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Abstract

Polymer-derived ceramics (PDCs) are a very attractive class of materials due to their excellent prop-

erties such as resistance to high temperatures and harsh environments, adjustability of mechanical and

functional behavior, and compatibility with a broad range of shaping techniques. The liquid nature

of the silicon-containing polymeric precursors and the composition tuning via addition of fillers set

the stage for the creation of functionally graded ceramics (FGCs). Polysilazane-based precursors with

and without divinylbenzene (DVB) addition for carbon concentration increase are sequentially cast in

three different custom molds. DVB concentration, casting order, and thermal processing conditions

are varied to study their influence on the interface nature and composition gradient of the functionally

graded ceramic parts which are obtained after pyrolysis at 1000–1400 °C. Synchrotron-based tomo-

graphic microscopy was applied for high-resolution 3D visualization of the parts, allowing clear dis-

tinction of the dissimilar regions and approximate quantification of the composition gradients tunable

from submicrometer to millimeter transition lengths. Achieving spatially defined electrical conduc-

tivity contrasts in monolithic silicon carbonitride parts, an LED attached onto a FGC plate outlines a

promising use case for harsh environment applications.
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1 Introduction

Polymer-derived ceramics (PDCs) such as silicon carbonitride (SiCN) exhibit a unique set of proper-

ties including resistance to high temperatures and harsh environments, property tunability, and com-

patibility with a broad range of shaping techniques [1]. Mastery of these three aspects would ulti-

mately allow for advanced PDC-based applications in harsh environments. In addition to homoge-

neous inert elements as passive [2] or sensing [3] material, engineering of property gradients in PDC

parts could render complex functionality integration possible where otherwise ceramic-ceramic or

metal-ceramic joining is common yet prone to failure due to atomic bonding differences or mismatch-

ing coefficient of thermal expansion (CTE) [4]. These so-called functionally graded materials (FGMs)

or more specifically functionally graded ceramics (FGCs) are defined as volumes with a continuous,

stepped, or spatial change in composition and / or microstructure [5,6].

A conventional approach for harsh environment monolithic devices is co-fired ceramics where

green tapes are patterned, filled with metallic pastes, and laminated. Categorized in high-temperature

(HTCCs, >1000 °C) and low-temperature co-fired ceramics (LTCCs, <1000 °C), suited materials like

high-melting (e.g. platinum) or lower temperature melting metals (e.g. silver) and glassy phases, re-

spectively, are applied [7]. However, involved noble metals are expensive, co-fired ceramics are also

constraint by mismatched CTEs [8] and especially LTCCs have limited operating temperatures. Mis-

matching CTEs and resulting stress is also the major challenge of metal-ceramic joining in processes

such as brazing [9]. Recently, advances in additive manufacturing (AM) facilitated new arrangements

and applications [5]. For instance, copper has been integrated into a kaolin ceramic matrix by a

multi-vat digital light processing (DLP) technique. 3D freeform electrical paths were spatially defined

within the otherwise insulating part, supplying an LED with power [10].

Overcoming poor thermomechanical properties of ceramic-ceramic assemblies joined by brazing

or diffusion bonding [9], silicon-containing preceramic polymers (PCPs) were investigated as liquid
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adhesive. Colombo et al. joined silicon carbide with a thin layer of a siloxane-based solution [11] and

according to their findings, the use of low heating rates is recommended [12]. Further examples using

polysiloxanes [13], polycarbosilanes [14], or polysilazanes [15] as adhesive have been demonstrated

for SiAlCN, SiC, or copper/epoxy molding compound composite to be joined. Strength of the obtained

joints is in the order of other joining techniques and often is more temperature resistant. Compared

to the bulk material, however, joints typically are the weak point. This problem was overcome for

PDCs by the "polymer-based bonding" technique, presented by An et al. [16] and Liew et al. [17,18]

in 2000/2001. Joining the parts in the organic green state before pyrolysis, using the same liquid

PCP (formulation) the green parts were derived from, established crosslinking across the parts. This

process, yielded neither noticeable defects nor any noticeable interface after pyrolysis.

Two major advantages of PDCs are their great compatibility with various shaping techniques and

the adjustability of their properties. Extensive efforts have been invested in the investigation of tech-

niques benefiting from the liquid nature of the precursor, e.g. fiber drawing, coating, casting, or

additive manufacturing [16,19–22]. Many groups studied the influences of precursor class, filler ad-

dition, processing route, and thermal as well as atmospheric processing parameters on the ceramics’

composition, microstructure, and mechanical and functional properties [23–30]. Tuning of PDCs’

electrical conductivity is mainly achieved by the addition of metallic or carbon (C) fillers. Several

metals were used as conducting phase, introduced in the form of metal salts or complexes including

for example titanium [31,32], or copper, nickel, and cobalt [33,34]. More commonly, carbon-fillers

are added. Divinylbenzene (DVB) is cost-efficient and conveniently mixes and cross-polymerizes with

the PCP [35–38] but several carbon allotropes such as carbon nanotubes (CNTs) and graphene have

been demonstrated to significantly increase the PDC’s electrical conductivity as well [39–43]. De-

pending on the carbon concentration and distribution, the dc conductivity at room-temperature (RT)

ranges across up to 15 orders of magnitude (typically ∼10-10–1 S/cm) [1,44], recent observation of

"abnormal graphitization in near-surface/ interface regions" locally yielded values up to 14 S/cm [45].

The increased occurrence near the surfaces was observed not only in the case of carbon, but also in

case of titanium-filled silicon oxycarbide [32].

The graded structure of FGMs allows for unique combinations of properties that cannot be achieved
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with monolithic composites[46]. Few examples of functionally graded PDCs have been reported so

far. One class is concerned with the creation of a porosity gradient by controlled bubble nucleation

and viscosity increase dynamics or a temperature gradient during thermal curing [47–50]. Diode

functionality based on a p-n-junction has been demonstrated by combining a p-type SiCNO and an n-

type SiBCNO [51,52]. A continuous ceramic-to-polymer gradient composite has been manufactured

by dissimilar thermal processing of a green state bar in a custom-designed heating and cooling sys-

tem [53]. A PDC-based double-layer thermistor has been developed by combination of a DVB-filled

SiCN sensing element onto an unfilled SiCN serving as substrate [38]. Lamination of several partially

crosslinked PCP tapes filled with small or large silicon carbide particles followed by pressure-assisted

thermal processing yielded functionally graded ceramic matrix composites with adjustable mechanical

properties [54].

Making use of the liquid nature of the precursors as well as the ability to tune the ceramic compo-

sition and electrical conductivity by addition of DVB, functionally graded PDCs with an engineered

contrast and functionality integration are presented in this work. Geometrically defined combination

of organopolysilazane-based PCP formulations with and without DVB in an early stage of the process-

ing route followed by joint thermal treatment yields monolithic SiCN parts, in which a slight contrast

in atomic composition and microstructure results in a conductivity contrast of 5–10 orders of magni-

tude while otherwise behaving very similarly in terms of material properties. This contrast is due to

the segregated free carbon occurrence and microstructure which represents the only conducting phase

in the material at RT [44]. The influence of the casting order and thermal processing parameters on

the interface nature is investigated by means of scanning electron microscopy (SEM), transmission

electron microscopy (TEM), and synchrotron-based tomographic microscopy, allowing for a high-

resolution 3D visualization of the FGCs. As a sample application, an SiCN plate with two electrically

conducting feedthroughs seamlessly integrated into an insulating matrix is presented which supplies

a light-emitting diode (LED) with power. This technique reduces time and effort for ceramic join-

ing or assembly as well as the risk of failure. Considering the excellent properties of PDCs and the

PDC route’s compatibility with several advanced shaping techniques, functionally graded PDCs are

a promising approach for applications in chemical engineering, energy conversion, and biomedical
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implants.

2 Materials and methods

2.1 Synthesis of functionally graded SiCN Ceramics

The functionally graded ceramic samples were fabricated by molding in CNC-machined polytetraflu-

oroethylene (PTFE). For successful green part / body (GB) mold release, the mold surface finish is

essential, the areal roughness (Sq / Sa) should be in the order of 5 µm or better. The dissimilar PCP

formulations were sequentially cast, normally with an intermediate thermal (pre-)curing step (Fig-

ure S1b). The mold geometry for the first type of contrast samples is shown in Figure S2a. These

molds consist of two cylindrical layers with diameters of 6 and 8 mm and a depth of 500 µm each.

Eight of them are combined in one mold array. One or several of these PTFE mold arrays were placed

on the level hotplate inside the argon (Ar) glovebox. The general material processing is based on our

previous work [55] which among other results reports mechanical and electrical properties as well as

compositional data also relevant to this current work. The modified fabrication process of the current

work is outlined in Figure 1. The casting and thermal curing sequences and volumes are provided

in Table 1. The DVB-filled PCP formulation (3% dicumyl peroxide (DCP), typically 60% DVB),

19.8 µL (≡140%1 of the layer’s volume) was first pipetted into each molds’ lower layer and thermally

cured. When cooled down to RT, the DVB-unfilled PCP was cast and jointly crosslinked. Nomencla-

ture of the contrast samples is based on the casting order, these samples will therefore be referred to

as DVB60|00 bilayer in the following. In case of the opposite casting order (DVB00|60), the DVB-

free PCP was cast into the molds’ lower layers and extensively thermally cured. The DVB containing

PCP (typically 60%) was then pipetted on top and cured in a 3-step sequence of 10 min each at 100,

150, and 200 °C. For demolding, molds were generally flipped upside down and gently tapped. PTFE

molds were immersed in acetone, brushed, rinsed with IPA, and dried before reuse.

The second graded sample type are rectangular bars with aspect ratios (AR) of 3.25≤AR≤4 in

which the dissimilar PCPs were arranged laterally (LHBs). Eight molds are combined in one array in

1PCP overfilling compensates for partial volatilization during thermal crosslinking and contributes to a more planar
interface in DVB60|00 casting order. In the opposite DVB00|60 casting order, it was not done in case of the upper layer to
prevent DVB60 overflow.
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Fig. 1: Schematic of the PDC fabrication process in argon atmosphere: a) Preceramic polymer
formulation; b) bilayer or lateral casting and thermal crosslinking; c) solidification and green body
mold release; d) transfer into the tube furnace for pyrolysis; e) transformation to functionally graded
PDCs.

Tab. 1: Nomenclature and fabrication details of functionally graded SiCN parts: Composition
casting order, absolute volumes, relative filling with respect to the theoretical mold volume, and ther-
mal curing conditions for bilayer, laterally heterogeneous bars, and bi-feedthrough geometry. 3S ab-
breviates the standard 3-step curing sequence for DVB-filled precursors (10 min @ 100 °C + 10 min
@ 150 °C + 10 min @ 200 °C).

Arrangement Name 1st casting Thermal 2nd casting Final
Volume (µL / %) pre-curing Volume (µL / %) curing

Bilayer

DVB60|00 (TEM)
DVB60 10 min @ 100 °C + DVB00

30 min @ 200 °C
19.8 / 140 10 min @ 150 °C 25.1 / 100

DVB60|00
DVB60

15 min @ 100 °C
DVB00

30 min @ 200 °C
19.8 / 140 30.2 / 120

DVB00|60
DVB00

30 min @ 200 °C
DVB60

3S
19.8 / 140 25.1 / 100

LHB

Std (T0): GB-L
DVB40

3S
DVB00

30 min @ 200 °C
11.2 / 140 9.7 / 120

T2: GB-L
DVB00

5 min @ 200 °C
DVB40

3S
9.7 / 120 9.7 / 120

T4: L/GB-L
DVB00

1 min @ 175 °C
DVB40

3S
9.7 / 120 9.7 / 120

T5: L-L
DVB40

none
DVB00 20 min @ 150 °C

11.2 / 140 9.7 / 120 10 min @ 200 °C

BFT DVB40|00
DVB40 3S (but DVB00 20 min @ 180 °C

2× 18.0 / 130 20 min @ 200 °C) 275 / 74 10 min @ 200 °C
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PTFE, shown in Figure S2b. They are 500 µm deep, have corner radii of 1 mm and six different sizes

with lateral dimensions of 8×2, 9.5×2.5, 11×3, 14×4, 20×6 and 26×8 mm2, of which only 11×3 mm2

is used in the following. As illustrated in the Figure 1, the first PCP formulation was pipetted into

one end of the cavity, followed by a thermal intermediate pre-curing step, pipetting of the dissimilar

precursor into the mold’s opposite end, and a joint final curing step. Sequence, volumes, and thermal

treatments indicating the decreasing extent of thermal pre-curing from type 0 (standard: green body-

liquid joining) to type 5 (liquid-liquid joining) are shown in Table 1.

Composition-contrast ceramic bi-feedthrough (BFT) plates were fabricated using dedicated CNC-

machined PTFE molds which consist of a square matrix of 20×20 mm2 with a depth of 1 mm and

corner radii of 2 mm. There are two 100 µm recessed circular areas of 4 mm diameter and 4 mm

spacing which serve for placing the liquid inset PCP. One large droplet of the DVB 40 PCP was

placed onto each recessed area. The volumes of 18 µL were chosen, in order to achieve the maximum

material height with no or minimal lateral spreading exceeding the predefined area. To render the PCP

droplets stable, they were thermally pre-cured before the dissimilar matrix PCP (DVB00) was cast

around. The matrix volume of 275 µL was selected to not bury the green parts but leave the insets’ top

exposed. After joint thermal curing and thermosetting of the matrix, BFT green parts were released

from the mold by upside down tapping at elevated temperatures around 100 °C.

The composition-contrast green parts were placed in Al2O3 crucibles for Ar atmosphere pyrolysis.

Bilayer samples were processed at heating and cooling rates of 100 K/h and peak temperatures of

1000 and 1400 °C (Figure S3: solid lines). The seven types of laterally graded bars and BFT plates

were pyrolyzed at 1000 and 1400 °C as shown in Figure S4a,c. In this case, pyrolysis parameters

were optimized with a reduced heating rate of 60 K/h in the temperature range of 300–800 °C (Fig-

ure S3: dotted lines), resulting in low scrap rates of 0% for 1000 °C and 14% for 1400 °C pyrolysis

(Figure S4b,d).

2.2 Characterization

The cross sections of some samples were prepared by means of cleaving or diamond-wire sawing.

Part inspection and imaging were performed by optical microscopy (OM; M80, Leica, Germany;

8
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Eclipse L200, Nikon, Japan) and SEM (Merlin, Zeiss, Germany). The electrical conductivity was

measured in a 2-probe bulk approach in transition. A custom two-probe setup was built where the

probes were connected to a Keithley 2400 source meter. In order to ensure a good electrical contact,

the Cu probe tips were polished and a conductive two-component Ag epoxy glue (Epo-Tek® H20E,

Epoxy Technology, United States) was applied on both sides of the PDC discs to be measured. The

Ag glue was placed centered and spread to cover a circular area with 80% of the specimens’s diameter.

Samples were clamped between the probes for measurement and then flipped and recontacted for a

second measurement. Resistance R was obtained as the inverse of the IV-curve linear regression

line, IV ranges were adapted depending on the samples’ conductivity and kept well below values

which would cause heat induced effects. Based on Pouillet’s law (Equation 1, with t for the specimen

thickness and A for the effective cross-sectional area), the conductivity σdc was finally calculated

in good approximation through rearrangement and calculation of the approxiamative specimen area

based on the silver epoxy contact diameter dAg (Equation 2):

R = ρ
t

A
(1)

σdc = ρ−1 =
t

RA
=

t

Rπ
(
dAg

2

)2 =
4t

Rπ(dAg)2
(2)

Preparation for TEM analysis of a DVB60|00 1400 °C pyrolyzed bilayer sample (intermediate cur-

ing: 10 min at 100 °C, 10 min at 150 °C), involving 1 µm carbon sputtering and gallium (Ga+) FIB

lamella cutting, was performed with a NVision 40 (Zeiss, Germany). TEM, high-resolution trans-

mission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) were then

conducted on a Tecnai Osiris (FEI, United States).

Several bilayer and laterally heterogeneous SiCN samples were analyzed by means of X-ray ab-

sorption contrast tomographic microscopy. To achieve sufficient contrast between the dissimilar SiCN

regions, relatively low energy X-rays had to be used, which determined the dimensions of the spec-

imens to be in the range of a few hundreds of micrometers. For this reason, bilayer samples were

typically cleaved into small pieces. In case of the lateral composition-gradient bar samples, the ROI,

a sharp angle triangular center piece, was cut out of each sample (sized ~8.2×2.2 mm2 resulting from

9
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11×3 mm2 molds) by diamond wire sawing (Figure S5). Microtomography was performed at PSI SLS

TOMCAT beamline [56]. The vertically mounted PDC samples were placed into the 12, 15 or 20 keV

X-ray beam and rotated by 180° around their long axis. Data was acquired with a detector system con-

sisting of a 20 µm thick LuAG:Ce scintillator, a 10× or 20× microscope lens, and an sCMOS camera.

These configurations result in a field of view of 1.66×1.4 mm2 or 830×700 µm2 and pixel sizes of 0.65

or 0.325 µm for 10× or 20× magnification, respectively. A gridrec algorithm [57] reconstructed to-

mographic volumes from the X-ray projections which were then visualized and analyzed using Avizo

software (Thermo Fischer, United States). In the case of T4, three adjacent scans were stitched.

3 Results and discussion

3.1 Microstructure of high-contrast graded SiCN

Comprehensive compositional and microstructure information at high resolution was first obtained for

one DVB60|00 bilayer sample (the lower DVB60 layer was pre-cured during 10 min at 100 °C and

10 min at 150 °C; 1400 °C pyrolyzed) which was prepared for SEM, EDX, and TEM. On the lamella,

a gray contrast is clearly visible in the SEM image in Figure 2a i. Thanks to a sensitive EDX detector

and high DVB-filling contrast (60|00), EDX mapping (Figure 2a ii) was able to visualize a significant

difference of carbon concentration between the (upper) filled and (lower) unfilled SiCN. An EDX

line scan was performed perpendicular to the interface. The carbon and silicon concentration profiles

shown in Figure 2a iii allow for an approximate quantification of the compositional transition length

which is in the order of 0.5 µm in this case with extended lower layer intermediate pre-curing.

The same DVB60|00-contrast lamella was then imaged by TEM. Several HRTEM images were

recorded in the interface region but within the field of view of 100×65 nm2, no obvious change or

trend in the random glassy network microstructure could be observed in single images. Two examples

of HRTEM images from homogeneous regions are shown in Figure 2b. They originate from locations

approximately 2.5 µm away from the interface and exhibit features typical for SiCN processed at high

temperatures of 1400 °C. Both the unfilled (Figure 2b i) and DVB60-filled (Figure 2b ii) material

contain short-range structural features. Firstly, there are approximately 10 nm large dark crystallites

with an interplanar distance of 0.25 nm, corresponding to β-SiC’s (111) d-spacing [35]. The planes

10
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of this β-SiC cause the two diffraction rings with the relative high intensity in the selected area elec-

tron diffraction (SAED) patterns [58] which were recorded in thicker lamella regions in order not

to be impaired by possible beam amorphization effects. Secondly, both HRTEM images also show

ribbon-like features with interlayer spacings ranging from 0.34 up to 0.42 nm. These features are

turbostratic graphitic phases, also called basic structural units (BSUs). Comparing their occurrence

and structure between DVB00 and DVB60 SiCN, there are noticeably more and longer BSUs in the

DVB-filled material, which furthermore consist of more stacked layers. The selective addition of

DVB as a carbon-filler to the PCP therefore effectively altered the obtained SiCN’s composition and

microstructure, with spatial control in a monolithic sample.

2 µm 2 µm

a

C
Si

30

60

c 
(a

t.%
)

0 1 d (µm) 3

500 nm

Si

C

10 nm

0.25 nm
0.34 nm

0.42 nm

5 1/nm

10 nm

0.35 nm

0.25 nm

0.36 nm

5 1/nm

b

i ii iii

i ii

Fig. 2: HRTEM analysis of 1400 °C pyrolyzed DVB60|00 bilayer sample FIB-cut into lamella:
a) EDX analysis: i) SEM image with interface position highlighted in red; ii) C and Si EDX map
with line scan positioning highlighted in green, perpendicular to interface line; iii) line scan EDX data
showing a transition length of ∼500 nm; b) HRTEM images with SAED patterns: i) characteristic
TEM image of DVB00 region with SiC precipitate and few C BSUs highlighted in green and yellow,
respectively; ii) characteristic TEM image of DVB60 region with SiC precipitates and overall more
C BSUs.
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3.2 Influence of the casting order

Tomographic microscopy allows for high-resolution 3D visualization of entire sample volumes. Due

to only slight difference in the chemical composition, X-ray attenuation coefficients of DVB-filled

and unfilled ceramic regions are very similar, resulting in a very poor contrast. Using monochromatic

and partially coherent synchrotron light allowed to obtain a sufficient contrast to distinguish the two

materials. The obtained resolution allowed to resolve features of ~1 µm. Fabricated in the 6|8 mm

bilayer PTFE molds, two samples with opposite casting orders were compared. In case of DVB60|00

order, the lower DVB60 layer was mildly pre-cured (partially crosslinked) during 15 min at 100 °C. In

the opposite DVB00|60 arrangement, the lower DVB00 layer was extensively pre-cured during 30 min

at 200 °C. The 3D reconstructed microtomography images of both sample types, cleaved into smaller

pieces, are presented in Figure 3. For both casting orders (Figure 3a,d), the volumes are entirely free

of cracks and pores, despite the high DVB-filling contrast and high pyrolysis temperature of 1400 °C.

This indicates the suitability of the pressureless thermal crosslinking conditions and the applied heat-

ing and cooling rates of 100 K/h during pyrolysis. DVB as a crosslinker and carbon filler is generally

advantageous in PDC processing due to enhanced hydrosilylation occurrence. Hydrosilylation is a

favorable crosslinking mechanism forming strong Si-C-Si / Si-C-C-Si units which improve the me-

chanical strength, reduce outgassing and increase the ceramic yield and therefore help to obtain dense

and crack-free ceramics [35,59]. Layered phase contrasts are clearly visible in Figure 3a,b,d,e. The

interfaces are seamless and curved, convex in case of DVB00|60 due to lower layer overfilling and

concave in case of DVB60|00. The latter curvature is the result of the PCP top layer curing first, fol-

lowed by partial volatilization of the subjacent volume (mainly short oligomers and DVB molecules).

In order to quantify and compare the SiCN composition gradients resulting from the sequential cast-

ing of DVB-filled and unfilled precursor, intensity profiles perpendicular to the interface were again

evaluated (Figure 3b,c,e,f). The grayscale line profiles confirm the visual impression from the 3D and

2D views that the DVB60|00 order exhibits a smoother transition in this case. There are two possible

reasons contributing to the ~25 µm long transition range. Firstly, DVB60 PCP has previously shown

to typically form a rougher top surface [55] compared to DVB00 which results in a gradual change

in the grayscale around the interface. Secondly, compared to the bilayer sample analyzed by TEM,

12
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the lower DVB60 layer was pre-cured very mildly only. Thermal treatment during 15 min at 100 °C

(compared to 10 min each at 100 and 150 °C) was apparently sufficient to consolidate the global shape

(curved interface line) but possibly still allowed for interlayer mixing or DVB diffusion processes on

the micro-scale. This indicates that the composition gradient in bilayer SiCN is adjustable by the vari-

ation of the pre-curing degree. The third example (DVB00|60 arrangement), where the lower layer

was extensively thermally crosslinked (30 min at 200 °C) suggests a chemical influence of the casting

order on the interface nature. Despite extensive pre-curing, it shows a transition length of ~5 µm (Fig-

ure 3e,f), in between the previous two values. In this case, the DVB molecules contained in the upper

liquid precursor formulation potentially diffused into the DVB-free GB layer below before the second

thermal curing step immobilized them by integration into the upper layer crosslinked network.

Fig. 3: Microtomography of 1400 °C pyrolyzed 60% DVB contrast bilayer SiCN and transition
length determination: a) 3D reconstruction of a DVB60|00 piece; b) 2D view on interface region
serving for grayscale intensity profile measurements; c) several intensity profiles perpendicular to the
interface, featuring a transition length of ∼25 µm for DVB60|00 casting order; d) 3D reconstruction of
a cleaved DVB00|60 piece; e) 2D view on interface region; f) several intensity profiles perpendicular to
the interface, featuring a transition length of ∼5 µm for DVB00|60 casting order. Ring artifacts visible
in a) and b), less expressed in d) and e).
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3.3 Influence of the intermediate curing

With the objectives to facilitate electrical characterization, increase the segment lengths perpendicular

to the interface, and reduce influencing factors, a set of four different types of laterally heterogeneous

SiCN bars was investigated where only the degree of pre-curing from extensive to none and the casting

order were varied. Types 0, 2, 4, and 5 (Table 1) were selected which were all fabricated in the

same molds (11×3 mm2), with the same DVB00/40 filling contrast, identical pyrolysis conditions

(60 K/h heating rate in the critical range, 1000 °C peak temperature), and same cut triangular geometry

(Figure S6f) for scanning. T0 represents the GB–L approach where the first part was solidified by

extensive thermal curing before addition of the second part. On the contrary, not any intermediate

curing was performed in case of T5, both dissimilar PCPs were directly pipetted in liquid state (L–

L). With T2 and T4, two examples with pre-curing to slightly and significantly reduced extent were

included.

The four prepared specimens, shown in Figure S5, have lengths ranging from 3.4–4.4 mm, while

the microtomography setup’s field of view covers only 700 µm in this dimension. Even when the

top surfaces exhibited signs of an interface line as it was the case for T2 and T5 (Figure S5c,g,i,j),

capturing of the interface region in a single scan remained very challenging due to its non-vertical

character.

3.3.1 Short gradients with intermediate curing

The 3D reconstructed data of a T0 (DVB40|00) scan in Figure 4a i shows the smooth top surface en-

tirely consisting of DVB00 SiCN. Below, a darker layer is clearly distinguishable with a decreasing

thickness from the wider DVB40 to the narrower DVB00 end. The interface shape and orientation are

a consequence of the casting process as Figure 1 illustrated previously. A closer look at the cross sec-

tion reveals the presence of three distinct layers, suggesting that the cured DVB40 tip partially lifted

from the PTFE mold bottom. The liquid DVB00 PCP then both filled this gap and covered the sloped

top surface. The captured volume is crack-free and shows no porosity or interface delamination. The

rough top surface which DVB40 typically forms was conformally adopted by the DVB00 layer above.

Segmentation and partial blue coloring of the latter in Figure 4a ii bring out the rough but sharp in-
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terface character in this DVB40|00 T0 sample with extensive pre-curing. While the brighter unfilled

layer appears homogeneous and fully dense, the generally darker DVB-filled region seems inhomoge-

neous. Darker features (reduced X-ray absorption due to a smaller linear attenuation coefficient) are

present with an increasing occurrence towards the bottom surface.

The same kind of low-density features was also observed in the type 2 sample where DVB-free

PCP was cast first and partially crosslinked during 5 min at 200 °C. They occurred exclusively in

the DVB40 region and are visible on the entire cross section in Figure 4b i. Segmentation and green

highlighting within the transparent matrix (Figure 4b ii) demonstrates their distribution and hence the

two-phase arrangement in 3D. The zone within the sample where the two dissimilar PCPs overlap is

exactly captured in the field of view of this scan. Clearly visible in this side view, the reduced extent of

thermal pre-curing did not significantly alter the interface characteristics. The interface line is clearly

defined and due to the DVB00|40 casting order smoother in this case.

Neither in the case of the scanned homogeneous DVB40 discs from our previous work [55] nor the

bilayer samples’ DVB60 layers (Figure 3), such low-density features were observed before. The lab

scale microtomography system used for the homogeneous samples lacks both the required resolution

and contrast. The bilayer samples were scanned at PSI TOMCAT, for a larger field of view with the

10× lens compared to the 20× lens setup applied in case of the laterally heterogeneous bars. Conse-

quently, voxels of the bilayer sample scans were 23=8 times larger, therefore possibly not resolving

the features before. Furthermore, it is also possible that the inhomogeneity with light features only

occurs in DVB40 material and not in case of lower or higher DVB-filling concentrations. The mi-

crotomography data alone does not allow the clear identification of the low-density features. They

could either consist of a light solid element (e.g. graphitic carbon) or a gas (porosity). For this rea-

son, all four laterally arranged specimens were cleaved approximately in the middle and their cross

sections were inspected by SEM. The images in Figure S7 show the fracture surfaces but no evidence

of any porosity, suggesting fully dense character of the SiCN material. The smooth and dense T4

cross section (Figure S7h,i) resembles DVB00 SiCN at this position but T2 or T5 (Figure S7d-g,j-k)

exhibit dark features which do not appear like pores. These observations suggest that phase separa-

tion occurs and micrometer-sized graphitic carbon forms in DVB40-filled SiCN. This possibly results
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from the decomposition of locally enriched polymerized DVB which did not cross-polymerize with

the polysilazane.

3.3.2 Longer gradients through reduced intermediate curing

With decreasing extent of pre-curing, longer composition (i.e., carbon concentration) gradients are

expected. In case of the PCP-joining type 4 (DVB00 partially pre-cured during 1 min at 175 °C),

three vertically shifted microtomography scans were recorded. By stitching of the adjacent data, a

nearly 2 mm long continuous segment of the specimen was reconstructed in 3D. The grayscale image

in Figure 4c i shows a crack-free volume with a smooth top surface and rough side walls (from the

diamond wire sawing). Both the top and bottom surface exhibit aligned c-shaped grayscale contrasts,

indicated by the red arrow. In the typical concave shape of the firstly cast PCP (DVB00 in this case),

this suggests a partial material consolidation resulting from the mild pre-curing avoiding extensive

mixing of the two dissimilar PCPs. In the bulk volume, the same low-density features as observed in

the previous two cases are present. These features, which are presumably graphitic carbon again, were

segmented and highlighted in Figure 4c ii in green. They occurred across the entire captured specimen

length. The side view visualizes a high concentration in the direction towards the sample’s DVB40

end. From right to left, the concentration decreases continuously with a noticeable drop at the position

of the superficial grayscale contrasts. At the left end of the captured volume (DVB00 direction),

almost no more low-density features are present. This example of mild pre-curing (T4) suggests that

composition contrasts in polymer-derived SiCN can be tailored to yield gradients ranging from the

submicrometer to the millimeter range, probably ~2.5 mm in this case. For an exact quantification,

more scans would be required to cover an even longer part of the specimen.

Lastly, the liquid-liquid approach with no pre-curing was analyzed using the example of T5

(DVB40|00). The processed microtomography data from one scan is presented in Figure S8. The

grayscale 3D images (Figure S8a-c) show typical bottom and sidewall texture and a rough top surface.

Cross sections exhibit no lateral material contrast or interface but the inhomogeneously distributed

dark features observed in DVB40 material before. The segmentation (yellow) in Figure S8d,e reveals

predominant occurrence in proximity to the bottom and top surface which could be recently discussed
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near-surface abnormal graphitization [45], but is also more expressed to the top left. Localization of

the captured volume on the OM images in Figure S5g,j suggests that the transition is centered a bit fur-

ther in the DVB00 direction and therefore not captured in this scan. The composition gradient in this

L-L approach is expected to be longer than in the previous T4 type, therefore no significant trend of

the low-density feature concentration could be identified within the covered range of less than 700 µm

on the DVB40 side of the interface. However, above-mentioned observations, such as the visible con-

trast in the GB state (Figure S6a) or the significant difference in both ends’ electrical conductivity

in PDC state (Figure S6i and Table S1), have confirmed that there is a long-range composition- and

property-contrast also in case of type 5.

DVB40DVB40

DVB00

DVB00

DVB40

DVB00

700 µm
397 µm

200 µ
m

DVB40
DVB00

a

700 µm455 µm

358 µ
m

DVB00
DVB40

b

ii

i

ii

i

1.935 mm256 µm

386 µm

c

ii

i

DVB00
DVB40

Fig. 4: Tomographic microscopy of triangular center pieces of 1000 °C pyrolyzed laterally het-
erogeneous bars. a) T0: The DVB40 PCP was cast first and extensively pre-cured before casting
of the DVB00 PCP: i) 3D reconstruction with smooth upside up, crack- and pore-free volume; ii) seg-
mentation and partial highlighting of the DVB00 layer in blue to bring out the interface roughness;
b) T2: The DVB00 PCP was cast first and shorter-time pre-cured before casting of the DVB40 PCP:
i) 3D reconstruction with upside up, crack-free volume; ii) volume transparency and green segmenta-
tion of single-digit µm-sized volumes with much lower density which only occur in the DVB40 region,
side view showing exactly the region where the two dissimilar PCP overlap, curved and smooth inter-
face; c) T4: The DVB00 PCP was cast first and pre-cured to low extent before casting of the DVB40
PCP: i) 3D reconstruction stitched from three scans, upside up, crack-free volume with a c-shaped
surface contrast; ii) volume transparency and green segmentation of single-digit µm-sized volumes
with much lower density which occur more towards the DVB40 end.

17



Journal Pre-proof

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352
Jo
ur

na
l P

re
-p

ro
of

3.4 Proof-of-concept application

Spatially defined property contrasts, e.g. in electrical conductivity, in functionally graded ceramic

parts entirely composed of SiCN allow for an integration of functionality. As a first proof-of-concept,

a monolithic SiCN square plate with two cylindrical electrical feedthroughs is proposed in Figure 5a,

where high carbon content areas are seamlessly integrated into an insulating matrix. Among several

possible fabrication processes, a two-step molding approach with an inset PCP droplet placing and

extensive pre-curing (Figure 5b,c) and reduced pyrolysis heating rate has led to intact SiCN plates of

14×14×0.6 mm3 size. Mechanically stable electrical contacts were established by a silver epoxy and

an LED as a simple example of an electronic component was powered and lit up through the mono-

lithic BFT SiCN plate (Figure 5d). However, further fabrication optimization and extended testing are

required in order to ensure precise spatial definition of the conductive and insulating ceramic areas al-

lowing for efficient and safe application. Ultimately, complexity in geometry and functionality would

be increased and functionally graded all-ceramic reactor chambers or housings for electronics could

be realized. Instead of the prototype visualization (an assembled BFT plate fitted into a non-ceramic

case: Figure S9), two or more parts could be joined in green state by the polymer-based bonding

technique and yield full ceramic bodies after pyrolysis.

4 Summary & Conclusion

In this work, the development and characterization of functionally graded polymer-derived SiCN was

introduced. Based on pressureless thermal processing of the preceramic poly(methylvinylsilazane)

Durazane 1800 and the composition- and property-tuning by DVB addition, monolithic ceramic parts

with engineered property-contrasts were fabricated by consecutive casting of dissimilar precursor for-

mulations. DVB-filled and unfilled PCPs were joined in PTFE molds in vertical bilayer or lateral

arrangement. The degree of the intermediate thermal treatment was varied, i.e., liquid precursor of

one composition was combined with cured, partially cured, or liquid precursor of the dissimilar com-

position. DVB-contrast green parts were transformed into carbon-contrast SiCN by pyrolysis under Ar

atmosphere with peak temperatures of 1000 and 1400 °C and 60–100 K/h heating and cooling rates.

Obtained ceramic parts, their phases, and the interface characteristics were analyzed by microscopy,
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Fig. 5: Functionally graded bi-feedthrough SiCN plate as a usage example: a): schematic
concept showing the two electrical feedthroughs which exhibit locally defined higher carbon con-
tent; b) schematic fabrication process: i) inset DVB40 PCP formulation droplet placing; ii) thermal
crosslinking of insets; iii) casting of the DVB00 matrix PCP; iv) matrix filling height slightly lower than
droplet peak; v) removal of the crosslinked bi-material GB from the mold; vi) BFT-PDC plate obtained
after pyrolysis; c) photographs of the fabrication process: i) two thermally cured DVB40 PCP droplet
insets; ii) fully cured BFT plate with DVB00 matrix in PTFE mold; iii) upside of a demolded green
state BFT plate; iv) bottom side of a demolded green state BFT plate; d) FGC demo device assem-
bly process: i) positioning of Cu wires on the ceramic plate’s top side feedthrough regions; ii) Ag
epoxy applied and thermally cured for electrical contact and mechanical fixation; iii) positioning of the
LED electrodes on the bottom side feedthrough regions; iv) Ag epoxy applied and thermally cured;
v) power supplied through the ceramic lighting up the LED.

electrical conductivity measurements, EDX, TEM, and synchrotron-based tomographic microscopy.

Pore-free composition-contrast green parts were fabricated in short time by consecutive casting of

the organopolysilazane-based precursor system with DCP and DVB and pressureless thermal curing

at maximum temperatures of 200 °C. Low heating and cooling rates in the order of 60–100 K/h

during the inert atmosphere pyrolysis have shown to be essential for the conversion to crack-free

carbon-contrast PDCs. Cross-sectional microscopy and 3D microtomography have demonstrated the

dense and defect-free character of millimeter-sized parts in different geometries and arrangements.

The same techniques have also shown that seamless interfaces with no signs of delamination were

formed irrespective of the PCP joining states. The character of the interface between ceramic regions
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derived from unfilled PCP and PCP filled with DVB at concentrations of 40–60 wt.% was analyzed and

correlated to the casting order and extent of intermediate thermal curing. If DVB-filled precursor was

cast first and thermally pre-cured before being brought into contact with the unfilled liquid counterpart,

partial volatilization altered the interface shape (e.g. forming curvature) which was typically rough.

The inverted casting order yielded geometries more accurate to shape and smoother interface planes.

The sharpest material contrast with an interface transition length below 1 µm was observed by EDX

in case of the DVB60|00 bilayer arrangement with extensive intermediate curing. Several steps of

longer gradients (5 µm, 25 µm, and >1.9 mm) were visualized by microtomography, resulting from

varied casting order and reduced intermediate thermal curing. Even when the dissimilar PCPs were

joined both in liquid state (laterally) with no intermediate curing, long range composition contrasts

were obtained as electrical conductivity measurements of the monolithic SiCN material suggested.

Localized differences in carbon concentration were identified in electrical conductivity contrasting

samples by EDX and TEM microstructure analysis. Microtomography of C-contrast SiCN exhibited

micrometer-sized low-density features in regions derived from DVB40 precursor which are probably

graphitic carbon. While the liquid PDC route is well compatible with molding, shape forming of the

interface requires further research with attention to gravitational and mold surface wetting influences.
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