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The topology of electronic and phonon band structures of graphene is well studied and known to exhibit
a Dirac cone at the K point of the Brillouin zone. Here, we applied inelastic x-ray scattering (IXS) along
with ab initio calculations to investigate phonon topology in graphite, the 3D analog of graphene. We
identified a pair of modes that form a very weakly gapped linear anticrossing at the K point that can be
essentially viewed as a Dirac cone approximant. The IXS intensity in the vicinity of the quasi-Dirac point
reveals a harmonic modulation of the phonon spectral weight above and below the Dirac energy, which was
previously proposed as an experimental fingerprint of the nontrivial topology. We illustrate how the
topological winding of IXS intensity can be understood in terms of atomic displacements and highlight that
the intensity winding is not in fact sensitive in telling quasi- and true Dirac points apart.
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Introduction.—The mathematical concept of topology
has become a key concept of modern condensed matter
physics [1,2]. Topology allows one to classify continuous
manifolds and thus provides a new organizing principle for
the electronic band structure of solids [3,4]. The textbook
example is the honeycomb structure of graphene, whose
triangular Bravais lattice precludes a hybridization of the
orthogonal electronic states originating from its two-atomic
basis. Electrons in the vicinity of the resulting linear band
crossing behave as massless quasiparticles described by the
Dirac equation and are responsible for many unconven-
tional transport effects.
Notably, the concept of topology does not depend on

details of quantum statistics and is just as applicable to
bosonic quasiparticles such as phonons [5] or magnons [6].
The theoretical study of phonon topology has recently
attracted special interest. Significant advances include the
prediction of a surface arc state in hexagonal WC (tungsten
carbide) type materials [7], quadratic nodal lines and hybrid
nodal rings in AgZr [8], and topological gimbal phonons in
T-carbon [9]. Experimentally, the topology of lattice
fluctuations is also being actively studied in artificial
mesoscopic structures with linear dimensions of the order
of millimeters, resulting in resonance frequencies in the
kilohertz range. These developments have in fact coined
a new research field—topological acoustics [10–12].
However, in conventional crystals with interatomic dis-
tances of several angstrom and vibration frequencies of
≈10 THz, the unambiguous identification of topological
phonon crossings remains a challenge, and only few reports
have been published so far [13–15]. A common approach in
this field is to characterize the dispersion in the vicinity of

crossing points and compare this data with ab initio
calculations. Nontrivial topological properties can then
be inferred from the analysis of the calculated phonon
dispersions. Crucially, this does not provide an immediate
experimental probe of topology, rather than a verification of
the density functional theory.
Recently, Jin et al. [15] proposed an experimental

method to probe topological character of a phonon crossing
by measuring the spectral weight in its vicinity. The same
approach is already widely used in application to the
magnon band structure [16–19]. It reads that on closed
momentum-space contours around the crossing point, the
intensity of phonon excitations is modulated, with a
number of minima and maxima related to the Berry phase
of the point. This phenomenon results from the modulation
of phonon eigenvectors around the crossing point. It was
therefore proposed as a direct experimental probe of the
phonon topology.
In the present Letter, we apply this method to study low-

energy phonons in the vicinity of the K point in graphite
using inelastic x-ray scattering (IXS) and density-
functional theory (DFT) calculations [see Sec. S1 of
Supplemental Material (SM) [20] for method details] and
demonstrate the limitations of such approach, which were
not previously pointed out. Graphite consists of graphene
layers stacked with a relative shift of ½2=3; 1=3; 0� along the
ab plane [known as the AB stacking, Fig. 1(a)]. Although its
phonon dispersions were previously mapped in detail
throughout the entire Brillouin zone (BZ) [31,32], the
distribution of the spectral weight, which carries the
crucial information on the eigenvector modulation, has
not been addressed. We identified both theoretically and
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experimentally that there exists a pair of low-energy modes
that form aweakly gapped pseudo-Dirac cone at theK point.
Our IXS data demonstrate the antiphase distribution of the
phonon spectral weight above and below the pseudo-Dirac
point, in perfect agreement with the theoretical predictions
applied for a true Dirac point. Our DFT calculations
illustrate that the microscopic origin of this winding pattern
lies in the relative phase shift of out-of-plane oscillations of
two atoms within the honeycomb layers. The latter remains
intact upon opening of a barely noticeable gap at the Dirac
point caused by small but finite perturbative interlayer
interaction.
Overview of the phonon dispersion.—We start the

presentation of our results with a brief overview of the
phonon dispersion of graphite, shown in Fig. 1(c) [31–34].
Our DFT calculations of the dispersion fully corroborate
previous measurements and calculations [35,36]. Based on
this excellent agreement, we can use this model to simulate
the distribution of the phonon spectral weight and relate it
to the structural fluctuation patterns in the vicinity of the
K point.
We can broadly categorize all modes in Fig. 1(c) into two

groups: low-energy c-polarized modes (black lines) and
high-energy modes with ⊥ [001] (orange and red lines).
Visual inspection of Fig. 1(c) suggests that the dispersion
has several crossings at the K point at E ¼ 67, 152, and
170 meV. However, the modes close to K points at energies
≈152 and 170 meV have shallow dispersion and remain
linear only within a narrow energy range of ≲1.5 meV,

which means they can be classified as not “clean” crossings
according to criteria defined in Ref. [37]. Therefore, we
focus on the low-energy part of the spectrum. It contains
four modes: the acoustic (AA) and the low-energy pseudo-
acoustic (BA) modes, and two almost degenerate down-
ward-dispersing optical branches, (YO) and (XO), at
65–110 meV. The AA and BA modes are related to in-
phase and antiphase fluctuations of carbon layers along the
c axis, and their splitting is determined by the strength of
the interlayer coupling. Furthermore, the structure factor
FðsÞðQÞ has a profound impact on the observable intensity,
which allows us to separate the modes: (i) both modes have
finite intensities only at nonzero l (l is the reciprocal space
coordinate); (ii) due to the structure factor modulation, AA
and BA intensities are harmonically modulated along the l
direction and acquire maximal intensity at even and odd l,
respectively.
The acoustic and optical c-polarized phonon modes in

graphene are known to form a Dirac cone centred at the K
point as shown in Fig. 1(b1) [36]. However, in graphite, a
finite interlayer coupling breaks the inversion symmetry
between the carbon atoms within a honeycomb layer and
gaps out the otherwise degenerate states at the K point,
causing the typical anticrossing behavior [Fig. 1(b2)] [35].
To visualize this effect, in Fig. 1(e) we show the calculated
IXS intensity for the slice along the ðhh4Þ direction that
maximizes intensity of XO and AA modes. Here, a gap of
∼0.8 meV is clearly visible at the K point. The YO and BA
modes are best visible at odd l and almost degenerate

FIG. 1. Crystal structure and phonon excitations in graphite. (a) The crystal structure, formed from an AB stacking of honeycomb
layers, and the first Brillouin zone. (b1),(b2) Schematic representation of the phonon dispersion around the K point, showing the gapless
Dirac cone in graphene (b1), which gaps out due to interlayer coupling in graphite (b2). (c) Comparison of our DFT calculation (solid
lines) of the phonon dispersion in graphite with previous IXS measurements [31,32]. The first BZ of graphite within the ðhk0Þ plane is
shown in the inset. (d),(e) Detailed view of the YO–BA (red line) and XO-AA (orange line) modes in the vicinity of K along ðhh3Þ and
ðhh4Þ paths of reciprocal space (see details of reciprocal-space trajectories in Sec. S2 of SM [20]). The color map indicates the simulated
IXS intensity.
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at the K point with an extremely small gap of ∼50 μeV
[Fig. 1(d)]. We should stress that these modes do not form a
true topologically protected crossing as the mode repulsion
is induced by a weak interlayer interaction. However, the
splitting of the YO–BA mode pair is in essence irrelevant
for the given slope of the linear dispersion, i.e., everywhere
except for the vanishingly narrow momenta range of κ0 ≈
�10−3 r.l.u., as we discuss in detail in Sec. S4 of SM [20].
Below we demonstrate that the distribution of the phonon
spectral weight in the vicinity of the K point but at any
momenta greater than κ0 follows the characteristic intensity
winding behavior, which was deemed to only accompany a
true Dirac point. We then focus on the K point of
Q ¼ ð1=3; 1=3; 3Þ, where the structure factor maximizes
the scattering intensity of the weakly repulsed YO and
BA modes.
IXS spectra.—Figure 2 illustrates the variation of the IXS

spectra around Q ¼ ð1=3; 1=3; 3Þ. The orientation of four
energy-momentum slices with respect to the phonon Dirac
cone is visualized in Fig. 2(a). Figure 2(b) shows the
longitudinal slice along the ðhh3Þ direction. It features a
single, linearly dispersing phonon mode that crosses the K
point at Dirac energy EDirac ¼ 65.6ð2Þ meV, slightly below
the calculated value of 67 meV. Figures 2(c) and 2(d) show
spectra along two radial paths, rotated by 30° and 60° to the
ðhh3Þ direction, respectively. The signal in Fig. 2(c) looks
rather similar to the ðhh3Þ path, with only a faint trace of
the second mode, which becomes clearly visible in the data
in Fig. 2(d). Figure 2(e) shows the radial slice along the
ð1=3 − k; 1=3þ k; 3Þ direction, i.e., orthogonal to ðhh3Þ. It
exhibits an X-shaped crossing at the K point. The two
crossing modes have similar IXS intensity over the whole

energy range, in agreement with the simulated spectrum,
Fig. 2(i). Taken together, our data indicate good agree-
ment with the simulated spectra and show that YO and
BA modes touch at the K point within our instru-
mental resolution, and exhibit the linear dispersion within
≈� 0.1 Å−1, followed by some extended quasilinear re-
gime up to ≈� 0.3 Å−1 (see Ref. [20] for a strict criteria of
nonlinearity). The spectral weight is gradually redistributed
over both modes under rotation around the K point. All
DFT results are in good agreement with these observations.
We further comment that the calculated gap at K point for
YO–BA crossing is only ∼50 μeV, which is well below the
experimental resolution and therefore cannot be resolved in
our data.
Having discussed the dispersion around the K point, we

turn to the quantitative analysis by plotting the IXS
intensity on radial constant-energy paths through the K
point. Figures 3(a) and 3(b) show a series of these slices at
62.2 and 70.4 meV, below and above the Dirac energy
EDirac � 4 meV. Figure 3(c) illustrates the trajectories of
these scans and our definition of an angle θ with respect to
the ðhh3Þ direction. Each slice was fitted using two
Lorentzians to quantify the spectral weight of each phonon
mode. In Fig. 3(d), we summarize these peak areas as a
function of the angle θ. This reveals harmonic oscillations
described by

IðθÞ ¼ a0½1� cosðθÞ�; ð1Þ

for energies above and below the Dirac energy, respec-
tively, with a0 as a constant prefactor. This result is
perfectly consistent with our DFT simulations and the

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

FIG. 2. Phonon dispersion in the vicinity of the K point atQ ¼ ð1=31=33Þ. (a) Schematic of the slices through 4D energy-momentum
reciprocal space. (b)–(e) IXS data along selected radial directions centered at the K point. Note that additional intensity at E < 61 meV
in (b) and (c) is due to contribution from the second crystal domain in the sample. (f)–(i) Corresponding simulated IXS spectra. White
symbols denote the fitted peak positions with 95% confidence interval [20].
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theoretically predicted modulation for a Dirac point [15].
Notably, a similar modulation of spectral weight was
observed in several magnonic honeycomb ferromag-
nets including CoTiO3 [17,38], elemental Gd [18], and
CrBr3 [19].
Microscopic origin of the intensity modulation.—Our

IXS data shown in Fig. 3(d) demonstrate a smooth
modulation of the phonon spectral weight. To provide an
intuitive picture of how this winding relates to atomic
displacements, we further examine the results of our DFT
simulations. The dispersions of the YO and BAmodes were
calculated on a closed contour around theK point (diameter
jΔQj ¼ 0.02 Å−1), just above and below the pseudo-cross-
ing. Within the considered Q range, the dispersion of both
modes remains almost flat. Moreover, because the modes
are polarized along the c axis [Fig. 1(c)], the eigenvector of
each phonon mode close to the pseudo-Dirac point (the
same, in principle, applicable to a true Dirac point as well)
can be characterized by four complex numbers, which

represent the displacements of four atoms (two atoms per
layer) within the unit cell.
However, because we are interested in the in-plane

dispersion, the problem can be simplified. Given that at
every Q point of interest the two layers exhibit antiphase
vibrations, these modes can be described using only the
displacements of the two atoms in a honeycomb layer,
ξz1ðqÞ and ξz2ðqÞ. An analysis of the eigenvectors shows
that jξz1ðqÞj ≈ jξz2ðqÞj ¼ ξz0 and, thus, the phase differ-
ence between the eigenvectors of the two atoms,
ΔφðqÞ ¼ arg½ξz1ðqÞ� − arg½ξz2ðqÞ�, is the primary parameter
that controls the distribution of the spectral weight around
the K point. To demonstrate this, in Fig. 4(a) we plot the
calculated ΔφðθÞ for energies above and below the Dirac
energy. This shows a continuous rotation around the K
point, with a relative shift of π for energies above and below
the Dirac point. To visualize how the phase difference
relates to atomic motion, in Fig. 4(a) we present evolution
of the atomic displacements, ξz1ðqÞ and ξz2ðqÞ, for severalQ
points on a circle around K for both energies.
Now we show analytically how the phase difference

causes the intensity redistribution. We substitute the
eigenvectors in a form ξzi ðqÞ ¼ jξz0jeiφiðqÞ in the standard
equation for the IXS intensity [20] and find that
jFsðqÞj2 ∝ 1þ cos½ΔφðqÞ�. Since Δφ ∝ θ [see Fig. 4(c)],
the IXS intensity exhibits the gradual harmonic modulation

(a)

(c) (d)
-1Q (Å )

θ = -60° 

θ = -30° 

θ = 0° 

θ = 30° 

θ = 60° 

θ = 75° 

θ = 90° 

θ = 105° 

θ 

θ  (deg)(h h 3)

(-k
 k

 3
)

Pe
ak

 a
re

a 
(a

rb
. u

ni
ts

)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

θ = -60° 

θ = -30° 

θ = 0° 

θ = 30° 

θ = 60° 

θ = 75° 

θ = 90° 

θ = 105° 

 0.4  0.2 0 0.2  0.4
-1Q (Å )

 0.4  0.2 0 0.2  0.40.0

0.5

1.0

1.5

2.0

2.5

3.0
(b)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-180 -120 -60 0 60 120 180
0

0.005

0.010

0.015

0.020

0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6 E = 62.2 meV 
E = 70.4 meV 

-75° 

-90° 

-105° 

-120° 

-150° 

±180° 

150° 

120° 

-75° 

-90° 

-105° 

-120° 

-150° 

±180° 

150° 

120° 

FIG. 3. Modulation of the phonon spectral weight in graphite.
(a),(b) Radial momentum profiles of IXS intensity through the K
point in the ðhk3Þ plane at E ¼ 62.2 (a) and 70.4 meV (b). Solid
lines represent a complete fit to the data that includes phonon
contributions (Lorentzian peaks) and a linear background. Green
and gray shaded areas show the phonon peaks measured on the
opposite trajectories off the K point. The data are offset by þ0.4
units for visual clarity. (c) Trajectory of the momentum profiles
shown in (a) and (b), and the definition of the angle θ. (d) θ
dependence of the peak area extracted from the IXS measure-
ments. Solid lines are fits with Eq. (1).

(a) (b)

(c)

FIG. 4. Microscopic origin of the intensity winding.
(a) Schematic representation of the pseudo-Dirac cone. Color
plots at the cone bases represent phase difference of two atomic
displacements, ΔφðQÞ. Two sketches above and below the
pseudo-Dirac cone demonstrate the calculated atomic displace-
ments of two atoms within the honeycomb layer, ξ1 and ξ2, at
several equidistant Q points. (b) IXS intensity distribution within
the ðhk3Þ plane calculated at E ¼ ½70; 70.5� meV, above the
pseudo-Dirac point. (c) Phase difference of two atomic displace-
ments ΔφðQÞ calculated for the same energy.
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[Fig. 4(b)]. That provides an intuitive microscopic explan-
ation for the observed cosine modulation of the intensity
around the Dirac point in graphite, in accordance with
Eq. (1) (see Sec. S3 of SM [20] for the detailed derivation).
Discussion and conclusion.—Topological bosonic qua-

siparticles have been actively studied in condensed matter
physics over the past years [6,36–39]. The majority of
experimental studies were aimed at determining the
dispersion in the vicinity of a crossing point of interest,
while the intensity distribution is rarely inspected in detail
[13,14,40,41]. However, one striking feature of topological
crossings is that some physical quantity should exhibit a
winding around it. Usually, the winding is associated with a
pseudo-spin of a low-energy Hamiltonian that describes the
dynamics of a model close to the crossing point [42].
Coming back from pseudo-spin to phonon or magnon
terminology, this corresponds to a rotation (in a broad
sense) of the eigenvector on a close path around the
crossing point. This will be reflected in a physical observ-
able like the spectral weight in a scattering experiment, thus
providing a direct measure of topological charge [15].
Here, we have applied this idea to address the low-

energy linear phonon crossings in graphite, one of the
simplest honeycomb systems. Our DFT calculations indi-
cate that the interlayer coupling is a relevant perturbation
that breaks the symmetry between the two carbon atoms
within a honeycomb layer and hybridizes the otherwise
crossing YO–BA modes at the K point. The gap is
controlled by strength of interlayer coupling and amounts
to only ∼50 μeV. Because the interlayer coupling in
graphite is induced by weak Van der Waals forces, it
can be noticeably enhanced by hydrostatic pressure. This
way one can effectively push the system toward 3D regime
and increase the gap at the K point. In this case, a large gap
breaks the winding of the spectral weight and pseudo-Dirac
states no longer exist [20].
However, the resulting avoided crossing of the YO–BA

modes plays a role only in the momenta scale as small as
∼5 × 10−4 Å−1 away from the K point in the absence of
external pressure. Outside this narrow region, the modes in
essence behave indistinguishably from modes forming a
true Dirac point, hence referred to as the pseudo-Dirac
cone. Because the gap is too small to be resolved in an
experiment, our IXS data show that the YO and BA modes
exhibit a linear crossing at the K point, and also provide a
clear evidence for intensity winding with opposite phases
above and below EDirac. This result is in perfect agreement
with the theoretical expectations for the �π Berry phase on
a contour surrounding a Dirac point. By analyzing the
displacement vectors, we show that the relevant physical
quantity which winds and produces this peculiar intensity
distribution is Δφ, the phase difference between the
oscillation of the two atoms in the honeycomb plane.
Therefore, the approach of identifying the intensity

winding cannot be solely applied when the topological

properties of the band structure are addressed. Our results
indicate that the experimental observation of intensity
modulation proposed in Ref. [15] for the phonon bands
and already widely used in application to the magnon bands
[17–19] can only serve as a fingerprint of the winding of
quasiparticle eigenvector rather than prove existence of a
topologically protected crossing, unless the measurements
are taken on a scale of the smallest gap in the system, that is
often not possible due to resolution broadening, especially
in low-dimensional systems such as graphite with strong
hierarchy of couplings. We have thus identified winding of
the phonon eigenvectors due to proximity to a pseudo-
Dirac point and show how IXS can be applied to study
topological lattice excitations in condensed matter systems.
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