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Details are provided on the derivation of the magnetic
structure from the minimization of the energy, the com-
putation of the polarization functions, and a comparison
with a former model.

S1. MINIMIZATION OF THE MAGNETIC
ENERGY

We consider the nearest-neighbor Hamiltonian given in
Eq. 1 with notations as defined in the main text.
There are twelve distinct bonds between nearest neigh-

bors. They involve the position of Mn atoms in the origin
and neighboring cubic unit cells. The lists of Mn sites
and bonds are given in Tables S1 and S2. The different
bonds are related to each other by symmetry operations
of the point group associated with space group P213.
The same operation links the Moriya vectors relative to
each bond. Table S3 provides the relations between their
Cartesian coordinates.
In the regular helical and conical structures the mag-

netic moment at Mn site i, γ is given by

mℓ;i,γ = m⊥ [cos (kℓ · ri,γ)aℓ − sin (kℓ · ri,γ)bℓ] +m∥,

(S.1)

where aℓ and bℓ together with unit vector k̂ℓ = kℓ/kℓ
form a direct triad of unit vectors. Here we allow
slight deviations from the regular structures: mℓ;i,γ obeys

TABLE S1. List of atoms involved in the considered bonds.
For simplicity, we have dropped the subscript “Mn” in xMn.
The superscripts ′, ′′, and ′′′ denote translations −(1, 0, 0),
−(0, 1, 0), and −(0, 0, 1) relative to the original site.

site coordinates

I (x, x, x)

II (1/2− x, −x, x+ 1/2)

II′ (−1/2− x, −x, x+ 1/2)

II′′′ (1/2− x, −x, x− 1/2)

III (−x, x+ 1/2, 1/2− x)

III′′ (−x, x− 1/2, 1/2− x)

III′′′ (−x, x+ 1/2, −1/2− x)

IV (x+ 1/2, 1/2− x, −x)

IV′ (x− 1/2, 1/2− x, −x)

IV′′ (x+ 1/2, −1/2− x, −x)

TABLE S2. List of the twelve nearest-neighbor bonds consid-
ered in this work and symmetry operation of point group 23
linking each of them to the reference bond rI,II. The quantity
Rθ

a denotes a rotation of angle θ about crystallographic axis
a.

bonds coordinates symmetry operation

rI,II (1/2− 2x, −2x, 1/2) = rI,II

rII′′′,I (2x− 1/2, 2x, 1/2) = Rπ
001rI,II

rI,III (−2x, 1/2, 1/2− 2x) = R
4π/3
111 rI,II

rIII′′,I (2x, 1/2, 2x− 1/2) = R
4π/3

11̄1̄
rI,II

rI,IV (1/2, 1/2− 2x, −2x) = R
2π/3
111 rI,II

rIV′,I (1/2, 2x− 1/2, 2x) = R
2π/3

1̄11̄
rI,II

rIII′′,II′ (−1/2, 1/2− 2x, 2x) = R
2π/3

1̄1̄1
rI,II

rII,III′′ (−1/2, 2x− 1/2, −2x) = R
2π/3

11̄1̄
rI,II

rII′′′,IV′′ (2x, −1/2, 1/2− 2x) = R
4π/3

1̄11̄
rI,II

rIV,II′′′ (−2x, −1/2, 2x− 1/2) = R
4π/3

1̄1̄1
rI,II

rIV′,III′′′ (1/2− 2x, 2x, −1/2) = Rπ
100rI,II

rIII,IV′ (2x− 1/2, −2x, −1/2) = Rπ
010rI,II

TABLE S3. Expressions of the Moriya vectors as a function
of the components of DI,II denoted as Dx, Dy, and Dz.

Moriya vector symmetry operation coordinates

DI,II = DI,II (Dx, Dy, Dz)

DII′′′,I = Rπ
001DI,II (−Dx, −Dy, Dz)

DI,III = R
4π/3
111 DI,II (Dy, Dz, Dx)

DIII′′,I = R
4π/3

11̄1̄
DI,II (−Dy, Dz, −Dx)

DI,IV = R
2π/3
111 DI,II (Dz, Dx, Dy)

DIV′,I = R
2π/3

1̄11̄
DI,II (Dz, −Dx, −Dy)

DIII′′,II′ = R
2π/3

1̄1̄1
DI,II (−Dz, Dx, −Dy)

DII,III′′ = R
2π/3

11̄1̄
DI,II (−Dz, −Dx, Dy)

DII′′′,IV′′ = R
4π/3

1̄11̄
DI,II (−Dy, −Dz, Dx)

DIV,II′′′ = R
4π/3

1̄1̄1
DI,II (Dy, −Dz, −Dx)

DIV′,III′′′ = Rπ
100DI,II (Dx, −Dy, −Dz)

DIII,IV′ = Rπ
010DI,II (−Dx, Dy, −Dz)

Eq. 4, in which aℓ,γ and bℓ,γ together with nℓ,γ =
aℓ,γ×bℓ,γ also form a direct triad of unit vectors. Now, a

triad (nℓ,1,nℓ,2,nℓ,3) is introduced, with nℓ,3 close to k̂ℓ,
in line with our assumption of magnetic structures closely
related to the regular ones. Hereafter we will show that

the energy is minimized for nℓ,3 = k̂ℓ. In line with the in-
commensurate nature of the structure, the orientation of
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nℓ,1 and nℓ,2 in the plane perpendicular to k can be arbi-
trarily chosen. Then, for simplicity, vectors nℓ,1 and nℓ,2

will be respectively identified to aℓ and bℓ. Back to triad
(aℓ,γ ,bℓ,γ ,nℓ,γ), it is derived from (nℓ,1,nℓ,2,nℓ,3) after
two subsequent rotations. The first one corresponding
to the structure twist is a rotation of angle ωℓ,γ around
nℓ,3. The second one, defining the structure canting, is a
rotation around an axis Γℓ,γ perpendicular to nℓ,3, with
an angle given by the modulus of Γℓ,γ . Since there are
four different γ’s, we have a priori a total of sixteen in-
dependent parameters: four ωℓ,γ ’s and three Cartesian
components of four Γℓ,γ vectors [1].

We first consider the zero-field magnetic structure, set-
ting m∥ = 0 in Eq. 4, and express the energy from Eq. 1.
Recognizing the incommensurate nature of the structure
and the fact that kℓ · ri,γ;i′,γ′ , D/J , ωℓ,γ and Γℓ,γ are
all much less than 1 in absolute value, this energy is ex-
panded up to second order in these different quantities.
Besides a constant, the result is a sum of two terms. With
respect to the rotation angles, the former only depends
on the four ωℓ,γ angles and the latter only on the compo-
nents of Γℓ,γ [2]. The minimization of each of the terms

leads to nℓ,3 = k̂ℓ and the following relations [2]:

ωℓ,II − ωℓ,I = −2(kxℓ + kyℓ )
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where σ is defined in Eq. 3 [3] and all the Cartesian
components are expressed in the cubic reference frame.
Moreover, it is found that the minimum of energy is in-
dependent of the direction of kℓ. With respect to kℓ, the
energy is minimum when Eq. 2 is satisfied [2].
Interestingly, only differences of angles appear in

Eq. S.2. This is expected since in an incommensurate
structure, the actual phase depends on the origin adopted
for the reference frame. We are therefore authorized to
enforce a new condition. We set

∑
γ ωℓ,γ = 0. Together

with the first three lines of Eq. S.2, we have a set of
four linear equations with four unknowns, which is read-
ily solved. Similarly, we set

∑
γ Γℓ,γ = 0 and determine

the four Γℓ,γ vectors.
Inspecting Eq. S.2 it is remarkable that the twist and

canting angles solely depend on parameter σ ≡ (Dx +
Dy)/J , i.e. only the sum of two out of the three compo-
nents of the Moriya vector matters. On the same footing,

the condition for minimizing the energy is given by Eq. 2,
i.e. a linear combination of the three components of D.
As a matter of fact, the model is not dependent on each of
the D components, but only on two linear combinations
of them.
We turn to the case of the conical phase. The energy

is computed from Eqs. 1 and 4, in the same way as in the
helical phase, except that m∥ is a free parameter. The
minimization leads to results similar to those obtained
in the helical phase [2]. The cone angle θ is found to be
proportional to B with

cos θ =
m∥

m
=

6JgµBB

(−Dx +Dy − 2Dz)2
. (S.3)

Although Eq. S.3 links m⊥ and m∥, thanks to the very
high sensitivity of µSR to these quantities, the fit pre-
sented in Fig. 1 was performed leaving them as free pa-
rameters for each of the spectra recorded under a mag-
netic field. We note that the application of Eq. S.3 using
the numerical values presented in the main text leads
to θ = 59 (3) degrees, in fair agreement with the values
reported in Table II.

At this juncture we notice that the helical and conical
structures are fully determined by the linear combination
of ratios Dα/J appearing in Eqs. 2 and 3. The cone angle
of the conical structure does not provide an additional
combination.

With the determination of the rotation parameters we
can fully determine vectors aℓ,γ and bℓ,γ of Eq. 4, and
therefore the magnetic structure. With this material at
hand we can proceed to the computation of the µSR po-
larization functions.

S2. THE PZ(t) AND PX(t) POLARIZATION
FUNCTIONS

The relevant µSR signals are measured in pairs of de-
tectors BF and UD in zero-field and UD and LR in an
applied field, with a notation explicited in Fig. 1. Po-
larization function PZ(t) is relevant in zero-field for both
BF and UD pairs of detectors. In finite field, the signal
measured in the pair UD is PX(t) and that measured in
the pair LR is PY (t). The Cartesian axes X, Y , and
Z refer to a laboratory orthogonal reference frame. The
muon beam polarization defines the Z axis for zero-field
measurements, while this Z axis is collinear to Bext for
experiments performed in an applied field [4, 5].

This section is devoted to the derivation of the PZ(t)
and PX(t) polarization functions. The methodology fol-
lowed for the derivation of PY (t) is very similar to that
of PX(t): the interested reader will adapt the PX(t) for-
mulas to PY (t).
As will be seen, the expression of the polarization func-

tions require the Fourier components of the magnetic
moments in the crystal. We first explicit their expres-
sion and turn to the evaluation of PZ(t) and PX(t) in a
second step.
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A. Fourier components mℓ;q,γ

With the Fourier transformation definition,

mℓ;q,γ =
1

√
nc

∑
i

mℓ;i,γ exp [−iq · (i+ dγ)] , (S.4)

where the sum runs over the coordinates i of the nc cubic
unit cells of the crystal and q is a vector of the first
Brillouin zone. Equations 4 and S.4 lead to

mℓ;q,γ =
√
nc

(
δq,k m̃ℓ;γ,+ + δq,−k m̃ℓ;γ,− + δq,0 m∥

)
,

(S.5)

with

m̃ℓ;γ,± =
m⊥

2
(aℓ,γ ± ibℓ,γ) . (S.6)

B. Derivation of PZ(t) and PX(t)

The polarization functions denoted as PZ(t) and PX(t)
are respectively measured for the zero and finite field µSR
experiments. These are the average evolutions of the Z
andX components of the spin Sµ of the muons implanted
into the specimen under study. We start with the motion
of a muon spin submitted to field Bloc. It is ruled by the
Larmor equation whose solution reads

SZ(t)

S
=

(
BZ

B

)2

+

[
1−

(
BZ

B

)2
]
cos(γµBt),(S.7)

and
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B2
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B2
+
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X

B2

)
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}
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+

{
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B2
[1− cos(ωµt)] +

BZ

B
sin(ωµt)

}
sinφµ sin θµ

+

{
BXBZ

B2
[1− cos(ωµt)]−

BY

B
sin(ωµt)

}
cos θµ, (S.8)

respectively for SZ(t) and SX(t) [6]. For simplicity and
since there is no risk of confusion in this section, we have
dropped the subscript µ of Sµ and “loc” of Bloc. In
Eq. S.8, S is assumed to be oriented at time 0 in the di-
rection defined by the polar and azimutal angles θµ and
φµ, corresponding to the experimental conditions. We
do not worry about the direction of the muon spin at the
instant of implantation in Eq. S.7, since the zero-field
PZ(t) is independent of this direction [7]. For definite-
ness, Eq. S.7 is derived for a muon spin oriented along
the Z axis at time 0.
We turn to the expression of the field at the muon

site. This field is the sum of the applied field Bext and
the field resulting from the Mn magnetic moments. The
latter is decomposed in three parts: the first one stems

from the moments in the Lorentz sphere, the second is the
Lorentz field BLor, and the third is the demagnetization
field Bdem.
The field arising from the moments in the Lorentz

sphere depends on the position of the muon in the crystal
unit cell, the Mn magnetic moments and their coupling
with the probe. In a metal this coupling is traditionally
split into two contributions, (i) the classical dipolar in-
teraction with the Mn electronic moments assumed to be
localized at the Mn position, and (ii) the Fermi contact
interaction of the muon spin with the electron density at
its site, which is polarized by the neighboring Mn mag-
netic moments. Both contributions linearly depend on
the magnetic moments mℓ;i,γ . Because of the long-range
nature of the magnetic structure, it is advantageous to
use the Ewald transformation for the computation of the
dipolar contribution [8, 9]. Therefore we represent the
magnetic moments in the lattice by their Fourier trans-
form. Altogether the field at muon site sη in K-domain
ℓ is

Bloc,ℓ,sη = Bext +BLor +Bdem (S.9)

+
µ0

4π

1
√
ncvc

∑
γ

∑
q

Gdγ ,q,sηmℓ,dγ ,q exp(−iq · r0,sη ).

Here, vc is the volume of the unit cubic cell. Tensor
Gdγ ,q,sη describes the dipolar and Fermi contact inter-
actions between the muon spin and the Mn magnetic
moments; see Refs. 5, 7, and 10 for full details. The
Fermi contact interaction is characterized by the unit-
less parameter rµH/4π = −1.04 (1) [7, 11, 12]. Pa-
rameter −r0,sη in Eq. S.9 is the vector position of the
muon in the crystal unit cell. Experiments dedicated to
the determination of the muon site in MnSi showed the
muon to be located at an interstitial site corresponding
to Wyckoff position 4a of space group P213, of coordi-
nate (xµ, xµ, xµ) with xµ = 0.532 in reduced unit [11].
There are therefore four possible sites, labelled by sη, for
the muon in the cubic cell.
Fields BLor and Bdem are respectively equal to

4µ0m∥/3vc and −4µ0Nm∥/vc. The factor 4 accounts
for the four Mn atoms in the unit cubic cell and N ≈ 0.8
is the demagnetizing field coefficient.
The next step towards the expression of PZ,X(t) is

to include the effect of spin-lattice and spin-spin relax-
ations in the model. This is achieved by multiplying
the non-oscillating contribution of SZ(t) by exp(−λZt)
and the oscillating contributions of SZ(t) and SX(t) by
exp(−λXt) (Eqs. S.7 and S.8). Here, λZ and λX are re-
spectively the spin-lattice and spin-spin relaxation rates,
but in the fitting procedure λX may also phenomenologi-
cally include the effect of a possible small disorder in the
crystal or magnetic structure.
In a µSR measurement several millions of muons are

implanted in the specimen under study. Each of them
localizes in a random unit cell of the crystal. Therefore
parameter −r0,sη of Eq. S.9 takes many possible values
which differ by a vector equal to a lattice Bravais vector.
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Recalling that the magnetic structure is incommensurate,
this implies that factor exp(−iq · r0,sη ) for q = ±k in
Eq. S.9 uniformly spans the unit circle in the complex
plane. The ensemble of implanted muons therefore probe
a distribution of fields, denoted as Dv(B), rather than
Bloc,ℓ,sη [7]. Then, the polarization functions associated
with muons implanted at site sη in domain ℓ write

PZ,X,ℓ,sη (t) =

∫
SZ,X(t)

S
Dv(B) d3B, (S.10)

and the average over the four muon sites and the four
K-domains is

PZ,X(t) = ⟨PZ,X,ℓ,sη (t)⟩ℓ,η. (S.11)

Finally the actual fit function is obtained by including
the signal arising from the fraction f of muons which miss
the sample and stop in its surroundings, i.e.

P fit
Z,X(t) = (1− f)PZ,X(t) + f cos(ωextt− φµ).

(S.12)

Fraction f is 0 for the [111] crystal owing to its very large
cross section and f ≲ 0.04 for the other two crystals. In
addition, ωext ≈ γµBext.

S3. COMPARISON WITH A FORMER MODEL
FOR THE MAGNETIC STRUCTURE

The µSR spectra recorded in the helical and conical
phases of MnSi presented in Refs. 7 and 13 as well as
those of the present work cannot be modelled within the
regular magnetic structures. In the cited references, devi-
ations from these structures were allowed with limitations
enforced by the symmetry of the P213 space group and

the direction of the magnetic propagation wavevector in
the crystal structure. This was technically achieved with
the theory of representation analysis [14]. Restricting to
structures close the regular structures, the deviations can
be interpreted into twists and cantings acting in different
ways on the four Mn sublattices and depending on the di-
rection of the propagation wavevector. Now, representa-
tion analysis provides relation neither between the twist
and canting angles nor between the angles observed for
the different orientations of k. Therefore a large number
of unrelated parameters remain in the fitting procedure.

In the present work we use a model based on a mi-
croscopic Hamiltonian, with a full account of the crys-
tal structure. It is assumed that the magnetic structure
can be twisted and canted with, in a first step, no re-
striction on the twist and canting angles and in partic-
ular with the direction of canting. From the minimiza-
tion of the magnetic energy the twist and canting angles
are determined as a function of the physical parameters
of the Hamiltonian. The resulting twisted and canted
magnetic structure is fully consistent with representa-
tion analysis, notably the direction of canting which is
severely constrained by symmetry. This is actually not
surprising since the lattice symmetry is embedded in the
origin Hamiltonian. The fit to the experimental spectra
recorded in zero and finite fields applied along the three
principal directions is then performed with a very limited
number of parameters, which are physical parameters en-
tering the Hamiltonian.

If we compare the polarization functions resulting from
fits of the current model and those of Refs. [7, 13], the
differences are tiny. For instance, considering the zero-
field data, the most notable evolution in the field dis-
tributions is a separation between the two peaks located
below 100 mT which is slightly smaller in the new model.
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[7] P. Dalmas de Réotier, A. Maisuradze, A. Yaouanc,

B. Roessli, A. Amato, D. Andreica, and G. Lapertot,
Determination of the zero-field magnetic structure of the
helimagnet MnSi at low temperature, Phys. Rev. B 93,
144419 (2016).

[8] P. P. Ewald, Die Berechnung optischer und elektrostatis-
cher Gitterpotentiale, Ann. Phys. 369, 253 (1921).

[9] M. Born and K. Huang, Dynamical theory of crystal lat-
tices (Clarendon, Oxford, 1954).

[10] A. Yaouanc, P. Dalmas de Réotier, and E. Frey, Zero-field
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