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ABSTRACT

The technological advance of High Numerical Aperture Extreme Ultraviolet Lithography (High NA EUVL) has
opened the gates to extensive researches on thinner photoresists (below 30∼nm), necessary for the industrial
implementation of High NA EUVL. Consequently, images from Scanning Electron Microscopy (SEM) suffer from
reduced imaging contrast and low Signal-to-Noise Ratio (SNR), impacting the measurement of unbiased Line
Edge Roughness (uLER) and Line Width Roughness (uLWR). Thus, the aim of this work is to enhance the
SNR of SEM images by using a Deep Learning denoiser and enable robust roughness extraction of the thin
resist. For this study, we acquired SEM images of Line-Space (L/S) patterns with a Chemically Amplified Resist
(CAR) with different thicknesses (15∼nm, 20∼nm, 25∼nm, 30∼nm), underlayers (Spin-On-Glass - SOG, Organic
Underlayer - OUL) and frames of averaging (4, 8, 16, 32, and 64∼Fr). After denoising, a systematic analysis
has been carried out on both noisy and denoised images using an open-source metrology software, SMILE 2.3.2,
for investigating mean CD, SNR improvement factor, biased and unbiased LWR/LER Power Spectral Density
(PSD). Denoised images with lower number of frames present unaltered Critical Dimensions (CDs), enhanced
SNR (especially for low number of integration frames), and accurate measurements of uLER and uLWR, with
the same accuracy as for noisy images with a consistent higher number of frames. Therefore, images with a
small number of integration frames and with SNR∼< 2 can be successfully denoised, and advantageously used
in improving metrology throughput while maintaining reliable roughness measurements for the thin resist.

Keywords: Denoising, machine learning, deep learning, thin resist, High NA EUVL, e-beam metrology, line
edge/width roughness, Power Spectral Density (PSD)

1. INTRODUCTION

Moore’s Law, stating that transistors density in electronic devices approximately doubles every two years, has
been sustained until today thanks to continuous multi-directional innovations, such as Extreme Ultraviolet
Lithography (EUVL), with wavelenght of λ = 13.5∼nm. EUVL has gained popularity over the past few decades
and, currently,is being used for high volume manufacturing of semiconductor devices worldwide. It is one of
the most efficient ways of scaling the smallest size of the features printed on the photo-resist of the silicon chip,
which is called critical dimension (CD). Its scaling is described in Eq. 1:

CD = k1
λ

NA
(1)

where k1 is a factor describing the ability of the lithographic process to resolve small features, λ is the wavelength
of the light source and NA is the lens numerical aperture used to pattern the silicon chip.

Recently, High Numerical Aperture EUV Lithography - High-NA EUVL (NA = 0.55, instead of 0.33 for
EUVL) has attracted great interest and a lot of research is being carried out to explore this technique, which
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holds immense potential for industrial applications and will enable further scaling of Integrated Circuits (ICs).
Towards employing High-NA EUVL for production, one of the major requirements to be satisfied is thinner
photoresists to avoid pattern collapse. Thin resist (with thickness below 30 ∼ nm), as well as different resist-
underlayer combinations (CAR/MOR, SOG/OUL, etc.), have posed significant challenges towards robust and
accurate roughness measurement extraction and analysis due to low imaging contrast and Signal-to-Noise Ratio
(SNR). In the field of signal processing, SNR is used to estimate the level of noise present in a recorded signal1

and it is defined as in Eq. 2:

SNR = 10 log10
σ2
signal

σ2
noise

[dB] (2)

In the Scanning Electron Microscope (SEM) image formation process, each step in signal generation and
processing is a source of noise, which increases the complexity of the final image.2 Recent studies3 have de-
scribed the main noise contributions as primary emission, secondary emission, scintillator, photocathode, and
photomultiplier, showing that every noise contribution is given by quantum fluctuations and follows a Poisson
statistics. An important parameter affecting noise is the electron dose. For a Poisson distribution, the number
of detected electrons is proportional to the number of electrons impinging on the sample, therefore increasing
the electron dose would decrease the noise, but may lead to sample damage for photoresists (e.g., resist slimming
or shrinkage).4 The linear correlation with the frames of integration makes it possible to modulate the electron
dose per pixel, fixing it as low as the final image noise allows.

In a nutshell, for photoresists, CD-SEM measurements with a large number of frames result in less noise,
but require more time and can’t completely mitigate the resist shrinkage effect; as opposed to a small number
of frames, which leads to a higher edge detection uncertainty and unreliable roughness measurements (Fig. 1).

Figure 1: Example of SEM images with different frames of integration (4 Fr, 8 Fr, 16 Fr, 32 Fr, and 64 Fr).

Line Edge Roughness (LER) and Line Width Roughness (LWR) are essential metrics for line/space patternes
and they can conveniently be extracted from the Power Spectral Density (PSD) of the edges profiles. The
PSD is the variance of the edge/width per unit frequency and it is calculated as the squared magnitude of the
Fourier transform coefficients of the edge/width deviations.5 The area under the PSD curve is the variance of
the roughness σ2

biased, which is biased by the noise from the CD-SEM, as described in Eq. 3:

σ2
biased = σ2

unbiased + σ2
noise (3)

where σ2
biased is the roughness measured by the CD-SEM, σ2

unbiased the true variance of the wafer and σ2
noise the

random SEM error in edge/width position (Fig. 2).4

Due to the strongly reduced image contrast and poor SNR, the uncertainty in the contour extraction algo-
rithms used for roughness and CD analysis with CD-SEM has greatly increased. More specifically, the increased
noise level of thin resist images has a direct impact on the critical measurements of LER and LWR. Recent
studies6 have indicated that, if the SNR drops under a certain boundary value (< 2.0), the unbiased Line Width
Roughness (uLWR) measurement may not reach the asymptotic plateau and becomes unreliable. In this case,
for small pitch values, the measured edge position wmeas depends on the true edge position wtrue plus an error
e, such as wmeas = wtrue + e.7 Thus, Eq. 3 becomes:

σ2
biased = σ2

unbiased + σ2
noise + 2Cov(wtrue, e) (4)

where Cov(wtrue, e) is the covariance of wtrue and e.
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Figure 2: Example of noise subtraction from the measured PSD: the variance of the noise is subtracted from
the biased variance, which is the area under the curve, to get the true unbiased PSD.4

Therefore, to obtain accurate uLWR, higher SNR is imperative by generally acquiring and averaging larger
number of frames. However, this requirement leads to extensive measurements time and reduced throughput on
the current CD-SEM tools. An ideal solution would be to extensively measure images with smaller number of
frames, which requires less time, and to efficiently denoise the raw images, in order to increase their SNR and
extract accurate uLWR measurements. The most efficient and accurate tool for this task is Deep Learning.

2. EXPERIMENTAL DESIGN AND METHODS

As described at the end of Sec. 1, Deep Learning (DL) can be used to improve the uLWR measurements of
CD-SEM images patterned through High NA EUVL. In fact, when using a smaller number of frames per image
in the SEM tool in order to do extensive measurements in less time, the resulting images present low SNR, which
affects negatively the unbiased LWR/LER. Thus, in this work a DL approach to improve the SNR of CD-SEM
images is presented, which is able to enhance the SNR without changing the electron dose/frames. The model
we used is a previously developed U-Net architecture-based unsupervised denoiser.8 The experimental dataset,
on which the denoiser has been trained and tested, consists of SEM images captured with Hitachi High Tech
CD-SEM CG6300 of a Chemically Amplified Resists (CAR) with two distinct underlayers, Spin-On-Glass (SOG)
and Organic Underlayer (OUL), and four different thicknesses for the thin film resist: 15∼nm, 20∼nm, 25∼nm,
and 30∼nm. The images have been acquired with increasing frames of integration (4∼Fr, 8∼Fr, 16∼Fr, 32∼Fr,
and 64∼Fr) with e-beam setting of 8∼pA at 500∼eV of energy, resulting in 50 images of 2048× 2048 pixels with
size of 0.8∼nm per configuration. In Fig. 3 an example of raw and denoised images per configuration is depicted.

After denoising, a systematic analysis has been carried out on both raw (noisy) and denoised images using
an open-source metrology software, SMILE 2.3.9 The user interface for SMILE 2.3 is shown in Fig. 4. For the
experimental analysis, the parameters have been tuned by changing the default values in the following way:

• Auto rotation alignment: off;

• Pixel size [nm]: 0.8;

• Edge fit function: Polynomial ;

• PSD model: palasantzas1 and palasantzas2 ;

• Low frequency exclusion: 3.
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Figure 3: Example of both noisy and denoised SEM images, acquired using different underlayers (SOG, OUL),
resist thickness (15∼nm, 30∼nm), and frames of integration (4 Fr, 64 Fr).

Figure 4: Example of SMILE 2.3 parameters panel.

3. RESULTS AND DISCUSSION

A set of experiments and analysis of SEM images with different combinations of underlayer, thickness and frames
of integration, has been carried out to study how the linescan SNR, the mean CD and the biased and unbiased
LWR PSD change between noisy and denoised images. The final goal of the experiment is to assess how the
denoising procedure, using Machine Learning models, affect the SEM images. In particular, it is important to
probe that such a denoising method don’t have repercussions on the characteristic features of the device (e.g., the
mean CD between noisy and denoised images should not be changed), but decreases the noise of the images (e.g.,
increasing the linescan SNR and decreasing the noise in the LWR PSD). This research proves to be advantageous
towards initiating the first step for the employment of High NA EUVL, an innovative tehcnique, for HVM.

3.1 Signal-to-Noise Ratio (SNR)

For each image of the different configurations a histogram of the grayscale values has been plotted and fitted
using two gaussians distributions for the maximum and minimum intensity, as described in Sec. 1. After the
denoising procedure, the bi-modal nature of the grayscale distribution becomes apparenet. Linescan SNR values
are extrapolated from the gaussian distributions by fitting two gaussian peaks to the grayscale. Fig. 5 shows
an example of the procedure of extrapolating the SNR from two fitted normal distributions, assumed for both
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intensity values, so that the histogram of the image can be represented with the model in Eq. 5:

H(I) = M1e
−2

I−I1
2σ2

1 +M2e
−2

I−I2
2σ2

2 (5)

where M1 and M2 are the normal distribution parameters, I1 and I2 are the intensities of the pixels in the space
region and in the line regions respectively, and σ1 and σ2 are the corresponding standard deviations. To estimate
the SNR for these images this model is fitted to the histogram of each image, and the SNR is calculated as the
difference between the intensity values divided by the average standard deviation, as in Eq. 6:

SNR = 2
I1 − I2
σ1 + σ2

(6)

Figure 5: Example of linescan SNR computation procedure from grayscale distribution of denoised SEM images
acquired with 4 and 64 frames of integration.

In Fig. 6 the SNR values of noisy and denoised images are compared through an histogram, while in Table
1 the relative percentage difference between noisy and denoised SNR values are reported in percentage of the
noisy ones, which has been calculated through Eq. 7

∆SNR = |SNRdenoised − SNRnoisy

SNRnoisy
| · 100 (7)

It’s crucial to notice the enhancement of SNR in the denoised images with respect to the noisy ones. In fact,
denoised images present much higher SNR values, up to 61% of increment.

Table 1: Comparison of linescan SNR difference of denoised images SNR to noisy SNR values in percentage
of noisy ones for SEM images with different underlayers (OUL, SOG), thicknesses (15, 30∼nm), and frames of
integration (4, 8, 16, 32, 64∼Fr).

SOG OUL
15∼nm 30∼nm 15∼nm 30∼nm

4 Fr 34.80 % 27.82 % 33.58 % 45.95 %
8 Fr 3.93 % 43.15 % 56.66 % 47.90 %
16 Fr 27.78 % 47.77 % 61.06 % 42.43 %
32 Fr 174.31 % 42.16 % 53.62 % 34.36 %
64 Fr 147.44 % 34.99 % 41.32 % 36.27 %

The red values in Table 1 are the only outliers, corresponding to the sample of SOG∼15nm. Their presence
can be explained easily by the SEM edge effect. This phenomenon happens when patterning Lines/Spaces in
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Figure 6: Linescan SNR values before and after denoising procedure of SEM images of different underlayers
(OUL, SOG), resist thicknesses (15 and 30∼nm), and frames of integration (4, 8, 16, 32, 64∼Fr).

correspondance of the edges of the lines. The secondary electrons, emitted by the material itself, are more in the
edges than in the flat spaces of the pattern, therefore resulting in an increased brightness and higher contrast.
Since the metric used to measure the SNR of the samples is correlated to the contrast and brightness, the values
for noisier samples, such as SOG 15∼nm, can easily result in outliers.

3.2 Mean CD trend analysis

For each configuration of underlayer (SOG, OUL), film thickness (15∼nm, 20∼nm, 25∼nm, 30∼nm) and frames
of integration (4∼Fr, 8∼Fr, 16∼Fr, 32∼Fr, 64∼Fr), the mean CD of the raw/noisy SEM images, with target
CD of 16∼nm, has been investigated to understand if the process of denoising through the Machine Learning
model has any repercussion on the detected CD. As shown in Fig. 7, the mean CD of denoised images is in full
agreement with the raw data and it remains true to its trend.

Figure 7: Mean CD before and after denoising for different underlayer (OUL, top graph; SOG, bottom graph),
film thickness (15∼nm, 20∼nm, 25∼nm, 30∼nm) and frames of integration (4∼Fr, 8∼FR, 16∼Fr, 32∼Fr,
64∼FR).

Because of the nature of this experiment, there are no true ground truths for the CD of the tested devices,
since it is a parameter affected by the SEM image acquisition settings, as well as multivariate process parameters.
Moreover, the high number of frames of integration may cause the pattern shrinkage and, therefore, may change
the absolute value of the target CD.
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In Table 2, a comparison of the mean CD values before and after denoising is reported in percentage against
noisy mean CD values, which have been calculated through Eq. 8

∆CD = (
CDnoisy − CDdenoised

CDnoisy
) · 100 (8)

. For of the reasons explained above, it is not possible to define accurately a percentage threshold of acceptance
for the difference in mean CD between noisy and denoised. However, to quantify as an experimental condition,
mean CD values that are within a tolerance range of ±5% of noisy mean CD values (considered as target) are
considered compatible. This probes that the denoising procedure doesn’t alter the L/S pattern dimensions.

Table 2: Comparison of mean CD difference of denoised images against noisy images (in percentage).

OUL SOG
15∼nm 20∼nm 25∼nm 30∼nm 15∼nm 20∼nm 25∼nm 30∼nm

4 Fr -3.07 % -3.74 % -4.36 % -6.06 % -3.67 % -3.74 % -4.36 % -6.06 %

8 Fr -1.73 % -2.93 % -2.56 % -3.37 % -2.41 % -2.93 % -2.56 % -3.37 %

16 Fr -1.41 % -2.25 % -3.03 % -2.51 % -0.40 % -2.25 % -3.03 % -2.51 %

32 Fr -0.26 % -2.85 % -2.42 % -1.43 % 1.21 % -2.85 % -2.42 % -1.43 %

64 Fr -2.92 % -0.97 % -1.16 % -0.41 % 1.33 % -0.97 % -1.16 % -0.41 %

3.3 Roughness parameters

As explained in the previous sections, the SNR has a significant impact on the unbiased LWR. Indeed, the
reliability of the unbiasing procedure of the metrology software drops when the SNR< 2.0. A necessary analysis
consists in comparing the uLWR of raw and denoised images with the corresponding SNR, which can be seen in
Fig. 8. These two scatter plots show the uLWR vs SNR trend for each underlayer, resist thickness, and number
of frames. When comparing the two trends, raw and denoised, the first thing to notice is that the SNR values of
denoised images are higher than those of the raw images. The uLWR of resists with 30∼nm thickness for both
underlayers follow the expected asymptotic plateu. In particular, for the OUL underlayer (Fig. 8b) the uLWR
values for the 15∼nm thickness are greatly improved, almost reaching the asymptotic plateau. On the contrary,
the uLWR values of the SOG underlayer (Fig. 8a) do not follow the expected trend, since the corresponding
SNR does not reach the threshold required for roughness measurements reliability (SNR > 2.0), showing values
around 1.0.

(a) (b)

Figure 8: Comparison of uLWR against different line-scan SNR for raw and denoised images with different
underlayers ((a) SOG and (b) OUL), film thickness (15 and 30∼nm), and frames of integration (4, 8, 16, 32, and
64 frames).
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3.4 Partial Spectral Density (PSD) analysis

One of the most relevant roughness metrics for L/S SEM images is Line Width Roughness (LWR). To conduct
a thorough analysis of the noisy and denoised images for this experiment, biased and unbiased LWR PSDs are
extracted, plotted, and analyzed. In Fig. 9, the biased LWR PSDs are shown.

Theoretically, biased LWR PSDs in the low frequency part of the graph should match for denoised and noisy,
4 and 64 frames, since the PSD trend in the low frequency region, called PSD(0), characterizes the device
features and needs to remain constant after denoising and when acquired with different frames of integration.
Concurrently, the high frequency region of the PSD graph characterizes the acquisition noise, which should be
significantly reduced after denoising the images.

It is relevant to notice that in the low frequency region of the graphs, for 15∼nm of thickness, the PSD shows
offsets between noisy and denoised curves, with the one for 4 frames being much larger than the one for 64
frames. This is expected, since the noisy images with 4 frames of integration have much more noise than with 64
frames, thus contributing to a larger offset. It can be derived that SOG as underlayer is more challenging than
OUL, which can affect negatively the measurements even for 64 frames. Meanwhile, for the 30∼nm of thickness
there is an offset between the 4 frames noisy and denoised PSDs, while the 64 frames PSDs, noisy and denoised,
match as expected.

Instead, in the high frequency region, the biased LWR PSDs are following the expected trend, demonstrating
the capability of the denoising model, since the denoised images exhibit significantly lower values of noise than
the raw ones.

To summarize, the biased and unbiased LWR PSDs of denoised images follow the expected trend by being
lowered in the high frequency region. The only exception is for SOG with 15 nm of thickness with 4 frames, in
which the PSDs of both noisy and denoised images almost overlap. The offsets in the low frequency region are
dependent on the PSD computation carried out in the background by the metrology software itself, which can’t
be improved by the denoising procedure.

It is essential to highlight how the LWR PSDs in low frequency region for 30∼nm of thickness are not
presenting any offset for 64 frames (e.g., matching) and comparatively lesser one for 4 frames, thus, they are
consistently better than those of 15∼nm of thickness. This is also expected, since the CD-SEM noise is known
to be increased for thinner photoresists.

To conclude, the comparison between the biased and unbiased LWR PSDs are shown in Fig. 10 for both
SOG and OUL underlayers, 15 and 30∼nm of thickness, 4 and 64 frames of integration. In these plots the offsets
between biased and unbiased noisy and denoised PSDs are indicated with ∆noisy, and ∆denoised respectively. It
is relevant to notice that, as before, there is a fundamental difference between the 15∼nm and 30∼nm PSDs,
given by the much higher SEM noise of thinner photoresists. Moreover, the comparison between the two different
underlayers shows how SOG is more challenging than OUL, resulting in much larger ∆noisy and ∆denoised for
both 15 and 30∼nm, 4 and 64 frames settings. At last, an important result lies in the difference between 4 and
64 frames. In Fig. 10 for 64 Fr (top graph), the PSDs show an exact matching in the 30∼nm samples for both
OUL and SOG, and an almost exact in OUL 15∼nm. SOG 15∼nm sample is the only one presenting very small
∆noisy and ∆denoised offsets (being ∆denoised itself smaller than ∆noisy). On the contrary, graphs for 4 Fr shows
perceptible offsets, both for noisy and denoised images, which is expected because of the computation by SMILE
of the unbiased PSDs, which in turn adds inevitably an irreducible offset. A most significant fact to be noticed
here is, the ∆denoised for all conditions are marginal (or matched) in comparison to corresponding ∆noisy.

It’s ultimately important to underline that the denoising procedure for images with 4 Fr, which have lower
SNR than 64 Fr, is capable of obtaining PSD analysis comparable with that of 64 Fr. This result indicates that
by denoising SEM images acquired with low frames of integration using a DL based denoiser8 it is now possible
to extract reliable roughness measurements, such as LWR and LER, while saving time in the production process
and decreasing the risk of damaging the printed patterns.
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Figure 9: Biased LWR PSD of SEM images with (a) OUL underlayer, 15∼nm thickness, (b) SOG underlayer,
15∼nm thickness, (c) OUL underlayer, 30∼nm thickness, and (d) SOG underlayer, 30∼nm thickness.
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Figure 10: Comparison of biased and unbiased LWR PSDs of SEM images for 64 (top graph) and 4 frames
(bottom graph) with (a) OUL underlayer, 15∼nm thickness, (b) SOG underlayer, 15∼nm thickness, (c) OUL
underlayer, 30∼nm thickness, and (d) SOG underlayer, 30∼nm thickness.
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4. CONCLUSIONS

As research on High NA EUVL for high volume manufacturing is stepping up, there is more and more necessity
of reliable metrology for the thin resists employed in this technique, which is impacted by the reduced imaging
contrast and low SNR resulting from the low thickness of resists (below 30∼nm). SEM images acquired with
a larger number of frames tend to be less noisy but require more (tool and engineering) time and cost, while
those with a smaller number of frames are timely more efficient, but result in a lower SNR, which impacts the
reliability of the unbiased LWR and LER. In order to enhance the SNR, a Deep Learning denoiser has been
employed on SEM images of different underlayers (SOG, OUL), film thickness (15, 20, 25, 30∼nm), and frames
of integration (4, 8, 16, 32, 64 Fr). Firstly, the denoised images exhibit an enhanced SNR, up to an increment in
the linescan SNR values of 61%. Secondly, it has been established that the mean CD values of the SEM images
are not altered by the denoising procedure, in fact their percentual difference lies under the threshold of 5%
for almost all combinations. Moreover, the analysis on the LER/LWR PSDs conducted through an open-source
metrology software, SMILE 2.3.2, shows that, in the high frequency region of the biased LWR PSD the noise of
the images is significantly reduced by the denoising procedure. Meanwhile, in the low frequency region of the
biased LWR PSD, the PSD curves match (before/after denoising) when the SNR is higher than 2.0, while offsets
between noisy and denoised PSDs are observed in most demonstrations with reduced (15 nm) resist thickness
and/or smaller (4 Fr) number of frames, due to the higher SEM noise of images acquired from samples with
thinner photoresists (SNR < 2). In general, it can be assessed that the LER/LWR PSD analysis for denoised
images acquired with 4 frames of integration has a compatible accuracy and reliability with respect to noisy
images acquired with 64 frames. To conclude, denoising SEM images with low number of frames using Machine
Learning has proven to be helpful in preserving the roughness measurements reliability for High NA EUVL thin
resists and increasing the metrology throughput.
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