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A B S T R A C T   

Background and purpose: Respiratory suppression techniques represent an effective motion mitigation strategy for 
4D-irradiation of lung tumors with protons. A magnetic resonance imaging (MRI)-based study applied and 
analyzed methods for this purpose, including enhanced Deep-Inspiration-Breath-Hold (eDIBH). Twenty-one 
healthy volunteers (41–58 years) underwent thoracic MR scans in four imaging sessions containing two 
eDIBH-guided MRIs per session to simulate motion-dependent irradiation conditions. The automated MRI seg-
mentation algorithm presented here was critical in determining the lung volumes (LVs) achieved during eDIBH. 
Materials and methods: The study included 168 MRIs acquired under eDIBH conditions. The lung segmentation 
algorithm consisted of four analysis steps: (i) image preprocessing, (ii) MRI histogram analysis with thresholding, 
(iii) automatic segmentation, (iv) 3D-clustering. To validate the algorithm, 46 eDIBH-MRIs were manually 
contoured. Sørensen-Dice similarity coefficients (DSCs) and relative deviations of LVs were determined as sim-
ilarity measures. Assessment of intrasessional and intersessional LV variations and their differences provided 
estimates of statistical and systematic errors. 
Results: Lung segmentation time for 100 2D-MRI planes was ~ 10 s. Compared to manual lung contouring, the 
median DSC was 0.94 with a lower 95 % confidence level (CL) of 0.92. The relative volume deviations yielded a 
median value of 0.059 and 95 % CLs of − 0.013 and 0.13. Artifact-based volume errors, mainly of the trachea, 
were estimated. Estimated statistical and systematic errors ranged between 6 and 8 %. 
Conclusions: The presented analytical algorithm is fast, precise, and readily available. The results are comparable 
to time-consuming, manual segmentations and other automatic segmentation approaches. Post-processing to 
remove image artifacts is under development.   

1. Introduction 

Pencil-beam-scanning proton therapy (PBS-PT) is gaining attention 
in radiation oncology for its potential and application in the treatment of 
lung tumors [1–3]. To improve treatment outcomes, 4D proton irradi-
ation with motion mitigation strategies has been and continues to be 
explored [4–6]. Magnetic resonance imaging (MRI) has emerged as a 
valuable radiation-free tool for studying lung function and respiratory 
processes [7–9]. 

While 4D-MRIs play an important role in the analysis, modeling and 
image guidance of dynamic respiratory motion [10–14], motion arti-
facts in MRI lung reconstructions can be critical [15]. Although artificial 
intelligence has advanced motion compensation [16], a preferred 
method for limiting image artifacts is MRI acquisition under breath-hold 
conditions, where “oxygen administration and patient coaching […] can 
increase breath-hold capability” [17]. 

At the same time, promising respiratory motion management stra-
tegies exist [18–20], such as enhanced Deep-Inspiration-Breath-Hold 
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(eDIBH), which would allow active suppression of respiratory motion 
and prolonged breath-hold during PBS-PT [21,22]. In an MRI-based 
study, we demonstrated the feasibility of this approach by simulating 
and recording quasi-static PBS-PT lung irradiation fractions in an MR 
scanner in healthy volunteers [21]. Such quasi-steady-state conditions 
would allow the well-known physical advantages of proton therapy in 
the treatment of stationary tumors [23–26] to be directly applied to the 
irradiation of lung tumors [27,28], at least for a representative duration 
of a field application [29]. In contrast, time-dependent 4D-PBS-PT in 
lung patients is much more complex and partially requires considerable 
technical effort [30–32], e.g., for beam tracking [33]. 

To spare healthy lung tissue and to minimize key dosimetric lung 
irradiation parameters (Dmean, V20%), e.g., to reduce the risk for radi-
ation pneumonitis, it is crucial to achieve the largest possible lung vol-
ume (LV), i.e., to maximize it, ideally by reaching total lung capacity 
(TLC) at full inspiration [34]. This is critical for both irradiation [35,36] 
and computed tomography (CT) simulation for treatment planning [37]. 
Our MRI-based study has shown that TLC conditions under eDIBH 
provide excellent reproducibility of lung topology, including potential 
tumor locations and adjacent structures [21]. Accurate LV determina-
tion by reliable, effective contouring is paramount to accurately quan-
tify e.g., Dmean and V20% [38]. For its use in online-adaptive, 
conventional radiotherapy (RT) under image guidance, such as MR- 
guided RT (MRgRT), computational speed could also be crucial [39]. 
While CT-based 4D-PBS-PT planning benefits from an extensive software 
toolbox for automated lung contouring and volume determination, the 
availability of such programs for MRI-based segmentation is extremely 
limited. 

Several algorithms have been proposed for accurate lung segmen-
tation using MRI data, some of which rival manual segmentation by 
experts. These algorithms may use morphological filtering, region 
growing [40], normalization with an atlas library of lung segmentations 
[41], or artificial neural networks [42–44]. However, most of these 
methods require 3D-MRI acquisitions. 

The objective of this study was to develop, apply and test an auto-
mated 2D-MRI algorithm for lung segmentation with simultaneous 
volume determination based on a commercial scientific image process-
ing platform [21]. Its accuracy, reliability, and speed were investigated 
in the context of MRI-assisted simulations of lung tumor treatments with 
protons applying eDIBH. For validation, the results of LV determinations 
were compared to manual segmentations and quantified using estab-
lished similarity metrics such as DSCs [45] and fractional volume de-
viations. The algorithm is intended to provide an alternative to existing 
methods which often rely on more complex 3D-MRIs or artificial intel-
ligence (AI)-based approaches. 

2. Materials and methods 

2.1. Subject population 

A total of 21 healthy subjects, 9 females and 12 males (40–58 years; 
body mass index (BMI) 19–29.6 kg/m2), representing a potential lung 
cancer patient cohort, participated in the described eDIBH part of the 
study protocol. Prior to each MRI session, lung function was assessed by 
forced spirometry; the subjects presented forced vital capacity (FVC) 
between 3.25L and 7.26L (Table S1). The study was approved by the 
Cantonal Ethics Committee Northwest/Central Switzerland (BASEC-ID: 
2018–01295; clinicaltrials.gov: NCT03669341). Subjects were thor-
oughly informed of the study objectives and procedures and signed an 
informed consent form. 

2.2. MRI data acquisition 

Subjects in our study were immobilized on the MR couch in a head- 
first-supine position with arms overhead. MRI data were acquired using 
a T2-weighted, 2D-SSFP (steady-state free-precession) sequence on a 

1.5 T MR scanner (MAGNETOM Aera, Siemens Healthcare AG, Erlangen, 
Germany). Voxel spacing was 0.7617x0.7617 mm2 in-plane, with a 
plane separation of 2.2 mm and a slice thickness of 5.5 mm. The 
reconstructed image was a 512x512 pixel array with pixel intensities 
stored as 16-bit unsigned integers ranging from 400 to 1800 (arbitrary 
units). A single MRI of the entire lung, stored in DICOM format, con-
sisted of ~ 100 coronal 2D image slices acquired in ~ 70 s. 

Each participant underwent four MRI sessions at weekly intervals 
over a three-week period, each session containing two consecutive MRI 
acquisitions under eDIBH. eDIBH consisted of breath-holding under full 
inspiration during image acquisition, preceded by an 8-min period of 
100 %–O2 breathing with final hyperventilation. Before each MRI, 
eDIBH was restarted. The subject remained in the same position between 
both scans to simulate intrafractional conditions similar to those be-
tween two radiation fields. A total of 168 eDIBH-MRIs were acquired. 

2.3. Automated segmentation algorithm 

The segmentation algorithm was implemented using Matlab™ (The 
MathWorks, Inc., Natick, Massachusetts, United States), by directly 
importing DICOM files. It included four procedures: (i) image pre-
processing, (ii) MRI histogram analysis with thresholding, (iii) auto-
matic segmentation, (iv) 3D-clustering (Fig. 1). To develop and validate 
the algorithm, adaptive thresholding, lung identification and charac-
terization were presented plane-by-plane in an additional graphical 
display (Fig. 2), with all MRIs evaluated at least once. 

Preprocessing included the morphological transformations erosion, 
reconstruction, dilation, and complement [46], which were applied with 
a 12-pixel disk for each MRI plane, preserving anatomical structures and 
equalizing pixel values within regions [47] (Fig. S1). 

Adaptive thresholding determined the segmentation threshold for 
each plane. The graphical display indicated that the MRI acquisition 
protocol resulted in pixel intensity distributions with maxima below 12 
intensity units per pixel. The spectrum of possible pixel intensities 
showed a maximum of 31 intensity units, suggesting a maximum 
threshold of 32 for lung segmentation. Kernel smoothing with a 
Gaussian kernel and a bandwidth of one pixel intensity unit was per-
formed to regulate fluctuations in the histograms using function ksden-
sity.m. The maximum of the distribution was found with the function 
findpeaks.m (Fig. 2). 

Fig. 1. Workflow diagram of segmentation algorithm.  
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The segmentation threshold was determined as the minimum to the 
right of the maximum and less than one-tenth of the maximum. In cases 
where no such minimum existed, the threshold was chosen as the min-
imum between the global maximum (left) and the next highest 
maximum (right) beyond 12 pixel intensity units. If no next higher local 
maximum existed, the threshold closest to the global maximum was 
accepted and recorded as an exception. 

For consistency, the estimated threshold for each plane, except the 
first, was compared to that of the previous plane. If the difference 
exceeded two pixel intensity units, the current threshold was adjusted 
accordingly, assuming similar distributions for adjacent planes. 

Regions of the plane with pixel values below the threshold yielded 
binary masks that could be isolated or connected to the image boundary. 
To verify that the masked regions were lung and account for occasional 
disconnections between contiguous lung segments on one side, bilateral 
test strips were defined on all 2D planes. The presumed lung segments 
had to intersect the test strips. The inner test strip boundaries were set 76 
pixels to the left and 99 pixels to the right of the center, each 21 pixels 
wide, and extending from 116 pixels below to 124 pixels above the 
midplane (Fig. S2). The graphical display was used to determine 
appropriate strip dimensions for the subject cohort. 

Regions containing the plane boundary were decomposed into the 
periphery of vanishing pixel values defined by Matlab™ and discon-
nected regions. The functions bwlabel.m and regionprops.m enumerated 
disconnected and isolated regions and determined their respective sizes. 
These regions were then sorted by size and examined for intersection 
with the test strips. The regions overlapping the test strips formed the 
segmented masked plane. 

3D-clustering was performed using bwconncomp.m to label connected 
components in the volume of the segmented binary masks. The volumes 
of these components were determined using regionprops3.m and sorted 
by size. Components intersecting the test strips were considered part of 
the lung. Flipping the second largest component around the vertical axis 
and calculating its intersection with the largest volume determined 
whether the volume comprised one or two lobes, thus excluding 
numerous residual volumes. The segmented images derived from the 
binary masks were saved in DICOM format, while LVs, thresholds, and 
exceptions were saved in Matlab™ format. 

The algorithm could not distinguish between lung and parts of the 
trachea and certain protuberances. To quantify these artifacts, Veloc-
ity™, a certified oncology imaging informatics system (Varian Medical 

Systems, Palo Alto, USA) (https://www.varian.com/oncology/prod-
ucts/software/velocity) was used to contour them using the function-
ality paint and determine their volumes. 

2.4. Reproducibility and variability 

In addition to validation using the graphical display, the automated 
segmentation algorithm was further validated by manual segmentation 
of 46 out of the 168 eDIBH-MRIs. Each subject contributed at least one 
comparison, most at least two, except one subject with four compari-
sons. Two medical assistants performed the contouring using Velocity™ 
under the supervision of an experienced radiation oncologist. The al-
gorithm segmentations were then compared to the manual segmenta-
tions using the DSCs. Fractional deviations between the respective lung 
volumes (VFD = 2*(Vman-Vauto)/(Vman + Vauto)) served as an additional 
similarity measure. 

Pairs of subsequent MRIs within a session repeated in all four ses-
sions, provided insight into the reproducibility of lung volume de-
terminations, with intrafractional and interfractional LV variations 
providing rough limits of uncertainty. As measure of between-session 
variation, the SD of the four session means was calculated for each 
subject, yielding 21 SDs. This fractional SD was calculated as the ratio of 
SD to mean deviation. 

3. Results 

3.1. Adaptive Thresholding and Segmentation 

The threshold dependence on plane for a single subject was illus-
trated in Fig. 3 

The eight segmentations computed for the subject yielded the 
average per plane. Typical for all segmentations were the low thresholds 
(~5) for the first planes, the highest thresholds (~20) for the middle 
planes and a shoulder at (~10) around plane 80. The right panel showed 
the distribution of thresholds for the 8 segmentations. For almost all 
images the maximum frequencies occurred between 10 and 15-pixel 
intensity units (gray values); excursions beyond 25 units were rare. 
These plots confirmed the choice of 12 units as the critical intensity for 
determining the threshold and 32 units as the maximum search range. 
The number of exceptions, i.e., planes in which the threshold was taken 
as the minimum closest the distribution maximum regardless of 

Fig. 2. Example of adaptive thresholding for plane 58 of a sample acquisition In the left panel the blue bars indicate the distribution of pixel intensities between 
0 and 32 as shown on the horizontal axis. The red line denotes the kernel smoothing with the magenta stars (*) indicating the peaks of the smoothed distribution. The 
magenta diamond (◊) at pixel intensity 20 demarks the local minimum; the magenta circle (○) the adjusted threshold. The right panel shows the segmented lung. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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amplitude, ranged from 2 to 4 for the 8 segmentations, a comparatively 
low value. In a subset of 15 subjects, the number of exceptions in a 
segmentation ranged from zero to 78 with median 15 and peak 
maximum at 2. 

In two of the 168 MRIs, segmentations from one subject in one ses-
sion showed algorithmic failure by visual inspection; two segmentations 
from the same subject in a subsequent session appeared to be accurate. 
The MRI acquisition log files of the failed segmentation showed no 
obvious anomalies. 

Calculation time for an MRI segmentation was about 10 s on a HP® 
Z2 tower G5 workstation with processor intel Core®i7-10700- 
CPU@2.90 GHz 

3.2. Comparison of Algorithm with Manual Segmentation 

All DSCs, except for two outliers, exceeded 0.9 (Fig. 4), median 0.94, 
95 %-CL [0.92, 0.97]. Volume fractional deviations were predominantly 
positive, exceeding − 0.024, median 0.059, 95 %-CL [-0.013, 0.13]. 
Manual segmentation often yielded slightly larger LVs. 

Visual inspection of the segmentation methods revealed: (i) manual 
segmentation provided good outer contours but did not account well for 

blood vessels and bronchi in inner contours and (ii) the algorithm oc-
casionally produced protuberances from the outer contours, did not 
distinguish the trachea nor separate connected right and left lung seg-
ments. However, internal blood vessels and bronchi were often better 
represented than in manual segmentation. Visual inspection showed 
that manual segmentation overestimated volumes. The algorithm 
showed massive protuberances extending from the outer contours in the 
computed segmentations of the two outliers while contours for at least 
one plane were missing in the manual segmentations. Fig. 5 showed a 
sample comparison for a single plane. 

3.3. Reproducibility, Variability and Image Artifacts 

Table S2 lists the LVs measured in all eDIBH-MRIs. Four pairs of 
eDIBH-MRIs performed within sessions for 21 subjects yielded 4 intra-
fractional deviations from each of the 21 subject means. The mean of 
these volume fractional deviations was 0.0167 with standard deviation 
(SD) 0.058; 68 of the 84 eDIBH-MRI pairs (81 %) were within one SD 
(Fig. S3). 17 of 21 determinations yielded variations of less than 7 % 
with a median of 3 % (Fig. S4). 

The total fractional volume of artifacts, i.e., the ratio of artifact to 

Fig. 3. Distribution of average thresholds and related histogram for one subject (8 MRIs). The left panel displays the distribution per plane of average thresholds in 
pixel intensity units for the eight acquisitions of one subject. The right panel shows the frequency distribution of thresholds with respect to pixel intensity units. 

Fig. 4. Distributions of DICE similarity coefficients (DSC) of and fractional volume deviations for comparison of manual and automated segmentation. Indicated in 
the middle panel are the 95%-CL boundaries for the joint distributions with (blue dashed) and without (cyan dashed) the two outliers. The red circle denotes the 
mean of the distribution excluding the two outliers. The left and right panels show individual distributions of DSCs and volume fractional deviations, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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total lung volume, ranged up to 3.2 % with a median of 0.7 % and, 
excluding outliers, less than 2.2 % with 95 %-CL (Fig. 6). Fig. S5 showed 
that the trachea was the dominant artifact. In 8 of 46 volumes evaluated, 
it was the only artifact; in 34 of 46 volumes, it contributed more than 50 
% of the artifact volume. 

Artifacts were evaluated for 51 lung volumes, including the 46 
selected for manual segmentation. They occurred almost exclusively in 
the mid-planes, where lung is largest. The lung was sometimes 

connected to the image boundaries by thin fibrils; trachea and pro-
trusions were also evident. 

Volume fractional deviations reflected systemic as well as statistical 
deviations. Image artifacts were an important source of systematic 
deviations 

4. Discussion 

We presented an adaptive threshold-based lung segmentation algo-
rithm using standard Matlab™ modules for morphological trans-
formations, regional classification, and 3D- clustering. Developed in the 
context of respiratory suppression motion mitigation methods for 4D 
proton therapy, the algorithm was applied after 2D-MRI acquisition 
under eDIBH conditions, providing accurate and reproducible mea-
surements of total LVs within seconds. The short MRI acquisition time 
(~1min) was comparable to the time required to deliver an average 
proton fraction field at PSI’s Gantry-2 for a typical lung tumor [21] and 
could be achieved by lung patients practicing a variant of eDIBH [29]. 

The study cohort consisted of healthy middle-aged women and men 
with representative weight and height distributions. Analysis of the 
MRIs provided empirically derived lung descriptors in the form of 
rectangular test strips to facilitate the identification of isolated lung 
segments. We would expect them to be suitable for an adult cohort with 
much greater age variation, but they could easily be adapted for other 
cohorts, such as children. 

Accuracy and reproducibility were assessed by an evaluation of 
intra- and interfractional LV variability. Intrafractional variability was 
below 3 % (68 out of 84 eDIBH-MRI pairs), while interfractional vari-
ability was less than 4 % in 14 of 21 subjects. These variations compared 
well with the intersession variability of FVC measurements (2 %) ob-
tained by spirometry [2146]. 

Comparing manual and automatic segmentation, all DSCs exceeded 
0.9, with a median of 0.94 and a 95 % confidence interval (CI) [0.92 
0.98], except for two outliers. Additionally, the VFD showed a median of 
0.059 with a 95 %-CI [-0.01, 0.13]. Predominantly positive VFD values 
indicated that manual segmentation typically yielded slightly larger LVs 
than the algorithm. Manual segmentation, unlike automatic segmenta-
tion, often included vessels and airways in the anterior lung (Fig. 5). 

Our DSC and VFD values compared favorably with those reported by 
[40], who obtained DSCs of 0.93 ± 0.01 for the left lung and 0.94 ± 0.01 
for the right lung when comparing their algorithm with manual seg-
mentations by experienced chest radiologists. These values were slightly 
lower than those reported by [41], who used an atlas-based method with 
expert manual segmentations performed in two steps, yielding DSCs of 
0.981 ± 0.007 for the left lung and 0.984 ± 0.006 for the right lung. The 
DSCs of neural network segmentations applied to 3D-MRI acquisitions 
using fast ultra-short echo time sequences were higher than those of our 
algorithm. DSCs of 0.97 with a 95 %-CI [0.96, 0.97] for the right lung 
and 0.96 with a 95 %-CI of [0.96, 0.97] for the left lung were found in 
[42] using manual segmentations complemented by the region growing 
algorithm of [38] as reference. In [44] a total DSC of 0.967 ± 0.076 was 
observed for lung tissue when using manual segmentation by an expe-
rienced radiologist as a reference. 

Analysis of artifacts suggested that our algorithm might overestimate 
LVs by up to 2 % (Fig. 5). These artifacts were most pronounced in mid- 
planes, where thresholds were highest, with the trachea contributing the 
most. Removal of the artifacts could reduce volume fractional deviations 
and potentially increase DSCs by at least 0.01. Nevertheless, the LV er-
rors due to image artifacts were smaller than inter- and intrasession 
deviations. 

In terms of computational time, our algorithm required approxi-
mately 10 s to segment an LV on 100 2D slices. This time was compa-
rable to the 0.087 s per 2D slice plane reported by [44], favorable 
compared to the 1 min reported by [40] and [41], and 46 s reported by 
[42]. 

In terms of limitations, testing the algorithm with other MR protocols 

Fig. 5. Comparison of segmentation methods and illustration of artifacts. In the 
displayed acquisition of one subject red delineates automatic segmentation, 
blue manual segmentation. Green delineates artifacts: generated in the trachea 
and on the superior lobe of the right lung. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Total fractional volumes of artifacts.  
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or scanner models was hampered by resource constraints. However, the 
flexibility of adaptive thresholding suggested potential application with 
parameter adaptations to different 2D-MR acquisition protocols 
assuming adequate lung contrast. Pending post-processing might 
remove artifacts and separate lung lobes. 

When evaluating lung segmentation, both volume-based metrics 
such as DSC and distance-based metrics such as Hausdorff distance were 
typically used for a thorough comparison (e.g. [47]). In scenarios where 
the DSC values were in the range of 0.95, indicating a high degree of 
volume overlap, the distance-based metrics typically provided distances 
of a few mm which only slightly affects the resulting LV [48]. As our 
primary goal was to determine the accuracy of TLC determination, 
which is only minimally affected by superficial and internal lung 
structures, we did not specifically assess Hausdorff distance in our 
analysis. 

Although tested exclusively in healthy subjects, experience with 
other algorithms [40,41] suggested potential utility for lung tumor pa-
tients in conjunction with eDIBH. Despite these limitations, our algo-
rithm provided analytical, easily-available, fast and accurate automatic 
segmentation for 2D-MRIs using standard Matlab™ features. This could 
significantly contribute to 4D proton therapy with motion mitigation 
techniques such as enhanced DIBH and MR-based radiation oncology 
imaging, supporting the optimization of dosimetric irradiation param-
eters for improved therapeutic outcomes in lung patients. 
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