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Abstract 38 
Background and Purpose: Respiratory suppression techniques represent an effective motion 39 
mitigation strategy for 4D-irradiation of lung tumors with protons. A magnetic resonance 40 
imaging (MRI)-based study applied and analyzed methods for this purpose, including 41 
enhanced Deep-Inspiration-Breath-Hold (eDIBH). Twenty-one healthy volunteers (41-58 42 
years) underwent thoracic MR scans in four imaging sessions containing two eDIBH-guided 43 
MRIs per session to simulate motion-dependent irradiation conditions. The automated MRI 44 
segmentation algorithm presented here was critical in determining the lung volumes (LVs) 45 
achieved during eDIBH. 46 

Materials and Methods: The study included 168 MRIs acquired under eDIBH conditions. The 47 
lung segmentation algorithm consisted of four analysis steps: (i) image preprocessing, (ii) MRI 48 
histogram analysis with thresholding, (iii) automatic segmentation, (iv) 3D-clustering. To 49 
validate the algorithm, 46 eDIBH-MRIs were manually contoured. Sørensen-Dice similarity 50 
coefficients (DSCs) and relative deviations of LVs were determined as similarity measures. 51 
Assessment of intrasessional and intersessional LV variations and their differences provided 52 
estimates of statistical and systematic errors. 53 

Results: Lung segmentation time for 100 2D-MRI planes was ~10s. Compared to manual lung 54 
contouring, the median DSC was 0.94 with a lower 95% confidence level (CL) of 0.92. The 55 
relative volume deviations yielded a median value of 0.059 and 95% CLs of -0.013 and 0.13. 56 
Artifact-based volume errors, mainly of the trachea, were estimated. Estimated statistical and 57 
systematic errors ranged between 6 and 8%. 58 
 59 
Conclusions: The presented analytical algorithm is fast, precise, and readily available. The 60 
results are comparable to time-consuming, manual segmentations and other automatic 61 
segmentation approaches. Post-processing to remove image artifacts is under development. 62 

 63 

Key words: MRI, lung volume, automated segmentation, motion mitigation, enhanced DIBH, 64 
proton therapy  65 
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1 Introduction 66 

Pencil-beam-scanning proton therapy (PBS-PT) is gaining attention in radiation oncology for 67 
its potential and application in the treatment of lung tumors [1–3]. To improve treatment 68 
outcomes, 4D proton irradiation with motion mitigation strategies has been and continues to 69 
be explored [4–6]. Magnetic resonance imaging (MRI) has emerged as a valuable radiation-70 
free tool for studying lung function and respiratory processes [7–9]. 71 

While 4D-MRIs play an important role in the analysis, modeling and image guidance of 72 
dynamic respiratory motion [10–14], motion artifacts in MRI lung reconstructions can be 73 
critical [15]. Although artificial intelligence has advanced motion compensation [16], a 74 
preferred method for limiting image artifacts is MRI acquisition under breath-hold conditions, 75 
where "oxygen administration and patient coaching [...] can increase breath-hold capability" 76 
[17]. 77 

At the same time, promising respiratory motion management strategies exist [18–20], such 78 
as enhanced Deep-Inspiration-Breath-Hold (eDIBH), which would allow active suppression of 79 
respiratory motion and prolonged breath-hold during PBS-PT [21,22]. In an MRI-based study, 80 
we demonstrated the feasibility of this approach by simulating and recording quasi-static PBS-81 
PT lung irradiation fractions in an MR scanner in healthy volunteers [21]. Such quasi-steady-82 
state conditions would allow the well-known physical advantages of proton therapy in the 83 
treatment of stationary tumors [23–26] to be directly applied to the irradiation of lung tumors 84 
[27,28], at least for a representative duration of a field application [29]. In contrast, time-85 
dependent 4D-PBS-PT in lung patients is much more complex and partially requires 86 
considerable technical effort [30–32], e.g., for beam tracking [33]. 87 

To spare healthy lung tissue and to minimize key dosimetric lung irradiation parameters 88 
(Dmean, V20%), e.g., to reduce the risk for radiation pneumonitis, it is crucial to achieve the 89 
largest possible lung volume (LV), i.e., to maximize it, ideally by reaching total lung capacity 90 
(TLC) at full inspiration [34]. This is critical for both irradiation [35,36] and computed 91 
tomography (CT) simulation for treatment planning [37]. Our MRI-based study has shown that 92 
TLC conditions under eDIBH provide excellent reproducibility of lung topology, including 93 
potential tumor locations and adjacent structures [21]. Accurate LV determination by reliable, 94 
effective contouring is paramount to accurately quantify e.g., Dmean and V20% [38]. For its use 95 
in online-adaptive, conventional radiotherapy (RT) under image guidance, such as MR-guided 96 
RT (MRgRT), computational speed could also be crucial [39]. While CT-based 4D-PBS-PT 97 
planning benefits from an extensive software toolbox for automated lung contouring and 98 
volume determination, the availability of such programs for MRI-based segmentation is 99 
extremely limited. 100 

Several algorithms have been proposed for accurate lung segmentation using MRI data, some 101 
of which rival manual segmentation by experts. These algorithms may use morphological 102 
filtering, region growing [40], normalization with an atlas library of lung segmentations [41], 103 
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or artificial neural networks [42–44]. However, most of these methods require 3D-MRI 104 
acquisitions. 105 

The objective of this study was to develop, apply and test an automated 2D-MRI algorithm 106 
for lung segmentation with simultaneous volume determination based on a commercial 107 
scientific image processing platform [21]. Its accuracy, reliability, and speed were investigated 108 
in the context of MRI-assisted simulations of lung tumor treatments with protons applying 109 
eDIBH. For validation, the results of LV determinations were compared to manual 110 
segmentations and quantified using established similarity metrics such as DSCs [45] and 111 
fractional volume deviations. The algorithm is intended to provide an alternative to existing 112 
methods which often rely on more complex 3D-MRIs or artificial intelligence (AI)-based 113 
approaches. 114 

2 Materials and Methods 115 

2.1 Subject Population 116 

A total of 21 healthy subjects, 9 females and 12 males (40-58 years; body mass index (BMI) 117 
19-29.6 kg/m2), representing a potential lung cancer patient cohort, participated in the 118 
described eDIBH part of the study protocol. Prior to each MRI session, lung function was 119 
assessed by forced spirometry; the subjects presented forced vital capacity (FVC) between 120 
3.25L and 7.26L (Table S1). The study was approved by the Cantonal Ethics Committee 121 
Northwest/Central Switzerland (BASEC-ID: 2018-01295; clinicaltrials.gov: NCT03669341). 122 
Subjects were thoroughly informed of the study objectives and procedures and signed an 123 
informed consent form. 124 

2.2 MRI data acquisition 125 

Subjects in our study were immobilized on the MR couch in a head-first-supine position with 126 
arms overhead. MRI data were acquired using a T2-weighted, 2D-SSFP (steady-state free-127 
precession) sequence on a 1.5T MR scanner (MAGNETOM Aera, Siemens Healthcare AG, 128 
Erlangen, Germany). Voxel spacing was 0.7617x0.7617mm² in-plane, with a plane separation 129 
of 2.2mm and a slice thickness of 5.5mm. The reconstructed image was a 512x512 pixel array 130 
with pixel intensities stored as 16-bit unsigned integers ranging from 400 to 1800 (arbitrary 131 
units). A single MRI of the entire lung, stored in DICOM format, consisted of ~100 coronal 2D 132 
image slices acquired in ~70s. 133 

Each participant underwent four MRI sessions at weekly intervals over a three-week period, 134 
each session containing two consecutive MRI acquisitions under eDIBH. eDIBH consisted of 135 
breath-holding under full inspiration during image acquisition, preceded by an 8-min period 136 
of 100%-O2 breathing with final hyperventilation. Before each MRI, eDIBH was restarted. The 137 
subject remained in the same position between both scans to simulate intrafractional 138 
conditions similar to those between two radiation fields. A total of 168 eDIBH-MRIs were 139 
acquired. 140 
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2.3 Automated segmentation algorithm 141 

The segmentation algorithm was implemented using Matlab™ (The MathWorks, Inc., Natick, 142 
Massachusetts, United States), by directly importing DICOM files. It included four procedures: 143 
(i) image preprocessing, (ii) MRI histogram analysis with thresholding, (iii) automatic 144 
segmentation, (iv) 3D-clustering (Figure 1). To develop and validate the algorithm, adaptive 145 
thresholding, lung identification and characterization were presented plane-by-plane in an 146 
additional graphical display (Figure 2), with all MRIs evaluated at least once.  147 

Preprocessing included the morphological transformations erosion, reconstruction, dilation, 148 
and complement [46], which were applied with a 12-pixel disk for each MRI plane, preserving 149 
anatomical structures and equalizing pixel values within regions [47] (Figure S1). 150 

Adaptive thresholding determined the segmentation threshold for each plane. The graphical 151 
display indicated that the MRI acquisition protocol resulted in pixel intensity distributions 152 
with maxima below 12 intensity units per pixel. The spectrum of possible pixel intensities 153 
showed a maximum of 31 intensity units, suggesting a maximum threshold of 32 for lung 154 
segmentation. Kernel smoothing with a Gaussian kernel and a bandwidth of one pixel 155 
intensity unit was performed to regulate fluctuations in the histograms using function 156 
ksdensity.m. The maximum of the distribution was found with the function findpeaks.m 157 
(Figure 2). 158 

The segmentation threshold was determined as the minimum to the right of the maximum 159 
and less than one-tenth of the maximum. In cases where no such minimum existed, the 160 
threshold was chosen as the minimum between the global maximum (left) and the next 161 
highest maximum (right) beyond 12 pixel intensity units. If no next higher local maximum 162 
existed, the threshold closest to the global maximum was accepted and recorded as an 163 
exception. 164 

For consistency, the estimated threshold for each plane, except the first, was compared to 165 
that of the previous plane. If the difference exceeded two pixel intensity units, the current 166 
threshold was adjusted accordingly, assuming similar distributions for adjacent planes. 167 

Regions of the plane with pixel values below the threshold yielded binary masks that could 168 
be isolated or connected to the image boundary.  To verify that the masked regions were lung 169 
and account for occasional disconnections between contiguous lung segments on one side, 170 
bilateral test strips were defined on all 2D planes. The presumed lung segments had to 171 
intersect the test strips. The inner test strip boundaries were set 76 pixels to the left and 99 172 
pixels to the right of the center, each 21 pixels wide, and extending from 116 pixels below to 173 
124 pixels above the midplane (Figure S2). The graphical display was used to determine 174 
appropriate strip dimensions for the subject cohort. 175 
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Regions containing the plane boundary were decomposed into the periphery of vanishing 176 
pixel values defined by Matlab™ and disconnected regions. The functions bwlabel.m and 177 
regionprops.m enumerated disconnected and isolated regions and determined their 178 
respective sizes. These regions were then sorted by size and examined for intersection with 179 
the test strips. The regions overlapping the test strips formed the segmented masked plane. 180 

3D-clustering was performed using bwconncomp.m to label connected components in the 181 
volume of the segmented binary masks. The volumes of these components were determined 182 
using regionprops3.m and sorted by size. Components intersecting the test strips were 183 
considered part of the lung. Flipping the second largest component around the vertical axis 184 
and calculating its intersection with the largest volume determined whether the volume 185 
comprised one or two lobes, thus excluding numerous residual volumes. The segmented 186 
images derived from the binary masks were saved in DICOM format, while LVs, thresholds, 187 
and exceptions were saved in Matlab™ format. 188 

The algorithm could not distinguish between lung and parts of the trachea and certain 189 
protuberances. To quantify these artifacts, Velocity™, a certified oncology imaging 190 
informatics system (Varian Medical Systems, Palo Alto, USA) 191 
(https://www.varian.com/oncology/products/software/velocity) was used to contour them 192 
using the functionality paint and determine their volumes. 193 

2.4 Reproducibility and Variability 194 

In addition to validation using the graphical display, the automated segmentation algorithm 195 
was further validated by manual segmentation of 46 out of the 168 eDIBH-MRIs. Each subject 196 
contributed at least one comparison, most at least two, except one subject with four 197 
comparisons. Two medical assistants performed the contouring using Velocity™ under the 198 
supervision of an experienced radiation oncologist. The algorithm segmentations were then 199 
compared to the manual segmentations using the DSCs. Fractional deviations between the 200 
respective lung volumes (VFD=2*(Vman-Vauto)/(Vman+Vauto)) served as an additional similarity 201 
measure. 202 

Pairs of subsequent MRIs within a session repeated in all four sessions, provided insight into 203 
the reproducibility of lung volume determinations, with intrafractional and interfractional LV 204 
variations providing rough limits of uncertainty. As measure of between-session variation, the 205 
SD of the four session means was calculated for each subject, yielding 21 SDs. This fractional 206 
SD was calculated as the ratio of SD to mean deviation. 207 

3 Results 208 

3.1 Adaptive Thresholding and Segmentation  209 

The threshold dependence on plane for a single subject was illustrated in Figure 3.  210 

https://www.varian.com/oncology/products/software/velocity
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The eight segmentations computed for the subject yielded the average per plane. Typical for 211 
all segmentations were the low thresholds (~5) for the first planes, the highest thresholds 212 
(~20) for the middle planes and a shoulder at (~10) around plane 80. The right panel showed 213 
the distribution of thresholds for the 8 segmentations. For almost all images the maximum 214 
frequencies occurred between 10 and 15-pixel intensity units (gray values); excursions 215 
beyond 25 units were rare. These plots confirmed the choice of 12 units as the critical 216 
intensity for determining the threshold and 32 units as the maximum search range. The 217 
number of exceptions, i.e., planes in which the threshold was taken as the minimum closest 218 
the distribution maximum regardless of amplitude, ranged from 2 to 4 for the 8 219 
segmentations, a comparatively low value. In a subset of 15 subjects, the number of 220 
exceptions in a segmentation ranged from zero to 78 with median 15 and peak maximum at 221 
2. 222 

In two of the 168 MRIs, segmentations from one subject in one session showed algorithmic 223 
failure by visual inspection; two segmentations from the same subject in a subsequent session 224 
appeared to be accurate. The MRI acquisition log files of the failed segmentation showed no 225 
obvious anomalies. 226 

Calculation time for an MRI segmentation was about 10s on a HP® Z2 Tower G5 Workstation 227 
with processor Intel Core®i7-10700-CPU@2.90GHz. 228 

3.2 Comparison of Algorithm with Manual Segmentation 229 

All DSCs, except for two outliers, exceeded 0.9 (Figure 4), median 0.94, 95%-CL [0.92, 0.97]. 230 
Volume fractional deviations were predominantly positive, exceeding -0.024, median 0.059, 231 
95%-CL [-0.013, 0.13]. Manual segmentation often yielded slightly larger LVs. 232 

Visual inspection of the segmentation methods revealed: (i) manual segmentation provided 233 
good outer contours but did not account well for blood vessels and bronchi in inner contours 234 
and (ii) the algorithm occasionally produced protuberances from the outer contours, did not 235 
distinguish the trachea nor separate connected right and left lung segments. However, 236 
internal blood vessels and bronchi were often better represented than in manual 237 
segmentation. Visual inspection showed that manual segmentation overestimated volumes. 238 
The algorithm showed massive protuberances extending from the outer contours in the 239 
computed segmentations of the two outliers while contours for at least one plane were 240 
missing in the manual segmentations. Figure 5 showed a sample comparison for a single 241 
plane. 242 

3.3 Reproducibility, Variability and Image Artifacts 243 

Table S2 lists the LVs measured in all eDIBH-MRIs. Four pairs of eDIBH-MRIs performed within 244 
sessions for 21 subjects yielded 4 intrafractional deviations from each of the 21 subject 245 
means. The mean of these volume fractional deviations was 0.0167 with standard deviation 246 
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(SD) 0.058; 68 of the 84 eDIBH-MRI pairs (81%) were within one SD (Figure S3). 17 of 21 247 
determinations yielded variations of less than 7% with a median of 3% (Figure S4). 248 

The total fractional volume of artifacts, i.e., the ratio of artifact to total lung volume, ranged 249 
up to 3.2% with a median of 0.7% and, excluding outliers, less than 2.2% with 95%-CL (Figure 250 
6). Figure S5 showed that the trachea was the dominant artifact. In 8 of 46 volumes evaluated, 251 
it was the only artifact; in 34 of 46 volumes, it contributed more than 50% of the artifact 252 
volume. 253 

Artifacts were evaluated for 51 lung volumes, including the 46 selected for manual 254 
segmentation. They occurred almost exclusively in the mid-planes, where lung is largest. The 255 
lung was sometimes connected to the image boundaries by thin fibrils; trachea and 256 
protrusions were also evident. 257 

Volume fractional deviations reflected systemic as well as statistical deviations. Image 258 
artifacts were an important source of systematic deviations. 259 

4 Discussion 260 

We presented an adaptive threshold-based lung segmentation algorithm using standard 261 
Matlab™ modules for morphological transformations, regional classification, and 3D- 262 
clustering. Developed in the context of respiratory suppression motion mitigation methods 263 
for 4D proton therapy, the algorithm was applied after 2D-MRI acquisition under eDIBH 264 
conditions, providing accurate and reproducible measurements of total LVs within seconds. 265 
The short MRI acquisition time (~1min) was comparable to the time required to deliver an 266 
average proton fraction field at PSI's Gantry-2 for a typical lung tumor [21] and could be 267 
achieved by lung patients practicing a variant of eDIBH [29]. 268 

The study cohort consisted of healthy middle-aged women and men with representative 269 
weight and height distributions. Analysis of the MRIs provided empirically derived lung 270 
descriptors in the form of rectangular test strips to facilitate the identification of isolated lung 271 
segments. We would expect them to be suitable for an adult cohort with much greater age 272 
variation, but they could easily be adapted for other cohorts, such as children.  273 

Accuracy and reproducibility were assessed by an evaluation of intra- and interfractional LV 274 
variability. Intrafractional variability was below 3% (68 out of 84 eDIBH-MRI pairs), while 275 
interfractional variability was less than 4% in 14 of 21 subjects. These variations compared 276 
well with the intersession variability of FVC measurements (2%) obtained by spirometry 277 
[21][46]. 278 

Comparing manual and automatic segmentation, all DSCs exceeded 0.9, with a median of 0.94 279 
and a 95% confidence interval (CI) [0.92 0.98], except for two outliers. Additionally, the VFD 280 
showed a median of 0.059 with a 95%-CI [-0.01, 0.13]. Predominantly positive VFD values 281 
indicated that manual segmentation typically yielded slightly larger LVs than the algorithm. 282 
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Manual segmentation, unlike automatic segmentation, often included vessels and airways in 283 
the anterior lung (Figure 5). 284 

Our DSC and VFD values compared favorably with those reported by [40], who obtained DSCs 285 
of 0.93±0.01 for the left lung and 0.94±0.01 for the right lung when comparing their algorithm 286 
with manual segmentations by experienced chest radiologists. These values were slightly 287 
lower than those reported by [41], who used an atlas-based method with expert manual 288 
segmentations performed in two steps, yielding DSCs of 0.981±0.007 for the left lung and 289 
0.984±0.006 for the right lung. The DSCs of neural network segmentations applied to 3D-MRI 290 
acquisitions using fast ultra-short echo time sequences were higher than those of our 291 
algorithm. DSCs of 0.97 with a 95%-CI [0.96, 0.97] for the right lung and 0.96 with a 95%-CI of 292 
[0.96, 0.97] for the left lung were found in [42] using manual segmentations complemented 293 
by the region growing algorithm of [38] as reference. In [44] a total DSC of 0.967±0.076 was 294 
observed for lung tissue when using manual segmentation by an experienced radiologist as a 295 
reference. 296 

Analysis of artifacts suggested that our algorithm might overestimate LVs by up to 2% (Figure 297 
5). These artifacts were most pronounced in mid-planes, where thresholds were highest, with 298 
the trachea contributing the most. Removal of the artifacts could reduce volume fractional 299 
deviations and potentially increase DSCs by at least 0.01. Nevertheless, the LV errors due to 300 
image artifacts were smaller than inter- and intrasession deviations. 301 

In terms of computational time, our algorithm required approximately 10s to segment an LV 302 
on 100 2D slices. This time was comparable to the 0.087s per 2D slice plane reported by [44], 303 
favorable compared to the 1min reported by [40] and [41], and 46 seconds reported by [42]. 304 

In terms of limitations, testing the algorithm with other MR protocols or scanner models was 305 
hampered by resource constraints. However, the flexibility of adaptive thresholding 306 
suggested potential application with parameter adaptations to different 2D-MR acquisition 307 
protocols assuming adequate lung contrast. Pending post-processing might remove artifacts 308 
and separate lung lobes. 309 

When evaluating lung segmentation, both volume-based metrics such as DSC and distance-310 
based metrics such as Hausdorff distance were typically used for a thorough comparison (e.g. 311 
[47]). In scenarios where the DSC values were in the range of 0.95, indicating a high degree 312 
of volume overlap, the distance-based metrics typically provided distances of a few mm which 313 
only slightly affects the resulting LV [48]. As our primary goal was to determine the accuracy 314 
of TLC determination, which is only minimally affected by superficial and internal lung 315 
structures, we did not specifically assess Hausdorff distance in our analysis. 316 

Although tested exclusively in healthy subjects, experience with other algorithms [40,41] 317 
suggested potential utility for lung tumor patients in conjunction with eDIBH. Despite these 318 
limitations, our algorithm provided analytical, easily-available, fast and accurate automatic 319 
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segmentation for 2D-MRIs using standard Matlab™ features. This could significantly 320 
contribute to 4D proton therapy with motion mitigation techniques such as enhanced DIBH 321 
and MR-based radiation oncology imaging, supporting the optimization of dosimetric 322 
irradiation parameters for improved therapeutic outcomes in lung patients. 323 

5 Code Availability Statement 324 

Matlab™ code supporting the conclusions of this article will be provided by the authors upon 325 
reasonable request. 326 
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Figures 491 

  492 

Figure 1: Workflow diagram of segmentation algorithm 
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Figure 2: Example of adaptive thresholding for plane 58 of a sample acquisition  

In the left panel the blue bars indicate the distribution of pixel intensities between 0 and 32 as 
shown on the horizontal axis. The red line denotes the kernel smoothing with the magenta stars 
(*) indicating the peaks of the smoothed distribution. The magenta diamond (◊) at pixel intensity 
20 demarks the local minimum; the magenta circle (○) the adjusted threshold. The right panel 
shows the segmented lung. 
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Figure 3: Distribution of average thresholds and related histogram for one subject (8 MRIs) 

The left panel displays the distribution per plane of average thresholds in pixel intensity units 
for the eight acquisitions of one subject. The right panel shows the frequency distribution of 
thresholds with respect to pixel intensity units. 
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Figure 4: Distributions of DICE similarity coefficients (DSC) of and fractional volume deviations for 
comparison of manual and automated segmentation. 

Indicated in the middle panel are the 95%-CL boundaries for the joint distributions with (blue dashed) 
and without (cyan dashed) the two outliers. The red circle denotes the mean of the distribution 
excluding the two outliers. The left and right panels show individual distributions of DSCs and volume 
fractional deviations, respectively. 
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Figure 5: Comparison of segmentation methods and illustration of artifacts 

In the displayed acquisition of one subject red delineates automatic 
segmentation, blue manual segmentation. Green delineates artifacts: 
generated in the trachea and on the superior lobe of the right lung. 
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Figure 6: Total fractional volumes of artifacts. 
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