38,39]. In this case, the distribution was assumed to be a 
Laplacian distribution, as maximising its log-likelihood was consistent 
with minimising the mean absolute error (MAE) loss: 

f (y|μ, b) =
1
2b

exp
(

−
|y − μ|

b

)

Given the sCT prediction μ and the uncertainty prediction b, we 
aimed to maximise the log-likelihood of the Laplacian distribution given 
the observed CT data y with the paired MR data x. The log-likelihood can 
be formulated as follows: 

LE = log
∏

i
f (yi|μi, bi)

=
∑

i
log

1
2bi

exp
(

−
|yi − μi|

bi

)

where i is the index of each voxel. Therefore, by maximising the log- 
likelihood, the loss can be calculated as: 

LLaplacian =
∑

i
log(bi)+

|yi − μi|

bi
.

To increase the numerical stability during optimisation, we replaced 
log(bi) with ci [40], then the final loss is: 

LLaplacian =
∑

i
ci + |yi − μi| × exp(− ci).

The network illustrated in Fig. 1 follows the design in nnUNet[41], 
which comprises two parts: an encoder and a decoder. The encoder 
comprised a series of downsampling blocks, each consisting of a 
sequence of convolutional layers, a normalisation layer, and a nonlinear 
activation layer. The decoder has an equal number of blocks as the 
encoder, with each block replacing the convolution layer in the down-
sampling with a de-convolutional layer that functions as an upsampling 
operator. Following the decoder, two 1 × 1 convolutional layers output 
the estimated sCT and uncertainty map. 

As for the network inputs, the 2D slices were used, which conserved 
computational resources while preserving the 2D geometry for consis-
tent predictions. However, our approach differs from others in that 
instead of strictly sampling along a fixed axis, we sampled slices with 
random angles using bilinear interpolation. This strategy enlarges the 
potential sampling space, thus implicitly expanding the training cases. 
For implementation, rather than rotating the entire volume and sam-
pling a slice, we first sample the coordinates of the slice and then rotate 
the coordinates of each voxel, reducing the computational load by order 
of magnitude. To train the network, we divided the 64 cases into eight 

folds and adopted a full cross-validation technique. For each of the eight- 
time validations, seven folds were used for training and the remaining 
one for validation. The networks were trained with the Adam optimiser 
employing an initial learning rate of 1e-3. The training lasted for 20 
epochs; during the first half, the learning rate remained unchanged, 
while for the latter half, it decayed exponentially. The batch size was set 
to 16, and the network was trained on two V100 GPUs. In total, eight 
different network weights were acquired individually to fully utilise the 
limited patient dataset for a more thorough dosimetric evaluation 
below. 

Uncertainty-conditioned robust treatment planning 

Robust optimisation is becoming increasingly common in proton 
therapy [42] for dealing with range and setup uncertainty during de-
livery. With MR-based planning, the proposed framework can avoid the 
registration uncertainty, but network prediction uncertainties remain. 
To mitigate this, prediction uncertainty can be considered during the 
plan optimisation process to achieve robust plans. Usually, range robust 
optimisation assumes a uniform range error distribution applied to each 
voxel in the CT, typically of 3 %. However, such error assumptions do 
not apply to sCT imagery, as uncertainty is not expected to be homog-
enous across an image (see Fig. 2 below). As such, our proposed 
approach enables the derivation of voxel-specific uncertainty estimates. 
As described in the previous section, the prediction per-voxel is a Lap-
lacian distribution f

(
yi|μi, bi

)
. From this joint distribution, a batch of 

possible sCTs can be generated as error scenarios for robust plan opti-
misation. Due to memory limitations, only three sCTs were considered 
for each case, sampled by {μi, μi-bi, μi+bi}. This sampling strategy is 
consistent with the general robust optimisation using {μi,0.97μi,1.03μi} 
when the error scenario follows a Gaussian distribution. For each case, 
the standard prescription was applied according to [43], and the fields 
were selected using the automatic algorithm developed at PSI [44]. 
Validation and comparison were performed for all 64 cases in the same 
manner of 8-fold cross-validation. To accommodate such large-scale 
dose planning, automatic data processing was adopted to reduce the 
manual burden. 

Evaluation and statistics 

The effectiveness of the proposed uncertain-conditioned framework 
was evaluated using both image-level and dosimetric-level metrics. All 
results were reported with the average and standard deviation scores of 
all 64 patients. For the image-level evaluation, we measured the con-
formality between synthetic CTs (sCTs) and real CTs (pCTs). The mean 
absolute error (MAE) for the body, bone, and soft tissue regions were 
evaluated, respectively. Additionally, the Dice score for bone (HU >
200) and soft tissue regions (-200 < HU < 200) was calculated to 
evaluate the implicit classification ability of the network, which can be 
formulated as follows: 

DSC =
2|X ∩ Y|
|X| + |Y|

Where X is the predicted region and Y is the ground-truth region, ∩
means the intersection operator. Moreover, the Pearson Correlation 
Coefficient (PCC) was calculated between the uncertainty and the ab-
solute error |yi − μi|, to quantify the estimated uncertainty map b. Be-
sides cross-validation, image-level evaluations were also adopted to the 
hold-out testing set to verify the performance of the trained networks. 

For the dosimetric evaluation, for each of the 64 patients, the proton 
plan was generated and optimised on sCT (annotated as sPlan) using the 
proposed uncertainty-conditioned optimisation, the conventional 3 
%/3mm global robust optimisation, and non-robust optimisation ap-
proaches. All types of sPlans were then recalculated on the corre-
sponding pCT (as rPlan), and typical dose indexes were extracted from 
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dose-volume histograms (DVHs) of CTV and affected OARs (e.g., chiasm, 
brain stem et al). Moreover, plan differences for each case were derived 
by subtracting point-to-point doses of the rPlan from those of each sPlan. 

Results 

For the image-level evaluation on the cross-validation set, image 
differences between sCT and pCT, in terms of the average Mean- 
Absolute-Error (MAE), were 80.84 ± 9.84 HU for the whole-body 
area, 35.78 ± 6.07 HU for soft tissues and 221.88 ± 31.69 HU for 
bone, with Dice scores of 90.33 ± 2.43 %, 95.13 ± 0.80 %, and 85.53 ±
4.16 %, respectively. The differences align with the MAE spectra in [25] 
that soft tissue areas (–200 < HU < 200) have a much lower MAE than 
bones (>200). Moreover, the predicted uncertainty distribution posi-
tively correlates with the absolute prediction error, with a Correlation 
Coefficient of 0.62 ± 0.01. Besides, on the testing set, the MAE is 78.23 
± 15.44 HU for the whole-body area, 39.89 ± 9.51 HU for soft tissues 
and 193.08 ± 32.99 HU for bone, while the Dice score is 91.69 ± 2.13. 
The full results of the testing set can be found in Supplement A. An 
example case is shown in Fig. 2 (more cases can be found in Supplement 
B), where the positive correlation between error maps and uncertainty 
maps can be clearly observed. Most of the above results show no sig-
nificant differences among different populations. For example, the MAE 
is 82.55 ± 8.66 HU for adult patients, while it is 79.43 ± 10.51 HU for 
children. The only exception is the Dice scores of the bone region, which 
shows obvious differences between adults (88.01 ± 2.45 %) and chil-
dren (83.47 ± 4.16 %). The best and worst cases for MAE are 59.00 and 
108.82 HU, and 94.05 and 84.34 % for Dice. Pix2pix achieved a mean 
absolute error (MAE) of 80.29 ± 4.49 HU, significantly outperforming 
CycleGAN, which had a MAE of 153.36 ± 8.32 HU. The mean differ-
ences in stopping power relative to water were 5.25 ± 0.94 % for the 
cross-validation set and 5.54 ± 0.62 % for the hold-out set. Note that the 
above results are all from comparing the registered pCT with sCT. With 
the original pCT, the MAE of the whole body become 117.79 ± 16.60 
HU. 

In Fig. 3 (and supplement C), we show calculated rPlans, sPlans and 
the corresponding plan differences for the different plan optimisation 
algorithms. Fig. 4 presents and compares the uncertainty effect on DVHs 

of CTV and affected OARs. It is evident that the proposed uncertainty- 
conditioned approach can achieve much better agreement between 
sPlans and rPlans. For example, the absolute difference of CTV-D95 from 
the proposed optimisation algorithm is only 0.66 ± 1.11 %, in contrast 
to 1.32 ± 1.93 % and 1.65 ± 2.22 % from the 3 %/3mm global robust 
and non-robust optimisation, respectively. Curves of rPlans are gener-
ally inferior to sPlans because we optimize the dose planning on sCT to 
mimic the real clinical application of MR-based radiotherapy, where 
only MR and sCT can be acquired. Besides, for Spinal cord-D2, the 
numbers are 1.15 ± 2.94 %, 1.45 ± 3.58 % and 1.85 ± 4.10 %, 
respectively. This trend was statistically consistent across most indexes 
of both target and OARs for all patients in this dataset, as shown in Fig. 5. 

As summarized by [50], the Deep Learning-based method can be 
used for Quality assurance (QA). With the proposed framework, physi-
cians should be able to visualise the over-shoot and under-shoot cases 
during the pre-treatment discussion, as illustrated in Fig. 6 (a-d). 
Moreover, uncertainty analysis using DVH can serve as a valuable tool 
for assessing the generation quality of sCT, where superior generation 
with low uncertainty is associated with a tight band of curves in the last 
sub-figure of Fig. 6. Possible usages of the uncertainty map: (upper) plan 
robust analysis by considering example extreme sCT estimation. (e.g., 
maximum and minimum cases, under-shoot and -over-shoot cases); 
(lower) uncertainty-aware DVH. (Fig. 6e and supplement D). These 
metrics and visualisation are useful tools when implementing MR-based 
treatment planning, as clinicians can decide, based on analytic data 
evidence, if new CT acquisition needs to be conducted or if it suffices to 
utilise the MR-based sCT directly. 

Discussion 

We developed a deep learning framework that produces high-quality 
synthetic CT from MR images while also generating a corresponding 
uncertainty map to assist in the creation of a robust treatment plan. This 
framework enables uncertainty-aware proton planning, bringing DL- 
based CT synthesis closer to the proton clinical practice. The derived 
uncertainty-conditioned optimisation algorithm outperforms the default 
robust optimisation in dosimetric-level conformity. The novelty arises 
from considering the voxel-wise uncertainty estimates for proton 

Fig. 2. Visualisations of MRIs (T1s and T2s), pCTs, sCTs, uncertainty maps, and error maps.  
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treatment planning, including its principle, estimation, and consistent 
application for proton plan optimisation. 

Along with presenting experimental results and visualisations, we 
elaborate on our findings in the subsequent paragraphs. The first issue to 
be addressed pertains to alignment. In previously published studies 
[17,38] on MR-based CT synthesis, two primary frameworks, Pix2pix 
and CycleGAN, have been employed for image generation. However, 
different papers yielded contradictory conclusions regarding their 
comparative performance [14]. Typically, Pix2pix requires well-aligned 
image pairs, while CycleGAN does not depend on such a critical pre-
processing. Within our experiments, Pix2pix outperforms CycleGAN by 
a large margin, showing rigid registration can generate satisfactory 
alignments for Pix2pix in brain regions (see results in Supplement E). It 
is worth noting that we deliberately computed sCT-pCT differences in 
the original image resolution of the pCT (the planning CT) without any 
down-sampling, as it would be used in clinical practice. When such 
evaluation is conducted in the down-sampled image, the error reduction 
of approximately 20HU would be additionally achieved. Indeed, the lack 
of homogeneity in the dataset and evaluation metrics makes it difficult 

to draw a quantitative conclusion about the superiority of any single 
method over the others. We expect that the current ongoing grand 
challenge (SynthRAD2023 [45]) will assist in fairly understanding the 
performance discrepancies among the different proposed methods for 
the task of MR-based synthetic CT generation. 

Nonetheless, this observation does not imply that the achieved 
registration was sufficiently aligned. Imperfect alignment can inherit-
ably bias the evaluation since a portion of MAE stems from spatial 
misalignment rather than range errors. To address this issue, we 
employed the correlation-based deformable registration algorithm by 
ITK SNAP to register the pCT to sCT, annotated as regCT. All the above- 
reported values were results from the comparison of regCT and sCT. In 
contrast, the MAE between pCT and sCT without this extra deformable 
registration is significantly higher, indicating that the post-deformable 
registration can further reduce the misalignment error by a large per-
centage. These findings demonstrated that a substantial portion of errors 
originates from input image misalignment, highlighting the need for 
more advanced registration methods to achieve high-quality MR-based 
CT generation. 

Fig. 3. Visualisations of optimized plan on pCT, the recalculated plan sCT and their difference across the three planning strategies of (upper) non-robust, (middle) 
conventional robust optimized and (bottom) uncertainty-aware. 
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In addition to the alignment issues, deep neural networks often 
exhibit over-confidence in their prediction, even when encountering 
out-of-distribution data. In radiotherapy, corner cases (e.g., patient- 
specific outliers) are inevitable, posing a challenge due to the limited 
generalizability of the trained network. In this study, the output un-
certainty map is a proxy measure of network confidence. The uncer-
tainty quantification not only offers an overall metric but also provides a 
detailed spatial distribution to assist the treatment planning procedure, 
such as the selection of optimal field direction. Given its high Correla-
tion Coefficient with the absolute error values, the estimated uncertainty 
map can also act as a surrogate for the patient-specific error map that is 
inaccessible in clinical practice. We see further research into considering 
the uncertainty map during radiation field selection as desirable. 

In natural images, for example Pix2pix tasks, mean squared error 
(MSE) is usually adopted as the evaluation metric. Therefore, Gaussian 
distribution per-voxel is assumed for the uncertainty estimation because 
maximising the log-likelihood of Gaussian distributions corresponds to 

minimising the MSE loss. However, for medical images, MAE is prefer-
able, as it directly correlated to the meaningful unit (such as HU), so that 
Laplacian distribution was chosen. 

Typically, robust plan optimisation was used to address setup and 
range uncertainty [46,47], e.g., 3 mm and 3 % (or other uniform values), 
often used as experience values. However, with our proposed frame-
work, since per-voxel distribution can already be obtained by uncer-
tainty estimation, it is feasible to have a finer model of the uncertainty in 
3D with high spatial resolution. Sampling with per-voxel distribution 
rather than global distribution can more effectively cover the possible 
sCT. In this study, the pCT was treated as the ultimate reference against 
which the sCT was compared. However, we have not yet considered the 
additional uncertainty of pCT calibration for proton treatment. Never-
theless, the voxel-specific uncertainty approach can also be employed in 
the conventional range robust evaluation and optimisation to mitigate 
the CT calibration uncertainty [48,49]. For instance, although the un-
certainty in CT due to calibration from HU to proton stopping power is as 

Fig. 4. Comparisons of DVHs of one example case between sPlan and rPlan among the three planning strategies (rPlans: solid lines, sPlan: dashed lines).  
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high as 3 % in bone, it is much lower in soft tissue (more likely 1 % or 
lower). Instead of using a systematically conservative value of 3 % or 5 
% globally, a range uncertainty distribution specific to the region can 
also be considered. 

Although the discrepancy at the image-level remained substantial 
(more than 80 HU), we observed quite satisfactory results at the 
dosimetric-level. Despite the observed sCT-rCT differences, the dose 

recalculation error remains below 2 %, with V95 and D95 discrepancies 
under 0.2 %, as depicted in Fig. 5. As advancements in network archi-
tecture and dataset size continue, the error is expected to drop, 
rendering MR-based proton therapy increasingly feasible. 

Our work was limited by the number of sampled sCTs used for robust 
plan optimisation. As we employed a full-batch optimisation algorithm 
in our treatment planning system, considering numerous possible 

Fig. 5. Distributions of dose index differences, compared across three dose planning algorithms. (Boxplot derived from the evaluations of all 64 patient cases).  

Fig. 6. Possible usages of the uncertainty map: (upper) plan robust analysis by considering example extremed sCT estimation. (e.g., maximum and minimum cases, 
under-shoot and -over-shoot cases); (lower) uncertainty-aware DVH. 
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sampling cases simultaneously was challenging. In this study, only 3 
sampled sCTs were used. To enable better coverage of sampling spaces, 
mini-batch optimisation [51] may provide an effective solution, as it 
could reduce memory requirements. In this study, patients with both T1 
and T2 images were evaluated. Utilizing two distinct sequences en-
hances the robustness of predictions due to the complementary infor-
mation they provide. However, this approach limits the inclusion of 
additional cases in the dataset. Such a trade-off warrants consideration 
in subsequent research. 

In summary, we have demonstrated the high-quality sCT generation 
from MR images using a modified Pix2pix-based framework. Besides the 
improved accuracy for proton therapy planning, the associated 3D un-
certainty distribution enables voxel-specific robust optimisation for 
improving plan robustness against prediction errors for proton treat-
ment of brain tumours. We believe the direct visualisation of the 
network prediction uncertainty and the subsequential robust analyses 
are powerful tools for determining the clinical usefulness of synthetic 
CTs for individual patients. 
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