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At energies {/s) much higher than the electroweak gauge boson masbdarge logarithmic corrections of
the scale ratio\/s’M occur. While the electroweak Sudakov type doull®.) and universal singléSL)
logarithms have recently been resummed, at higher orders the electroweak renormalizatiotR@puapr-
rections are folded with the DL Sudakov contributions and must be included for a consistent subleading
treatment to all orders. In this paper we first derive all relevant formulas for massless as well as massive gauge
theories including all such terms up to ord6fa" B, log? Y(s’M?)] by integrating over the corresponding
running couplings. The results for broken gauge theories in the high energy regime are then given in the
framework of the infrared evolution equation method. The analogous QED corrections below the wedk scale
are included by appropriately matching the low energy solution to the renormalization group improved high
energy results. The corrections are valid for arbitrary external lines and largest in the scalar Goldstone and
Higgs boson sector as well as for transverse gauge bosons. At TeV energies, these SL-RG terms change
scattering cross sections in the percentile regime at two loops and are thus non-negligible for precision
objectives at future linear colliders.
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[. INTRODUCTION lish the Higgs mechanism including a possible reconstruction
of the potential and of course of the Yukawa couplings. In
With the advent of colliders in the TeV regime there hasaddition one would have to look for additional heavy Higgs-
been a renewed interest in the high energy predictions of thBosons which could easily escape detection at the hadronic
standard modelSM). At hadronic colliders the experimental machines, but can be detected for masses up to 80% of the
and/or theoretical accuracy is usually in the few percent ree.m. energy at the/y option at the DESY TeV Energy Su-
gime, and thus the effect of one loop electroweak correctionperconducting Linear Accelerat6fFESLA) [2—4]. If any su-
of the order ofO(20%) at TeV energies is indeed relevant persymmetric particle would be found in addition, it is nec-
for many processes. The reason for these large corrections &sary to clarify and/or test the relations between couplings
physical cross sections is primarily that they depend on thend properties of all new particles in as much detail as pos-
infrared cutoff, i.e., the gauge boson masddg (leading to  sible in a complementary way to what would already be
large double logarithniDL) and single logarithn{SL) cor-  known by that time. The overall importance of leptonic col-
rections of the scale ratig’s/M. Only soft photon effects liders would thus be to clarify the physics responsible for the
need to be considered in a semi-inclusive way but even fullyelectroweak symmetry breaking which in turn means it must
inclusive cross sections are expected to depend os/Mg(  be a high precision machine.
terms[1] due to the fact that the initial states carry a non- On the theory side this means that effects at the 1% level
Abelian group chargéhe weak isospinand thus violate the should be under control in both the SM as well as all exten-
Bloch-Nordsieck theorem. sions that are viable at that point. The focus of the present
At this point all experimental constraints indicate that awork is the former. In particular the above mentioned large
light Higgs particle below th&V= threshold is responsible DL and SL corrections in the SM can, at two loops, be of the
for the breaking of the electroweak symmetry. If this sce-order of a few % 1 TeV. The largest contribution in the high
nario is realized in nature new physics is generally expecteénergy limit, the DL corrections, were treated comprehen-
around the TeV scale in order to avoid the hierarchy probsively to all orders in Refl5]. The method employed in Ref.
lem. The high precision measurements of the SLAC lineat5] is based on a non-Abelian generalization of a bremsstrah-
collider (SLC) and CERNe*e™ collider LEP have limited lung theorem due to Gribol6]. The essential point here is
the room for extensions of the SM considerably and, in genthat corrections factorize with respect to the perpendicular
eral, they cannot deviate from the SM to a large extent with-Sudakov componenik, | of the exchanged gauge boson.
out evoking so-called conspiracy effects. It would thereforewith a cutoff imposed on the allowed values ¥, |=u
be very desirable to have a leptonic collider at hand in the=M all gauge bosons in the unbrokémgh energy regime
future in order to answer questions posed by discoveriesf the electroweak theory factorize according to the underly-
made at the CERN Large Hadron CollidéHC) and possi- ing SU_(2)XUy(1) symmetry in analogy to QCD. The ef-
bly the Fermilab Tevatron. In particular, if only a light Higgs fect of soft photon emission can then be included in the
boson is discovered, say at 115 GeV, then it is mandatory teramework of the infrared evolution equatiGiREE) method
investigate all its properties in detail to experimentally estab{7] with appropriate matching conditions. This approach was
extended to the subleading level and to longitudinal degrees
of freedom via the equivalence theorem in Rd#,9] by
*Email address: Michael.Melles@psi.ch employing the virtual contributions to the respective splitting
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functions. In Ref.[9] it was furthermore shown that also
top-Yukawa enhanced subleading corrections can be in-
cluded in this formalism to SL accuracy to all orders. These
terms are typical for broken gauge theories as are longitudi-
nal degrees of freedom in general.

At one loop, the approach was tested with calculations in
the physical SM fields of Ref$10,11]. Also at the two loop
level to DL accuracy, the approach was verified by explicit
calculations in Refs[12—-14. To subleading accuracy it

agrees with the result of Rgfl5] for e*e™ — ff to all orders

(up to Yukawa terms where results for the QCD form factor

were generalized to the electroweak theory in a similar spirit

as detailed above. In addition, non-universal angular terms

were calculated at the one _Ioop level and it was propo_sed 0 FG. 1 A QED diagram at the two loop level yielding a SL-RG

resum these terms by multiplying these corrections with thegrrection. The explicit result obtained in RE20] for the case of

DL form factor. equal masses relatve to the Born amplitude was
The still outstanding corrections of the universal, i.e., pro-— (1/36) e*/167*) log*s/m?=(1/12)3%(e*/167*)log¥(n?). This

cess independent, type are the focus of this work. They argsult is reproduced exactly by including a running coupling into

given by the folding of DL corrections with renormalization the one loop vertex correction diagram. The argument of the cou-

group (RG) loops at higher orders, starting at the two loop pling must depend on the component of the loop momer({gsing

level. These contributions are of order into the fermion loop which is perpendicular to the external fer-

O "By log? Y(s’'M?)] and as such need to be included in amion momenta. In QCD, although more diagrams contribute, the

genuinely SL analysis. We will denote them as SL-RG in thenet effect is just to replacBg="— 3" in the above expression.

following. Conventional RG corrections, however, are sub-

subleading at the two loop level. orders. The same conclusion is reproduced by the explicit

" The pa}per |sborgkan|zed as Iﬁ”ows' In i?c' Il we re\é%vv_ ole structure of modified minimal subtraction sche(iS)
e case for unbroken gauge theories and focus on Q '’enormalized scattering amplitudes at the two loop level in

particular. We derive analytical formulas for both virtual and CD [19]. In addition, from the expression in RefL9) it

real corrections to external quark and gluon lines dependin an be seen that the SL-RG corrections are independent of

on the experiment_al requirements. Sec_tion i then applies e spin, i.e., for both quarks and gluons the same running
the results, according to the above considerations, to the Slxli]oupling argument is to be used. This is a consequence of the

after briefly summarizing the results for the Sudakov COITeC3, t that these corrections appear only in loops which can

tlonsi V(;{e dlscusskthg sge othhe results in Sec. IV and mak?ield DL corrections on the lower order level and as such,
conciuding remarks in Sec. V. the available DL phase space is identical up to group theory

factors. We begin with the virtual case.
Il. HHGHER ORDER RENORMALIZATION GROUP

CORRECTIONS IN QCD

. . . A. Virtual corrections
In this section we review the case of unbroken gauge

theories such as QCD. Explicit comparisons with higher or- The case of virtual SL-RG corrections for both massless

der calculations revealed that the relevant RG scale in thend massive partons has been discussed in[R&f.with a

respective on shell diagrams is indeed the perpendiculatifferent Sudakov parametrization. Below we show the iden-

Sudakov componerii6—18. We give correction factors for tity of both approaches. The form of the corrections is given

each external line below. The universal nature of the highein terms of the probabilitiesV; (s,«). To logarithmic ac-

order SL-RG corrections can be seen as follows. Consideturacy, they correspond to the probability to emit a soft

the gauge invariant fermionic part-(n;) as indicative of the  and/or collinear virtual parton from particieat high energies

full BY°P term {replacingn;=[3/T][(11/12CA— BS"]}.  subject to an infrared cutoff.. At the amplitude level all

In order to lead to subleading, i.€0] @l log™ Y(s/u?)], this  expressions below are universal for each external line and

loop correction must be folded with the exchange of a gaugexponentiate according to

boson between two external linggroducing a DL-type con-

tribution) like the one depicted in Fig. 1. Using the conser-  M(P1, - -+ Pn:Gs:4) = Mpgorn(P1, - - - Pn,Gs)

vation of the total non-Abelian group charge, i.e., p(
xXexp —

N| -

2, Wi (s,p%)

a(j : 2y —
le TA()M(Py, ... P, - - - Pn:K2)=0, 1) )

the double sum over all external insertigrend| is reduced
to a single sum over at external legs. Thus these types of wheren denotes the number of external lines. We begin with
corrections can be identified with external lines at higherthe massless case.
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1. Massless QCD
RG PN S(M )Ca |l (1)
In the following we denote the running QCD coupling by ~ Wa, (8.9 = ——— —IogE log as(s) -1

1 a(p? 2 S
a(p?) ag(u?) Zogt M) 2 pacp
as(ka_): (Ms) — s k2 ’ (3) + C2 log—as(S) C ,8 Iog? (7)
1+ ——= ,BOQCDIog— 1+c|og—
a C S ag(u?
WEVG(S,MZ):S(;—*[ Zlo g—z(log%—l)
where g°P=1 CA 1Ten; and for QCD we haveC,=3, # °
Cr=3, andTF—2 as usual. Up to two loops the massless 1 agp? 3 s
B-function is independent of the chosen renormalization + |0W 5100 )
scheme and is gauge invariant in minimally subtracted M

schemes to all ordef®2]. These features will also hold for

the derived renorm;[hz;tlon group correction factors be|OV\}t should be ng(t:%d that the subleading term in E4). pro-

in the high energy regime. The scaledenotes the infrared portional to Bz~ is not a conventional renormalization

cutoff on the exchangel, between the external momenta 97°UP correction but rather an anomalous scaling dimension,

p;.pi, where the Sudakov decomposition is given ly and _enters with the_z opposne si¢8] compared to the con-

=vp+up;+k,, such thatpk, =p/k, =0. The cutoff u ventional RG contribution.

serves as a lower limit on the exchanged Euclidean compo- 2. Massive QCD

nentk? = —k?>0 which can be defined in an invariant way '

as Here we give results for the case when the infrared cutoff
n<<m, wherem denotes the external quark mass. We begin

. with the case of equal external and internal line masses.
pP<ki=min[2(kp)(kp;)/(pip;)] (4) Equal massed:gllowing Ref.[21], we use the gluon on-

shell conditionsu =k? to calculate the integrals. We begin

for all j#1. In order to avoid the Landau pole we must with the correction factor for each external massive quark

chooseu> A qcp. Thus, the expressions given in this sectionline. Following the diagram on the left in Fig. 2 we find:

correspond for quarks to the case wher& . For arbitrary

. 1du (1d m?
external lines we then have WRG f f —v@(SUU “ )G)(u— ?v)
sdk? (1 dv_aC s 2
W (%)= fz K2 f T 092_2' ®) X0O|v——u )
M S /1+clog(suw/m?)

The RG correction is then described by including the effect ( J’u/mduf fl duf e
of the running coupling from the scaj? to s according to 25 U Ju2rsuv (m?s)u U
[16—-18 (see also discussions in Refg1,23):

fﬂm/Sdu 1 dv
wls U Ju2isuy v

FRS(s, %) = Ci (sdk? fl dv  ay(u?)

2 k2 2/S v k2 f leduf ag(m?)
1+c|og— uris U J(sim?yu v 1+C|Og(SUU/m2)
s(m*)Ce S as(pu?)
:—S(g )C[ o gi(| g—( ~) 1) :T|clogﬁ(logm_l)
a s(S)
1 aym?
1 2 ~log—
c ag(s)

The u-dependent terms cancel out of any physical cross sec-
whereC;=C, for gluons andC;=C for quarks. For com- tion (as they mugtwhen real soft bremsstrahlung contribu-
pleteness we also give the subleading terms of the externéibns are added and= as(mz),BSCD/w for massive quarks.
line correction which is of course also important for phenom-In order to demonstrate that the result in E®). exponenti-
enological applications. The terms depend on the externaltes, we calculated in Rdf21] the explicit two loop renor-
line and the complete result to logarithmic accuracy is givemmalization group improved massive virtual Sudakov correc-
by tions, containing a different “running scale” in each loop. It
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Virtual Sudakov DL-Phase Space Virtual Sudakov DL-Phase Space
1
v
IR
m 1 "
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FIG. 2. The virtual Sudakov DL-phase space in massive QCD ifube} and{k® ,v} representation. The shaded area is the region of
integration in each case. Fpr=m the relevant phase space is mass independent in each case.

is of course also possible to use the sddladirectly. In this  the constant= a(m?) 8% 7. We consider only the case

case we have according to the right diagram in Fig. 2: at high energies taking the first two families of quarks as
massless. The running of all light flavors is implicit in the
WRG 2 f medk? fk im2dv term of the 3P function. The result is then given by
FKE e w2k (2 med
RG k /m2 v
fs dszl dv s(mz) W (SM fz k2 Jk 2/s v
212 J@isv |1+ clog(k?/m?)
s c log(k{/m?) fs dk2J1 do S(m )
_ ag(m’)Ce | S [10g® ) 2@ Jesv | e
- 27 09 21199 (s) 1+c|og—
I
1, agm?) ay(m?)C ag(1?)
+—log——1, 10 _ ISR - K
¢ ag(s) o R 9_(' e 1)
which is the identical result as in E(). For completeness 1 agmd) (1 m2
we also give the subleading terms of the pure one loop form + —Iog— + Iog—) } (12
factor which is again important for phenomenological appli- ¢ as(s)

cations. The complete result to logarithmic accuracy is thus
It is evident that the effect of unequal masses is large only

given by for a large mass splitting. In QCD, we always assume scales
ay(m?)Cr ay(p?) larger thanA ocp and with our assumptions we have only the
WRG(S 2)= S—[ lo g—(l gs— 1) ratio of m;/my, leading to significant corrections.
2m as(s) The full subleading expression is accordingly given by
1 ooa(m?) 3 s om aM)Ce [1 s | ayu?
2% a(s 2% '09;] WES(s u?) = =5 [c' 9—(' e 1)
(11 1 amd) (1 2
For m=u Eq. (11) agrees with Eq(8) in the previous sec- + E'ng P |°9_
tion for massless quarks.
Unequal massedn this section we denote the external 3 S m2
mass as before by and the internal mass by, and thus, - Elogﬁ—log—z]
o
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as(miz)CF 1 s as(Mz) 1. Emission from massless partons
T on E'O 2 |°9—as(s) -1 In this section we consider the emission of real gluons
with a cutoffk, < uepy, related to the experimental require-
1 af(m?)  a(md) 3 s m2 ments. For massless partons we have, at the DL level,
log— ~log— —lo
2 agm?) D as(s) 2 0w o2
(13 WD'-( )= aC; J'U’éxptdk f\e‘E dw
S e —
/vL MeXp ”2 kf ‘kil w
For m=m; Eq. (13) agrees with Eq(11) in the previous C
section for equal mass quarks. _ dsHi i_ s
7 log? log>——{ (17)
If we want to apply the above result for the case of QED 77 % Mexpt

corrections later, then there is no Landau p@elow ener-
gies and we can have large corrections of the famy/m,,

. ) . L and thus for the RG-improved correction:
etc. In this case the running coupling term is given by

2 ~ Ci(.2 dk Sdo  aqpu?)
e RG 2 .2 _ Fexpt S
e2(kf)= > 2 (14 WiR (S, yﬂexpg—?‘[ 2e pt__— % jk ‘j_ k2
e K | .
1-2— Z QN Iog— 1+ Clog—
3 472
. . G as(# ) as(# )
and instead of Eq13) we have withe;=e Qs =%, |G I g—2 lo g— 1
™ 7 gl o)
2 2 2 2
e |1 s e (u®) 1 2
WRS(s,u?)=— [ p |09—2( log——-1 —= Iog'uexpt —log S('(Z ) (18
8 m e“(s) c S c2 (o)
1 eX(md) 1 e . _ . .
2|0 > 3,2 This expression depends @nas it must in order to cancel
¢ e’(s) 4 the infrared divergent virtual corrections. In fact the sum of
ng 2 2 real plus virtual corrections on the level of the cross section
2] m S m is given by
x; QJNCIogE —5log— —log—,
]
(15 WEE(s, 1%, ) = W (5,14%)
and wherec= — —(e2/47-r2)2nf Q?NL. G S as(S)
1) =—acp| 09— log———
25 M as(Mexpt)
B. Real gluon emission
. . ngpt 1 ag(s)
We discuss the massless and massive case separately _IOQT+EIO >
since the structure of the divergences is different in each as( Mexp)
case. For massive quarks we discuss two types of restrictions C (s)
on the experimental requirements, one in analogy to the soft ! 77 0g s —log “eXPt (19)
gluon approximation. The expressions below exponentiate ZBQCD a(s) B Ta( i) S

on the level of the cross section, i.e., for observable scatter-

ing cross sections they are of the form and thus is independent @f. The full expressions to sub-

do(Py, - - - Pn s Mexp) leading accuracy are, thus,
n
=dogor(P1s - - . Pn,0s) EX W (s, u?, u? Caas(p?) s as(pu?)
Bornl P1 Pn.9s) F’[E [Wi r(s,n /-Lexpt) WgR,G(S*MZ':U’gxpt)_ 2577 |Og— log—s q
M as(Mexpt)
=W, (8,171, (16) 1 poe 1 ag(p’)
—Elog + —log

S c? a’s(ﬂgxpt)
where the sum in the exponential is independenji.ofnd

- : 2
only depends on the cutofi.,, defining the experimental - _BOQCD|ogi] (20)
cross section. We begin with the massless case. C 2
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o CFas(M ) s s(,U«Z) 2. Emission from massive quarks
Wq (SM Mepr_T |0 lo g— 1
w s o) In the case of a massive quark, i.e.<m, the overall
1 ngpt 1 as( 1?) infrared divergence is not as severe. This means we can dis-
—E|09T+ §| 9(—2 cuss different requirements which all have the correct diver-
s{ Kexpd gent pole structure canceling the corresponding terms from
3 s the virtual contributions. We divide the discussion into two
— Elog—2 . (21)  parts as above.
M Equal massesThe constanic=ay(m?)B3°% = below.

All divergent (u-dependentterms cancel when the full vir- We have the following expression without a running cou-

tual corrections are added. pling:
|
- 2
asCg (2 , [(do kT
W (5,42, o) = f G R
ag\ =1 M s Mexpt m )2 L k| © (kf+m2/5w2)2
aCr m? m? 1 s
5 Iog —+Iog—log— Iog———Iog v M< oyt
7T /~Lexp
~ . (22
aCr m? wu? s s
5 log? —+Iog— Iog—+|og— log—log——|, Hexpr<m
m Mexpt m Mexp

If we want to employ a restriction analogously to the soft gluon approximation, we find independently of the quaii&, ir#hss

fﬂexp fvﬂex [dw k2
k| (k2+m2/3w)

WqR(S /Uv Mexpt)_

2

m2
Iog —+ Iog— Iog— Iog— + Iog— Iog— Iog—) (23
/'Lexpt m :U“exp

aSCF
2

In all cases above we have not taken into account all subleading collinear logarithms related to real gluon emission. In order
to now proceed with the inclusion of the running coupling terms it is convenient to first consider only the DL phase space in
each case. Thus we find

2 2 2
RG as(m )CF f 2dk S J"’“gxpfdkll S 1
W (S/-L lu“expt)_ om 2 kf |Og¥+ 2 sz_ |OgE sz_
1+clog—
m
ag(m?)Ce| 1 S ag( pu? 1 ag(m?
~S(2—)F Elog—2 IogS(—'U;)—l Iog—+—| gS(—) M<< L eyt (29
m m as(:““expt) Iu’expt c? a’s(#expt)
and
GRC(s 42 2 Cagm?)Ce (2 dkE s 1
dr (s, nu“expt)_ 2 2 kJZ_ |0% kJZ_
1+clog—
m
a(mM)Ce 1 s ayu?)
= ST E |Og—2 |Ogs—2 s /‘Lexpt< m. (25
m as(/-l’exp

The full subleading expressions are thus given by

o a(MCE[1 s [ agu?d) 1 agm?)
Wit gl = 5| log g log 1 +logat 510g ST log S|, m<uep (26)
m m? asl Mexpt) IU’expt c? a’s(:“«expt) K
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and
WRG( 2 2 ) as(mz)CF 1| SI aS(MZ)
SIU  hexp) = 5 - | 10— 10
L
u?
+|OQT. Mexpt< M. (27
Mexp

In case we also impose a cut on the integration avemwe
have independently of the relation betwedrand we,; as-
suming onlym?<s

2 2 dk? s
i /RG 2 2 =a5(m )Cr J’mz"‘exp{s_l
WqR(S,,LL rlu’expt) 2 2 kf IOQ?
ngp[ koZ_I /J'E:-xpt 1
+ w22 k_zog K2 2
/'Lexp(s L L L
1+clog—
m
_odmCel1 s (e 1)
2m C “m? as(ﬂgxpt)

1 S as( Wopd
+ —~log——log S

2 2
Mexpt a’s(:“exptm /s)

1 2 mils
_|g<“—tm>] @
c as(:uexpt)

This expression agrees with the result obtained in Fa]

where the gluon on-shell conditickf =suv was used and
one integral over one Sudakov parameter was done numeri
cally. In Ref.[21] it was also shown that the RG-improved 9
virtual plus soft form factor also exponentiates by explicitly
calculating the two loop RG correction with each loop con-

taining a running coupling of the correspondihfg.

PHYSICAL REVIEW D 64 054003

Unequal massedVhile the gluonic part of thg function
remains unchanged we integrate again only from the scale of
the massive fermion which is assumed to be in the perturba-
tive regime. For applications to QED, however, we need the
full expressions below. Here we discuss only the case analo-
gous to the soft gluon approximation. Considering again only
the high energy scenario we have for the case of an external
massm and a fermion loop mass

\A/RG 2 2
\NqR (s,u u“expt)

_as(m)Ce

_ [rints ¥
2

#2 ki m

2 k2 2
_’_f#expt d J_log/J*expt

2 2 2 2
M pexp(s K1 kT

1 S as(MZ)
c Iog—2 log————7+—-1

m as(ngpmzls)

_ as(miz)CF
2

2 2
1 m as(Mexpt)
+ — |OgT|O > 2
¢ Mexpt as(:u“exptm /s)

1 ay ng I s)
Q—ptml : (30)

+—lo
2 2
c aS(ILLeXpt)

This expression agrees with the result obtained in (28)

for the casem;=m.

_ The full subleading expression for the RG-improved soft
luon emission correction is thus given by

RG 2 2
WqR (s,p nu’expt)

The fuI_I s_ubleadmg expression f(_)r the RG-improved soft as(miz)CF 1 S ay(1?)
gluon emission correction is thus given by ~————|Zlog—|log—————-1
2m 1€ T m? | ey pugypm?ls)
a(m?)Ce| 1 S ag(pu?
W(?f(syﬂzyﬂgxpt)%S(Z—w)F Elog_z Iog(S(—'U;))—l + ! log m log QS(Mg)(pQ + !
m o ~ 2
st Mexpt c ngpt as(//«éxptmz/s) c2
1 S 1o (,u2
+ ~log——log ( 52 Eszt)/s) <l e fapiM?/S) —Iogm—2+lo S J
a o O0——
Hrexpt s el as(ﬂéxpt) 1“2 ngp
1 adul mis m?
= ————| — g—_
c a’s(ﬂexpt) H 2 c g? as(,u,gxptmzls)
S
+log—— J (29 L Loadmd)  a(uaem?ls)
Hexp c? as(/-”gxpt) a's(:““gxpt)
for the equal mass case. The case of different external and m2 s
internal masses is again important for applications in QED —Iog—2+logT . (3
and will be discussed next. 2 Meexp
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As mentioned above, this expression is more useful for apemitted real photons, and regularizing virtual IR divergences
plications in QED or if the mass ratios are very large. Inwith a cutoff k, =u, we find for the semi-inclusive cross
QED we have again the running coupling of the form givensectio

in Eq. (14), and Eq.(31) becomes ,
do(py, .- .Pn.9.9", Hexp

Ng
W$RG(S!:U*2a:U’§Xpt) =dogom(P1, - - - ’pnig’g,)eXpl _izEl ng(SaMz)
e? 1I s I e?(u?) . Nt Ng
~——| —|0 (o] — _ 2\ _ 2
82| C M| e ud i) 2 Wi(SMO)= 2 Wy (sM )}
e%(pudpm?/s) 1€ o
- 1-- — xexpg — 2, [ws (s,u?)—w; (s,M?
c2 ez(ﬂgxpt) 3 472 izl[ f,( ©°) f,( )]
ng¢ ) MZ m2 s Ny
X > QjZN'CIogL);pt ~log— +log——|, =2 [y (5,4%) — Wiy, (5,M?)]
j=1 m; M Mexp =t
(32 &
_21 Wyi(szij) exquexpt(simi vlu‘ilLLexpT)]v
where agairc=— 3(e’/4n%) =] | QFNL . This concludes the (33)

discussion of SL-RG effects in QCD. As a side remark we

mention that for scalar quarks, the same function appears %ﬂ]ereng denotes the number of transversely polarized gauge
for fermions since the DL-phase space for both cases is idefygsons,n (with an index of ¢) is the number of external
tical. Only B, as well as the SL terms differ in each case. scalars, and; the number oexternalfermions. This expres-
sion omits all RG corrections, even at the one loop level. The
functionsW andw correspond to the logarithmic probability
Ill. ELECTROWEAK RG CORRECTIONS to emit a soft and/or collinear particle per line, where the
capital letters denote the probability in the high energy effec-
We now turn to the case of spontaneously broken gaudgye theory and the lower case letter the corresponding one
theories. As in the previous section, we are interested onlygm pure QED corrections below the weak scale. The
in terms of SL accuracy. At one loop, these are the obvious,;natching condition is implemented such that for M only
RG corrections from the running couplings as discussed ifhe high energy solution remains. For the contribution from
Refs.[10,8,9. At higher orders, we have the same situationscalar fieldsp={¢~,x,H} above the scal&! we have
as in QCD that the RG corrections are folded into loops
which on a lower order lead to DL contributions. We begin
with a summary of the known higher order DL and SL cor-

_ ,_ @ \i
rections. Wi, (s,M%) = 7— Ti(Ti+1)+tanZ@wj
2
A. Subleading electroweak Sudakov corrections to all orders X |092i —4 log S_ + § ﬂmg_s ,
. . , . : M?2 M2/ 2M?2 “m
In this section we are going to discuss the higher t

order Sudakov corrections in the electroweak theory. While (34)

the method discussed below is general, for definiteness

we consider only the SM. The framework we use in the

following is given by the IREE method. The basic physicalwherea=g?/4w and taRé,,= a'/«. The last term is written
idea behind this framework is to identify the effective as a logarithm containing the top quark magsrather than
high energy theory at values kf >u=M. The correspond-

ing contribution from QED below the scaM is then given

by approprllate matching condltlon.s atM In order to re- We emphasize that for photon aHeboson final states the mixing
cover the high energy theory solution. In this way all UniVer-ggects have to be included correctly as described in FEf. In

sal Sudakov DL and SL have been resummed in RefSyariicylar, for transverse degrees of freedom the corrections do not
[5,8,9. At one loop the results obtained by the IREE methodtactorize with respect to the physical Born amplitude but rather with
agree with the literature for all external lines and at twoyespect to the amplitudes containing the fields in the broken phase.
loops, the DL results were checked by explicit calculationsFor longitudinally polarized bosons, however, there is no mixing
with the physical SM field§12—14. Including soft brems-  with photons and the corrections factorize with respect to the Born
strahlung with a cut on the allowekl < e, <M of the  amplitude.
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Y\ 2 s
= [log>—
2) } e

o a’ , S
- 5i,w;,30+5i,57,30 |09W, (36)

the weak scal® since these terms always contaip as the o
heaviest mass in the loop correctip®]. For fermions we W (s, M?)= {—T (T, +1)+—

have

2 a Yi2
Wi (s;M?) = — Ti(Ti+1)+tanZ¢9WT
with
, S S 11 1 1 5 1
X | log W—3Iogw ﬁozl—ch—gngen— ﬂnh, Bo= ngen 24nh,
) ) (37
1+ 6 r Mi m, Iog— (35  Whereng,, denotes the number of fermion generations and
4 M2 4|\/|2 m; ' n, the number of Higgs doublets. Again we note that for

external photon and-boson states we must include the mix-
_ . ing appropriately as discussed in RES]. For the terms en-
wheref’ denotes the weak isospin partnerfoFor external  tering from contributions below the weak scale we have for

transversely polarized gauge bosons, fermions
e? , S s
log— —3log— |, m<w
5 (4w M M
we(s,p?)={ ) (38
e s m; , S S
5 log— -1 2Iog—2+log — —3log—|, wu<m
Analogously, for externalV bosons and photons we find
( ' (| S 1>2| M2+| 2 S (39)
(s = 0g— — og— +log-—|,
Wi (47 2 M2 qu 9 M2
1 ng e]2 N] l MZ m -
325 og— M
by 3 =1 447
Wy, (M2, u?) = Lo e " M2 . (40)
— —_— og_, <
3 j=1 477'2 ¢ ml K ]
for the virtual corrections. For real photon emission we have in the soft photon approximation
n
> —log? +log? ——3 Iog— m<pu
i=1 (4 Mexpt M
Wyexpt(s’ m; uuw“expt) = n m2 S (41)
_2 (Iog— 1 2Iog—+log —2—2log— og—5—1/|, p<m
i=1 (4 m; m Mexpt m

wheren is the number of external lines and the upper caseversal electroweak Sudakov corrections at DL and SL levels
applies only to fermions since foW= we haveu<M. Note  exponentiate.

that in all contributions from the regime<M we have kept
mass terms inside the logarithms. This approach is valid in
the entire standard model up to terms of ord¥fog m,/M).

The overallu dependence in the semi-inclusive cross section The way to implement the SL-RG corrections is clear
cancels and we only have a dependence on the parameteom the discussion in Sec. Il. At high energies, the DL phase
Mexpt related to the experimental energy resolution. All uni-space is essentially described by an unbrokeb(2)

B. Renormalization group improvement
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SU(2)xXU(1) theory in which we can calculate the high en-

PHYSICAL REVIEW D 64 054003

wheren; denotes here again the numberesternalfermi-

ergy contributions. In this regime, all particle masses can bens. The argument of the gauge couplings in the Born cross
neglected and we have to consider the following virtual elecsection indicates the one loop renormalization of the cou-
troweak DL phase space integral with running couplings ingjings which is not included in the exponential expressions

each gauge group:

but which at one loop is genuinely subleading:

2
VVFG(S,MZ)ZLF¥ L
V e (5=atm?)| 1- 5,2, S) (a9
a(S)=« — (0] s
T(T+Da(u?) | (YH)a'(w) T VE
ki ki
1+clog—; 1+c’ log—;
Iz z a'(M?) s
"(s)=a’(M?)| 1- B} log— |, (45)
_aATTHD (1 s [ et v : M2
- 27 c og; % (s
1 a(p? 2y a2( M2 2 IM2Y — a2( M 2 2
+ —log—— wherea(M“)=e“(M“)/4xs;, and o' (M“)=e“(M*)/4mcy,
¢z a(s) with
o (WP 1 s a'(pd)
+—————log—| log————1
87 ¢ a'(s) 1 2 M M2
(MY)=e?| 1+ 7 — > QINLlog— (46)
1 a'(p?) 3472151 m:
+—log— 1, (42)
c’ a'(s)

where  a(u?)=g*(u®)/4m, o' (u?)=g'*(p?)ldm, c
=a(u?)By/m, and analogoushy;’ = a’(u?)By/ . In each
case, the correct non-Abelian or Abelian limit is reproduce
by letting the corresponding couplings of the other gaug
group approach zero. In this way it is easy to see that th

ande?/47w=1/137. If there are non-suppressed mass ratios
OIjn the Born term, also these terms need to be renormalized at
Hne loop(see Ref[10]). Higher order mass renormalization
terms would then be sub-subleading. The function

argument of the running couplings can only be what appear$/

5.(s,M?) is given by

in Eq. (42).
The form of Eq.(42) is valid for fermions, transversely
and longitudinally polarized external lines omitted sub-

leading terms as well as the quantum numbers of the weak .

isospinT; and the weak hyperchargé differ. In order to
implement the missing soft photon contribution, we choos
the analogous form of solution in E(R2) and have to imple-
ment it in such a way that fon=M Eq. (42) is obtained.

The full result for the respective semi-inclusive cross sec-

tions is then given by
dURG(pl! s !pn!g!g,uﬂexp)

:da-Borr‘[pli <o Pn ,g(S),g/(S)]

Ng ng
><exp[ -2, WE%(s,M?)— >, Wi(s,M?)
=1 =1

ng n
—Zl WiS(s,M?) exr{ —Zl [WRS(s, %)

Nw

—WEES,MA)] = 2, [WiS(s,1%) ~Wis(s,M?)]

n

<

1 Wy

(M 2, m]2) EXII[W?,GGXpt(S,mi aﬂv’#expt)]a

(43

P Mz_a(Mz)Ti(Ti+l) 1I s [, a(M?) L
AT G T e
+1| a(M?)| o' (M?)Y?
Eog a(s) 8w
<! Llog> |g—a,(M2) 1
c’ gW a’'(s)
1 "(M? M?
gt (“( L
c'? T al(s) Am
a' (M?) Y?4| s
A7 4 OgW
3 a(M?) mfl s A
T2 ar w2 %) 0

where we again haven, in the argument of the Yukawa
enhanced correctiof®]. Analogously for fermions we have
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e , a(M2T(T;+1) [1 S a(M?) the corresponding isospin partner for left-handed
WiA(s,M?) = ————— ¢

o 0g— IogT 1 fermions.

T 2
1 aM?d)] o’ (MAY? Re, o @(MAT(T; +1){ s ( a(M?)
- W;=(s,M )—— —og— lo
+ 2 log (s) 8 9 2 g—( )
2 ’ 2\\v2
S a'(M?) +i| a(M?) a' (M9)Y; 1, s
x[—logW Iog—a,(s) —1) o og 2(5) e ~ OQW
’ 2 ’ 2
1 a’(MZ) O((Mz) | 1o [e% (M )_ ) i (|\/| )
R _ ) o 1
+ Clzlog a’(s) ( ype T|(T|+1) a,(S) c'2 ,(S)
"(M2) Y2 2 a(M?) a'(M?) |\ s
o (M )Y_l I S _ a(M ) _(5i,W BO+5i,B ﬂo IOg—2
47 4 M2 4 M
(49)
1+ 6 g M? 5 m, I 48
4 WJF 4M2 ogm— (48) Again we note that for external photon adeboson states

we must include the mixing appropriately as discussed in
The last term contributes only for left-handed bottomRef.[8]. For the terms entering from contributions below the
and for top quarks as mentioned above aiiddenotes weak scale we have for fermions

il LN P T 1>+1| w3 <
——1—lo o) - —log———-<lo , m<
R(s,u2) 8m?|C g; e(s) c2 T e¥s) 2 g; =
. SiI-L =
fi e? 1I s [, e’(u?) L 3| s | m2+lI 2(m?) L lez%QN‘I
=———lo og————1|—zlog——lo —log——|1- - — 0
22| ¢ 92 e?(s) 2% g; c2 T eXs) 3 472 ) g—
(50)
p<m
wherec= — %(e2/4w2)2?': 1QJ-ZNJ'C. Analogously, for externalV bosons and photons we find
2 2 2 2 2 2 2 N 2
e (1 s e2(u?) ) M2 1 M3 1 e
RG 2 !
wy (s, uf)=——14—lo lo 1]-lo +—lo -—=— NL lo
s | i 1] 0 Ty (1 3 BN
(51)
13 e VE
3B g 0 M
Wyi(MZ,Mz)= N2 5 (52
s

Note that the functiomvyi(MZ,,uz) does not receive any RG corrections to the order we are working since it contains only SL
terms. For the virtual corrections and for real photon emission we have in the soft photon approximation:

(& e (1 s eu? 1 Mo, e(u? 3 s
E P CI g— Iog— EIOQT I 97 2I g— m<<u
=18 (:“expt) e’ Mexpt)

"e? (1 s e?(u?) 1 eX(u? tm2/s) 1 e2 u?
o exp expt
WRC (5,my, i, o) = § E '09‘ log —1)+—log 3 2 QfNglo
Yexpt ! exp! C Z(ngpll'TIz/S) C2 ez(ngpt) 3 4 : ]

2

Iog— + Iog—] L<<m;
\ Mexpt

(53
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(exp{-W['*} - exp{-W}}) / exp{-W;}

0.004 g 0.01 .
0.002 [ .-.lll...... 0.0075 — .-l-..
a— - _—
o mum 0.005 — ...I.
0002 & . - 0.0025 gui™ .
002 Fa,  i={o",07,H} 0 E i={Wp,W}
-0.004 | 4, A
= A\, -0.0025 A\,
-0.006 - Aa, AL 0005 — Aa, "~
-0.008 As, AL -0.0075 — Aa, AL
= A B A
001 [ AL 001 Aa,,
- L A
0012 T Lo b b ba g | 00125 =l ol b #
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Vs Vs
2
x 10
0.004
0.003 [ — 0 illllll-.
= qunnt" = eNEEEREEaay
0.002 £ - -0.05 [
0.001 ‘—..l" gA
= 01 [ -
0 !— s I_{tL’bL} c AAA I—{tR}
-0.001 | 4a AL, 015 A s,
-0.002 [ W C A,
E A - A
- Ax, 02 Ax
'0.003 — AAAA ‘ - AAAA
-0.004 |- Ads, - Aay,
= 025 [ A
_0.005T|III|III|III|III| I|III|III|III|III
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
B oM), (M) A ofs), o(s)

FIG. 3. This figure compares the renormalization group improved probabliffEswith the conventional Sudakov exponentisi¥s for
various external particle lines. The comparison is made with the indicated scale choices for the fuNctoistakes into account only the
RG corrections from the scaM to \/s. Taking the difference between the two curves is a measure of the uncertainty removed in this work.
The variations in the scale of the coupling in #& functions is largest in the scalé&Boldstone and Higgs bosprector and for transverse
W= where the effect is about 0.8% at 2 TeV per line on the level of the cross section. In general, the RG improved form factors differ by
fractions of 1% per line and need to be taken into account at future colliders if the experimental accuracy is in the percentile regime. The c.m.
energy is given in GeV.

where n is the number of external lines arm fermions  sis, i.e., the running from the weak scaieto Js. We are
propagating in the loops folded _With the DL integrals. Thethus interested in effects starting at the two loop level and
upper case applies only to fermions since Wr we have  want to compare the relative size of the RG-improved form

#<M. Note that in all contributions from the regime  factors to the pure Sudakov terms. It is therefore of interest
<M we have kept mass terms inside the logarithms. For th«ta0 compare the ratiose(*WiRG}—e{*Wi})/e{’WiRG} for the

running above the weak scalé we use only the massless various particle labels. Since the physical scales in the

g r91t,ir[e3 Os,fz:g;c\;v:;horég”upsio-l;zlrsrnzpor;rgfg&ésg \rify'\c/ll)m the problem are given byl and \/s, the lower and upper limits
' of the couplings are given accordingly by these scales for the
functions W, . Figure 3 compares the respective ratios for
IV. DISCUSSION various SM particles. For definiteness we takd
In this section we discuss briefly the size of the SL-RG=80 GeV, m=174 GeV, s;,=0.23, a(M?)=1/128k},
corrections obtained in Sec. Ill. For this purpose we will @’ (M?)=1/128E2,, Bo=19/24, andB)= —41/24. The dif-
only compare the terms which are new in the present analyference between the curves usMg and those usingas the
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scales in the conventional Sudakov form factors is a measure V. CONCLUSIONS
of the inherent scale uncertainty which is removed by the
RG-improved Sudakov form factoR®. The largest effect

is obtained in the gauge boson sector. For externa

Pt : .
{¢”,¢" . x.H} particles we have at 1 TeV a difference be- evolution equation method. These are terms originating in

tween the curves of_about 0.35% per line on the I(_avel _Of thefoops which at a lower loop order lead to DL corrections and
cross section, growing to 0.65% at 2 TeV. The situation IS;re of the typex" B, log?{(sM?). We have derived the cor-
very similar for transversely polarizet* , W~ particles 0 .

rections for massless as well as massive gauge theories and

where it reaches about 0.4% at 1 TeV and 0.8% at 2 TeV PQlised appropriate matching conditions to obtain the full SM

I|n_e on the cross sect_lon level. For Ieft_-hanqled quarks of th‘%ontributions. These corrections start at the two loop level
third generation the size of the corrections is about 0.15% nd are universal, i.e. properties of external lines and thus
; 'I_I'_e\\// p_?rr] line on the level of thﬁ Cross s%ctloréland O'ﬁ’?’% abrocess independent. They represent the last missing univer-
ev. These corrections are thus c0213| erably smaller angy| o ntribution needed for a full SL analysis at the two loop
only needed if Precisions pelow the 1% level are NECESSaNg\e|. The size of the effect at TeV energies changes observ-
from the theory s.'de' For nght-hanqled top quarks thg E_’ﬁecéble cross sections in the percentile regime and is largest in
is even smaller since only the running @f enters and itis  he cajar and gauge boson sector, where at 2 TeV the uncer-

thus nggli%ible for r?qsthaﬁpligatéons. Tdh; form Ofk tzF ;WO tainty in the conventional Sudakov form factor is about 0.6%
curves in the case of right-handed tops differs markedly fromy o ine at the level of the cross section. These effects cannot

ghe other thfrree cases belfal:jse at thebelne(rjgles\;niplayed, neglected at TeV linear colliders for precision measure-
ominant effect is actually due to subleading Yukawa enynonicin the percentile regime.

hanced cgrrecﬂo_ns«(a) since tr21e [2)L terms are propor-  Tpg |ast outstanding type of SL correction at the two loop
tional toa’ and since the ratigm;/M? is of the size of an  |eye| is given by the non-universal, process dependent angu-
additional logarithm for these values ¢6. lar terms of the typea"log? Y(sM?)logu/t. These terms

In general it can be seen that—where the DL termsyso do not factorize with respect to the Born cross amplitude
dominate—the renormalization group improved results arynd the high precision objectives of future linear colliders

indeed in between the upper and lower bounds given by thgi|l make at least a two loop analysis of these corrections
respective scale choices in the conventional Sudakov forrfandatory.

factors. Indeed also for right-handed top quarks this pattern
is observed if only DL corrections are taken into account.
It_ should be empha5|zed_ again that also the QED-RG cor- ACKNOWLEDGMENTS
rections can be sizable since large mass ratios with light
particles occur. These should of course also be implemented | would like to thank A. Denner for carefully reading the
in a full SM prediction at TeV energies. manuscript.

In this paper we have obtained the complete subleading
lectroweak renormalization group corrections to all orders
high energy processes in the framework of the infrared
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