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Resummation of Yukawa enhanced and subleading Sudakov logarithms
in longitudinal gauge boson and Higgs boson production
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Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
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Future colliders will probe the electroweak theory at energies much larger than the gauge boson masses.
Large double~DL! and single~SL! logarithmic virtual electroweak Sudakov corrections lead to significant
effects for observable cross sections. Recently, leading and subleading universal corrections for external
fermions and transverse gauge boson lines were resummed by employing the infrared evolution equation
method. The results were confirmed at the DL level by explicit two loop calculations with the physical standard
model~SM! fields. Also for longitudinal degrees of freedom the approach was utilized for DL corrections via
the Goldstone boson equivalence theorem. In all cases, the electroweak Sudakov logarithms exponentiate. In
this paper we extend the same approach to both Yukawa enhanced as well as subleading Sudakov corrections
to longitudinal gauge boson and Higgs production. We use virtual contributions to splitting functions of the
appropriate Goldstone bosons in the high energy regime and find that all universal subleading terms exponen-
tiate. The approach is verified by employing a non-Abelian version of Gribov’s factorization theorem and by
explicit comparison with existing one loop calculations. As a side result, we obtain also all top-Yukawa
enhanced subleading logarithms for chiral fermion production at high energies to all orders. In all cases, the
size of the subleading contributions at the two loop level is non-negligible in the context of precision mea-
surements at future linear colliders.

DOI: 10.1103/PhysRevD.64.014011 PACS number~s!: 12.38.Cy
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I. INTRODUCTION

The high energy behavior of the standard model~SM!
will become increasingly important at future colliders inve
tigating the origin of electroweak symmetry breaking. At t
expected level of precision required to disentangle new ph
ics effects from the SM in theO(<1%) regime, higher or-
der electroweakradiative corrections cannot be ignored
energies in the TeV-range. The largest contribution is c
tained in electroweak double logarithms~DL! of the Suda-
kov type and a comprehensive treatment of those correct
is given in Ref.@1# to all orders. The effects of the mass g
between the photon andZ boson has been considered in r
cent publications@2,3# since spontaneously broken gau
theories lead to the exchange of massive gauge boson
general one expects the SM to be in the unbroken phas
high energies. There are, however, some important dif
ences of the electroweak theory with respect to an unbro
gauge theory. Since the physical cutoff of the massive ga
bosons is the weak scaleM[MW;MZ;MH , pure virtual
corrections lead to physical cross sections depending on
infrared ‘‘cutoff.’’ Only the photon needs to be treated in
semi-inclusive way. Additional complications arise due
the mixing involved to make the mass eigenstates and
fact that at high energies, the longitudinal degrees of fr
dom are not suppressed. Furthermore, since the asymp
states are not group singlets, it is expected that fully inc
sive cross sections contain Bloch-Nordsieck violating el
troweak corrections@4#.

It has by now been established that the exponentiatio
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the electroweak Sudakov DL calculated in Ref.@1# via the
infrared evolution equation method@5# with the fields of the
unbroken phase is indeed reproduced by explicit two lo
calculations with the physical SM fields@2,3,6#. One also
understands now the origin of previous disagreements.
results of Ref.@7#, based on fully inclusive cross sections
the photon, are not gauge invariant as already pointed ou
Ref. @1#. The factorization used in Ref.@8# is based on QCD
and effectively only takes into account contributions fro
ladder diagrams. In the electroweak theory, the three bo
vertices, however, do not simply cancel the correspond
group factors of the crossed ladder diagrams~as is the case in
QCD! and, thus, infrared singular terms survive for le
handed fermions~right handed ones are effectively Abelian!
in the calculation of Ref.@8#. The infrared evolution equation
method does not encounter any such problems since all
tributing diagrams are automatically taken into account
determining the kernel of the equation in the effective regi
above and below the weak scaleM. It is then possible to
calculate corrections in the effective high energy theory,
each case yielding the same result as calculations in
physical basis. Thus, the mass gap between theZ boson and
the photon can be included in a natural way with prop
matching conditions at the scaleM. For longitudinally polar-
ized gauge bosons it was shown in Ref.@9# that the DL
kernel can be obtained from the Goldstone boson equ
lence theorem.

The picture that emerges has a clear physical interpr
tion. At high energies, where particle masses can be
glected, the effective theory is given by an unbrok
SU(2)3U(1) theory for fermions and transversely pola
ized gauge bosons and by the equivalence theorem for
gitudinally polarized gauge bosons. The contribution fro
soft photons and collinear terms below the weak scale
determined by QED~including mass terms in the corre
©2001 The American Physical Society11-1
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sponding logarithms!. This approach was utilized in Ref.@9#
to obtain the subleading~SL! universal terms to all orders fo
external fermion lines~up to Yukawa enhanced terms! and
transversely polarized gauge bosons. Universal, i.e. pro
independent, are those terms which through Ward ident
can be related to external lines and at high energies are g
by the contributions to the virtual splitting functions~see
Ref. @9#!. In addition, there are non-universal angular ter
of the type log(u/t)log(s/M2) which can be important and
should be included through two loops. In general, th
terms cannot be resummed; they are process dependen
do not factorize with respect to the Born amplitude. At o
loop, however, there is a general method for calculating s
terms @10# and in practice at most a two loop approach
subleading logarithmic accuracy is needed.

An important aspect of resumming universal terms
given by the fact that there is a partial cancellation betw
the DL and SL corrections at energies around 1 TeV, t
enabling one to see how reliable a DL analysis for a giv
process really is. In addition, these are predictions of univ
sal terms which can always by used to check higher or
calculations which in the electroweak theory are extrem
involved due to the number of mass terms and diagra
contributing. It is also conceptually important for a theore
cal understanding of the infrared behavior of the SM.
comparing the subleading universal terms with existing o
loop calculations, we gain further evidence for the over
method employed, in particular when it comes to understa
ing differences between unbroken and broken gauge th
ries.

From a phenomenological point of view, the correctio
to longitudinal gauge boson production are important in c
of a strongly interactingW6 sector without a fundamenta
Higgs boson. Our perturbative approach would of cou
break down in that case; however, it is important to know
precise form of the deviation of the new dynamics from t
SM in the TeV range in order to understand the new phys
behind the electroweak breaking sector. Corrections to Hi
bosons are important for a precise measurement of
Yukawa couplings at high energies in order to establish
Higgs mechanism. At the level of 6–8 %, these correctio
can certainly not be neglected at 1 TeV for determinations
the top-quark Yukawa coupling ate1e2 colliders @11#.

In this paper, we complete the all orders resummation
all SL universal Sudakov corrections to the SM. While
Ref. @9# have restricted ourselves to calculating terms ana
gous to QCD, we now consider terms typical for brok
gauge theories. These are in particular longitudinal deg
of freedom, processes with external Higgs bosons
Yukawa enhanced logarithmic corrections.

In Sec. II we discuss how SL contributions are obtained
the scalar sector and the application of the equivalence t
rem. In Sec. III we give results for the virtual contribution
to splitting functions involving Goldstone and Higgs boso
fulfilling evolution equations analogous to the Altarel
Parisi equations. The correctness of this approach to the
level is verified in Sec. IV by employing a non-Abelian ve
sion of Gribov’s bremsstrahlung theorem to processes
volving Yukawa enhanced contributions. A similar approa
01401
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can be utilized to verify analogous corrections for chiral fe
mions (bL ,tL ,tR) in Sec. V. Semi-inclusive cross section
for physical observables are given in Sec. VI and we co
pare our results with existing one loop calculations in S
VII. We discuss the size of the corrections obtained in S
VIII and present our conclusions in Sec. IX.

II. EFFECTIVE HIGH ENERGY THEORY

In the following we discuss the corrections in a no
Abelian theory with scalar external ‘‘quarks,’’ i.e. extern
scalar bosons charged under the unbroken gauge group
physical picture is that at high energies, we can use
effective theory via the Goldstone boson equivalence th
rem to describe the longitudinal degrees of freedom. T
latter will be discussed in detail in Sec. II B. An addition
complication is given by the presence of Yukawa enhan
logarithmic corrections which are a novel feature of theor
with spontaneously broken gauge symmetry. These terms
discussed in Sec. III. We begin with a discussion of sca
~massless! QCD at high energies.

A. Scalar QCD

In this section we are interested in the collinear corr
tions to external scalars in a non-Abelian gauge theory at
subleading level when the external legs are taken on
mass shell. According to the discussion in Ref.@9# we have
to calculate terms contributing to anomalous scaling vio
tions. For purely virtual corrections the invariant matrix el
ment satisfies the following differential equation for massle
scalar quarks and all invariants 2pj pl;s large compared to
an infrared cutoffm and denotingt5 log(s/m2):

F ]

]t
1bsQCD

]

]gs
1ngS Gg~ t !2

1

2

as

p
b0

sQCDD
1nsS Gs~ t !1

1

2
gss̄D G3M~p1 , . . . ,pn ,gs ,m2!50

~1!

to the order we are working here and whe
M(p1 , . . . ,pn ,gs ,m) is taken on the mass shell. TheG(t)
are infrared singular anomalous dimensions leading to
corrections given in Ref.@9# while the gluon and scalar quar
anomalous dimensions describe SL contributions. At hig
orders, the subleading renormalization group~RG! correc-
tions can be incorporated by including a running coupling
each loop@12#. An additional non-mass suppressed term o
curs in the electroweak theory in the case of four scalar s
tering amplitudes~such asf1f2→f1f2) due to the mass
ratios in the coupling (l;mH

2 /M2) at the Born level. In that
case one has to renormalize not only the gauge couplings
also the respective scalar couplings at the one loop le
@10#. At higher orders, mass renormalization corrections
subsubleading.

The universality of the corrections follows from the sp
independence of the factorization theorems@13# and, thus,
from the universality of the splitting functions in scala
1-2
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QCD.1 Such an equation is of course not physical for
theory with massless gauge bosons; however, in the e
troweak theory purely virtual corrections can lead to physi
cross sections. Only real soft photon emission needs to
included.

We are interested in determining the scalar quark ano
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lous dimensiongss̄ which gives rise to logarithmic correc
tions due to scaling violations from the classical case. T
factor of 1

2 in Eq. ~1! originates from the fact that it is written
for each external leg separately.

Thus we must at one loop calculate the corrections
picted in Fig. 1 with the corresponding Feynman rules
scalar QCD:
A n
(1)52TbCFgs

3E dnl

~2p!n

@24k1k212l ~k12k2!1 l 2#~2l 1k12k2!n

~ l 22l21 i«!@~ l 1k1!21 i«#@~ l 2k2!21 i«#
. ~2!
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This is in complete analogy to the situation in QCD@15,16#.
Requiring that the self-energy corrections vanish on the m
shell and the on-shell vertex for zero momentum transfer2 we
find the following one loop result:

M (1)5M BornH 11CF

gs
2

8p2 S 2
1

2
log2

s

l2
12 log

s

l2
28

12
p2

3 D J ~3!

where M Born52 igsT
b(k12k2)n . It is important to point

out that both leading and subleading logarithmic correcti
factorize with respect to the same group factor. The rep
duction of this fact in the electroweak theory when compa
to exact calculations with the physical fields is crucial
establishing the overall correctness of our approach since
must obtain the factorized form with respect to the effect
high energy theory. The finite terms in Eq.~3! are of course
irrelevant to the discussion here and the infrared diverg
soft and collinear terms were regulated using a fictitio
gluon mass term. The difference from the QED result@17#
for the on-shell form factor

M QED
(1) 5M QED

BornH 11
e2

8p2 S 2
1

2
log2

s

l2

1
3

2
log

s

l2
2212

p2

3 D J ~4!

is ~besides the coupling! mainly present in the different col
linear divergent subleading term. This term differs due to
different spin of the particle emitting the gauge boson. H
M QED

Born52 ie^k1 ,tugnuk2 ,t& as usual and replacinge2 with

1I would like to thank J. Collins for helpful discussions on th
point.

2We can perform this renormalization here since the non-Abe
components do not enter for the scalar quark anomalous dimen
The corresponding counterterm includes automatically the w
function renormalization contribution.
ss
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CFgs
2 we obtain the QCD result from Eq.~4!. Scaling viola-

tions for S-matrix elements can be described by calculat
the anomalous dimension of the relevant gauge invariant
erators. This is due to the fact that for massless theories t
is a one to one correspondence between high and low en
scaling @18,19#. Thus for the subleading scaling violation
only the regions of large loop integrationl in Eq. ~3! are
relevant here~the double logarithms lead to infrared singul
anomalous dimensions@20#! and the corresponding anoma
lous dimension can be read off from the subleading logar
mic term:

gss̄5
]

] logm̄
~2dss̄1ds!52CF

as

p
~5!

where dss̄ denotes the counterterm from the diagram d
picted in Fig. 1, whileds corresponds to the wave functio
renormalization counterterm of the scalar quark. The sum
Eq. 5 is gauge independent. Since the factorization theor
of Ref. @13# do not depend on the spin of the quark, we c
resum the leading and subleading virtual logarithmic corr
tions by using the Altarelli-Parisi equations. To this end w
must formulate the above results in terms of the languag
the splitting functions for a massless scalar quark. This w
be done in the next section. First, however, we are going
discuss the scalar high energy sector in the standard mo
In particular, there are additional corrections of the Yuka

n
n.
e

FIG. 1. A Feynman diagram determining the DL and SL con
butions to scalar quarks in the on-shell scheme. In the mass
theory there are scaling violations from loop corrections which c
be described by anomalous dimensions.
1-3
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MICHAEL MELLES PHYSICAL REVIEW D 64 014011
type which need to be discussed, for which there is no a
logue in unbroken gauge theories.

B. Equivalence theorem

At high energies, the longitudinal polarization states c
be described with the polarization vector

eL
n~k!5kn/M1O~M /Ek!. ~6!

The connection betweenS-matrix elements and Goldston
bosons is provided by the equivalence theorem@21#. It states
that at the tree level forS-matrix elements longitudina
bosons at the high energy limitM2/s→0 can be expresse
through matrix elements involving their associated would
Goldstone bosons. We write schematically in case of a sin
gauge boson:

M~WL
6 ,cphys!5M~f6,cphys!1OS Mw

As
D ~7!

M~ZL ,cphys!5 iM~x,cphys!1OS M z

As
D . ~8!

The problem with this statement of the equivalence theo
is that it holds only at the tree level@22,23#. For calculations
at higher orders, additional terms enter which change E
~7! and ~8!.

Because of the gauge invariance of the physical the
and the associated Becchi-Rouet-Stora-Tyutin~BRST! in-
variance, a modified version of Eqs.~7! and ~8! can be de-
rived @22# which reads

knM~Wn
6~k!,cphys!5CwMwM~f6~k!,cphys!1OS Mw

As
D
~9!

knM~Zn~k!,cphys!5 iCzM zM~x~k!,cphys!1OS M z

As
D
~10!

where the multiplicative factorsCw andCz depend only on
wave function renormalization constants and mass coun
terms. Thus, using the form of the longitudinal polarizati
vector of Eq.~6! we can write

M~WL
6~k!,cphys!5CwM~f6~k!,cphys!1OS Mw

As
D

~11!

M~ZL~k!,cphys!5 iCzM~x~k!,cphys!1OS M z

As
D

~12!

We see that, in principle, there are logarithmic loop corr
tions to the tree level equivalence theorem. The import
point in our approach, however, is that the correction coe
cients are not functions of the energy variables:
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Cw5Cw~m̄,M ,g,g8!, Cz5Cz~m̄,M ,g,g8!. ~13!

The pictorial form of the Goldstone boson equivalence th
rem is depicted in Fig. 2 for longitudinalW-boson produc-
tion at a lineare1e2 collider. In the following we denote the
logarithmic variablet[ log(s/m2), wherem is a cutoff on the
transverse part of the exchanged virtual momentak of all
involved particles, i.e.

m2<k'
2 [min@2~kpl !~kpj !/~plpj !#, ~14!

for all j Þ l . The non-renormalization group part of the ev
lution equation at high energies is given on the invaria
matrix element level by@9#

]

]t
M„L~k!,cphys…5K~ t !M„L~k!,cphys… ~15!

and thus, after inserting Eqs.~11!, ~12!, we find that the same
evolution equation also holds forM(f(k),cphys). The nota-
tion here is L5$WL

6 ,ZL% and f5$f6,x%, respectively.
Thus, the log(s/m2) dependence in our approach is unrelat
to the corrections to the equivalence theorem, and in gen
is unrelated to two point functions in a covariant gauge
high energies where masses can be neglected. This is a
sequence of the physical on-shell renormalization sche
where the modified minimal subtraction (MS̄) renormaliza-
tion scale parameterm̄;M . Physically, this result can be
understood by interpreting the correction termsCw andCz as
corrections required by the gauge invariance of the theor
order to obtain the correct renormalization group asympto
of the physical standard model fields. Thus, their origin
not related to Sudakov corrections. In other words, the
sults from the previous section should be applicable to
subleading scalar sector in the electroweak theory regar
a non-Abelian scalar gauge theory as the effective desc
tion in this range. The only additional complication in th
standard model is the presence of subleading Yukawa
hanced logarithmic corrections which will be discussed
low. It is also worth noticing that at one loop, the authors
Ref. @10# obtain the same result for the contributions fro
the terms of Eq.~13!. In their approach, where all mass
singular terms are identified and the renormalization sc
m̄5As, these terms are canceled by additional correcti
from mass and wave function counterterms. At higher ord

FIG. 2. The pictorial Goldstone boson equivalence theorem
W-pair production ine1e2 collisions. The correct SL asymptotic
for longitudinally polarized bosons is obtained by using the qu
tum numbers of the charged would-be Goldstone scalars at
energies.
1-4
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RESUMMATION OF YUKAWA ENHANCED AND . . . PHYSICAL REVIEW D64 014011
it is then clear that corrections from two point functions a
subsubleading in a covariant gauge.

III. SUBLEADING CORRECTIONS FROM SPLITTING
FUNCTIONS

In an axial gauge, collinear logarithms are related to c
rections on a particular external leg depending on the ch
of the four-vectornn @14#. In a covariant gauge, the sum ov
all possible insertions shown in Fig. 3 with all invarian
large (;s) is reduced to a sum over alln external legs due to
Ward identities. Overall, these corrections factorize with
spect to the Born amplitude. We can therefore adopt
strategy to extract the gauge invariant contribution from
external line corrections on the invariant matrix element
the subleading level. In Ref.@9# we showed that in the high
energy regime, subleading logarithmic corrections in ma
less theories are of collinear or RG origin. This is importa
since it allows us to use the Altarelli-Parisi approach to c
culate the subleading contribution to the evolution kerne
Eq. ~15!. We are here only concerned with virtual correctio
and use the universality of the splitting functions to calcul
the subleading terms. For longitudinal degrees of freed
we have shown that to logarithmic accuracy the electrow
theory can be described by scalar Goldstone bosons via
equivalence theorem. Thus, at high energies, the effec
theory is analogous to scalar QCD.3 For this purpose we us
the virtual gauge boson contributions to the splitting fun
tionsPf6f6

V (z), Pxx
V (z) andPHH

V (z) describing the probabil-
ity to emit a soft and/or collinear virtual particle with energ
fraction z of the original external line four momentum. Th
infinite momentum frame corresponds to the Sudakov
rametrization with lightlike vectors. In general, the splittin
functionsPBA describe the probability of finding a particleB
inside a particleA with fractionz of the longitudinal momen-
tum of A with probability PBA to first order@15#:

dPBA~z!5
a

2p
PBAdt ~16!

3Although Yukawa terms are not present in QCD with sca
quarks, we will show in the next section that at subleading level
Yukawa terms can be treated as an additional term in the Altar
Parisi splitting function for Goldstone bosons.

FIG. 3. Feynman diagrams contributing to the infrared evolut
equation~1! for a process withn external scalar quarks. In a gener
covariant gauge the virtual gluon with the smallest value ofk' is
attached to different external lines. The inner scattering amplitud
assumed to be on the mass shell.
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where the variablet5 log(s/m2) for our purposes. It then fol-
lows @15# that

dPBA~z!5 a
2p

z~12z!
2 (

spins

— uVA→B1Cu2

k'
2

d logk'
2 ~17!

whereVA→B1C denotes the elementary vertices and

PBA~z!5
z~12z!

2 (
spins

— uVA→B1Cu2

k'
2

. ~18!

The upper bound on the integral overdk'
2 in Eq. ~17! is s and

it is thus directly related todt. Regulating the virtual infrared
divergences with the transverse momentum cutoff as
scribed above, we find the virtual contributions to the sp
ting functions for external Goldstone and Higgs bosons:

Pf6f6
V

~z!5Pxx
V ~z!

5PHH
V ~z!

5H FTi~Ti11!1tan2uwS Yi

2 D 2G S 22log
s

m2
14D

2
3

2

mt
2

M2J d~12z!. ~19!

The functions can be calculated directly from loop corre
tions to the elementary processes in analogy to Q
@24,16,25# and the logarithmic term corresponds to the lea
ing kernel of Ref.@9#. We introduce virtual distribution func-
tions which include only the effects of loop computation
These satisfy the Altarelli-Parisi equations4

]f~z,t !

]t
5

g2

8p2Ez

1dy

y
f~z/y,t !Pff

V ~y!. ~20!

The splitting functions are related byPff5Pff
R 1Pff

V ,
whereR denotes the contribution from real boson emissio
Pff is free of logarithmic corrections and positive definit

Inserting the virtual probability of Eq.~19! into the Eq.
~20! we find

r
e
li-

4Note that off diagonal splitting functions do not contribute to t
virtual probabilities to the order we are working here. In fact, f
virtual corrections there is no need to introduce off-diagonal ter
as the corrections factorize with respect to the Born amplitude.
normalization of Eq.~19! corresponds to calculations in two to tw
processes on the cross section. The results, properly normalized
process independent.

n

is
1-5



is

e
en
he

b

a

-
is

tio
m

d

ul
io

o
iz

in
of

son
n;
are
hen

r-
iza-

e
ad-

c-

ol-

ge,

MICHAEL MELLES PHYSICAL REVIEW D 64 014011
f~1,t !5f0expS 2
g2

8p2 H FTi~Ti11!1tan2uwS Yi

2 D 2G
3S log2

s

m2
24log

s

m2D 1
3

2

mt
2

M2
log

s

m2J D . ~21!

These functions describe the total contribution for the em
sion of virtual particles~i.e. z51), with all invariants large
compared to the cutoffm, to the densitiesf(z,t) (f
5$f6,x,H%). The normalization is not per line but on th
level of the cross section. For the invariant matrix elem
involving nf external scalar particles we thus find at t
subleading level:

M~p1 , . . . ,pn ,g,g8,m2!5MBorn~p1 , . . . ,pn ,g,g8!

3expH 2
1

2 (
i 51

nf

Wi
f~s,m2!J

~22!

where

Wi
f~s,m2!5

g2

16p2 F S Ti~Ti11!1tan2uw

Yi
2

4 D
3S log2

s

m2
24log

s

m2D 1
3

2

mt
2

M2
log

s

m2G .

~23!

Again we note that the higher order corrections should
included by inserting a running coupling as in QCD@12#.
The functionsWi

f correspond to the probability of emitting
virtual soft and/or collinear gauge boson from the particlef
subject to the infrared cutoffm>M . For m<M also pure
QED corrections need to be included forf6. Typical dia-
grams contributing to Eq.~22! in a covariant gauge are de
picted in Fig. 3. The universality of the splitting functions
crucial in obtaining the above result.

In addition to the Sudakov corrections in Eq.~23! we also
have to include terms corresponding to the renormaliza
of the mass terms in the Yukawa coupling of the Born a
plitude (;mt

2/M2,mH
2 /M2) at the one loop level@10#. At

higher orders, mass renormalization terms are connecte
two point functions and thus subsubleading.

IV. SUBLEADING CORRECTIONS FROM GRIBOV’S
FACTORIZATION THEOREM

In this section we present further evidence for the res
of the previous section by employing a non-Abelian vers
of Gribov’s factorization theorem@26#. While in Ref. @26#
only real bremsstrahlung corrections are discussed, the f
of the virtual soft and collinear divergences must factor
analogously due to the Kinoshita-Lee-Nauenberg~KLN !-
theorem@27,28#. The non-Abelian version is discussed
Ref. @1#. The essential point is that to DL accuracy the s
01401
-

t

e

n
-

to

ts
n

rm
e

t

and collinear gauge boson with the smallestuk'u factorizes.
From the definition in Eq.~14! it is clear thatk'

2 'uku2u2,
whereu denotes the angle between the emitted gauge bo
of momentumk and the external line emitting this boso
i.e., both soft as well as collinear emission contributions
regularized simultaneously. In the Feynman gauge we t
have@1#

M~p1 , . . . ,pn ;m2!

5MBorn~p1 , . . . ,pn!

2
i

2

g2

~2p!4 (
j ,l 51,j Þ l

n E
s@k'

2
@m2

d4k

k21 i e

pj pl

~kpj !~kpl !

3Ta~ j !Ta~ l !M~p1 , . . . ,pn ;k'
2 ! ~24!

From Eq.~14! it is clear thatpj pl /(kpj )(kpl)52/k'
2 and that

Eq. ~24! has the required factorized form. For the DL co
rections it is convenient to employ the Sudakov parametr
tion @29# given by

k5vpj1upl1k' . ~25!

For the boson propagator we use the identity

i

k21 i«
5

i

suv2k'
2 1 i«

5P i

suv2k'
2

1pd~suv2k'
2 !

~26!

writing it in form of the real and imaginary parts~the prin-
ciple value is indicated byP). The latter does not contribut
to the DL asymptotics and at higher orders gives subsuble
ing contributions. The cutoff will be introduced via the fun
tion Q(k'

2 2m2). Rewriting the measure asd4k5d2k'd2ki
with

d2k'5uk'uduk'udw5 1
2 dk'

2 dw5pdk'
2 ~27!

d2ki5u]~k0,kx!/]~u,v !ududv

5upj 0
pl x

2pl 0
pj x

ududv'
s

2
dudv ~28!

where we turn the coordinate system such that thepj ,pl
plane corresponds to 0,x and they,z coordinates to thek'

direction so that it is purely spacelike. The last equation f
lows from pi

250, i.e. pi x
2 'pi 0

2 and

~pj 0
pl x

2pl 0
pj x

!2'~pj 0
pl 0

2pl x
pj x

!25~pj pl !
25~s/2!2.

~29!

Using in addition the conservation of the total group char

(
j 51

n

Ta~ j !M~p1 , . . . ,pj , . . . ,pn ;k'
2 !50, ~30!

we arrive at
1-6
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RESUMMATION OF YUKAWA ENHANCED AND . . . PHYSICAL REVIEW D64 014011
M~p1 , . . . ,pn ;m2!5MBorn~p1 , . . . ,pn!

2
2g2

~4p!2 (
l 51

n E
m2

s dk'
2

k'
2 E

uk'u/As

1 dv
v

3ClM~p1 , . . . ,pn ;k'
2 !, ~31!

where Cl is the eigenvalue of the Casimir operat
Ta( l )Ta( l ) @in QCD Cl5CA for gauge bosons in the adjoin
representation of the gauge groupSU(N) and Cl5CF for
fermions in the fundamental representation#. The differential
form of the infrared evolution equation follows immediate
from Eq. ~31!:

]M~p1 , . . . ,pn ;m2!

] log~m2!
5K~m2!M~p1 , . . . ,pn ;m2!,

~32!

where

K~m2![2
1

2 (
l 51

n
]Wl~s,m2!

] log~m2!
~33!

with

Wl~s,m2!5
g2

~4p!2
Cl log2

s

m2
. ~34!

Wl is the probability to emit a soft and almost colline
gauge boson from the particlel, subject to the infrared cutof
m on the transverse momentum@1#. Note that in distinction
to a gluon or photon mass regulator, the cutoffm does not
spoil the gauge invariance of the theory and can take
arbitrary values; i.e., it is not necessarily taken to zero.
logarithmic accuracy, we obtain, directly from Eq.~34!,

]Wl~s,m2!

] log~m2!
52

g2

8p2
Cl log

s

m2
. ~35!

The infrared evolution equation~32! should be solved with
an appropriate initial condition. In the case of large scat
ing angles, if we choose the cutoff to be the large scaleAs,
then clearly there are no Sudakov corrections. The ini
condition is therefore

M~p1 , . . . ,pn ;s!5MBorn~p1 , . . . ,pn!, ~36!

and the solution of Eq.~32! is thus given by the product o
the Born amplitude and the Sudakov form factors:
01401
n
o

r-

l

M~p1 , . . . ,pn ;m2!5MBorn~p1 , . . . ,pn!

3expS 2
1

2 (
l 51

n

Wl~s,m2!D .

~37!

This is the exponentiation of Sudakov DL in non-Abelia
gauge theories@31#. We now want to apply this result to th
electroweak theory for the subleading Yukawa correction
higher orders. Since we are interested here in correction
order O(anL2n21), each additional loop correction to th
universal subleading terms in the previous section must y
two logarithms; i.e., we are considering DL corrections
the basic process like the inner fermion loop in Fig. 4. It is
particular importance that all additional gauge bosons m
couple to external legs, since otherwise only a sublead
term of orderO(anL2n22) would be generated. All sublead
ing corrections generated by the exchange of gauge bo
coupling both to external Goldstone bosons and inner
mion lines cancel analogously to a mechanism found in R
@30# for terms in heavy quark production ingg collisions in
a Jz50 state. Formally this can be understood by noting t
such terms contain an infrared divergent correction. The s
of those terms, however, is given by the Sudakov form f
tor. Thus any additional terms encountered in intermed
steps of the calculation cancel. For the one loop proces
Fig. 4, for instance, we include only corrections with to
quarks and assume on-shell renormalization of the exte
Goldstone bosons. Thus the corrections at higher orders
torize with respect to the one loop fermion amplitude a
M‘‘Born9(p1 , . . . ,pn)5M1 loop(p1 , . . . ,pn). Note that the
latter is also independent of the cutoffm since the fermion
mass serves as a natural regulator. In principle we
choose the top-quark mass to be much larger thanm for
instance. This freedom is not present for subleading te
from gauge bosons, such as the angular contributions of
type log(u/t)log(s/M2), which furthermore do not factorize
with respect to the Born amplitude as mentioned abo
Thus, the method suggested in Ref.@32# for the higher order
angular terms cannot straightforwardly be justified via t
non-Abelian generalization of Gribov’s bremsstrahlu

FIG. 4. A Feynman diagram yielding Yukawa enhanced log
rithmic corrections in the on-shell scheme. At higher orders,
subleading corrections are given in factorized form according to
non-Abelian generalization of Gribov’s theorem as described in
text. Corrections from gauge bosons inside the top-loop give o
sub-sub leading contributions. DL corrections at two and hig
loop order are given by gauge bosons coupling to~in principle all!
external legs as schematically indicated.
1-7
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theorem.5 In our case we have, for the two loop electrowe
DL corrections at the weak scalem5M ,

Wl
ew~s,M2!5

g2

16p2 F S Ti~Ti11!1tan2uw

Yi
2

4 D log2
s

M2G .

~38!

We now want to consider specific processes relevant at
ture e1e2 colliders and demonstrate how to apply the no
Abelian version of Gribov’s factorization theorem for th
higher order corrections. The subleading corrections are
compared to the general splitting function approach of S
III.
b

is

in
l
tio

01401
u-
-

en
c.

In the case of the amplitude of Fig. 4 we must use
quantum numbers of the associated Goldstone bosons
we have the Born amplitude

MBorn~p1 , . . . ,p4!5 i
e2

2scw
2 ^eR

2ugnueL
1&~k12k2!n ~39!

and at one loop we have two fermion loops contributing (ttb
andbbt). The renormalization condition is provided by th
requirement that the corrections vanish at the weak scale
for s5M2, which amounts to subtracting the vertex for th
case. The first diagram of the two is given by
r

A 1 loop
ttb ~p1 , . . . ,p4!53(

g,Z

e4mt
2

2sM2sw
2 ^eR

2ugnueL
1&c1

e E dnl

~2p!n

Tr$v2łv1~ ł 2k” 2!gn~c1
t v11c2

t v2!~ ł 1k” 1!%

~ l 22mb
21 i«!@~ l 1k1!22mt

21 i«#@~ l 2k2!22mt
21 i«#

1dct
ttb

5
3iQt

16p2cw
2

e4mt
2

2sM2sw
2 ^eR

2ugnueL
1&~B232B23

M !~k12k2!n ~40!

where v65 1
2 (16g5) and the chiral couplings are given byc6

f 5Qf for the photon andc1
f 5sw /cwQf and c2

f 5(sw
2Qf

2Tf
3)/swcw for Z bosons respectively. The countertermdct

ttb is chosen such that the logarithmic corrections vanish fos
5M2. Thus, the sum of the scalar functions is to logarithmic accuracyB232B23

M52 log(s/M2). Analogously, we have, for the
bbt quark loop,

A 1 loop
bbt ~p1 , . . . ,p4!53(

g,Z

e4mt
2

2sM2sw
2 ^eR

2ugnueL
1&c1

e E dnl

~2p!n

Tr$v1~2 ł !v2~2 ł 2k” 1!gn~c1
b v11c2

b v2!~2 ł 1k” 2!%

~ l 22mt
21 i«!@~ l 1k1!22mb

21 i«#@~ l 2k2!22mb
21 i«#

1dct
bbt

52
3i ~Qb2Tb

3!

16p2cw
2

e4mt
2

2sM2sw
2 ^eR

2ugnueL
1&~B232B23

M !~k12k2!n . ~41!
he

at
rtex

a-

cor-
ian
rec-
ad-
Adding both results~40! and ~41! we find

M1 loop~p1 , . . . ,p4!5MBorn~p1 , . . . ,p4!

3H 12
g2

16p2

3

2

mt
2

M2
log

s

M2J ~42!

and the all orders result to subleading accuracy is given

M~p1 , . . . ,pn ;m2!5M1 loop~p1 , . . . ,pn!

3expS 2
1

2 (
l 51

n

Wl
ew~s,m2!D . ~43!

The subleading Yukawa corrections from the Altarelli-Par

5Using the MS̄-renormalization scheme, however, the sublead
pole structure of QCD scattering amplitudes at the two loop leve
determined only by one loop divergences and renormaliza
group corrections@33#.
y

i

in Eq. ~22! agree with the corresponding results from t
application of the Gribov-theorem in Eq.~43!. For longitu-
dinal Z-boson and Higgs boson production, we note th
there is only one non-mass suppressed elementary ve
with two neutral scalars, namely theZxH vertex. As men

g
is
n

FIG. 5. A Feynman diagram yielding Yukawa enhanced log
rithmic corrections to external longitudinalZ bosons and Higgs
lines in the on-shell scheme. At higher orders, the subleading
rections are given in factorized form according to the non-Abel
generalization of Gribov’s theorem as described in the text. Cor
tions from gauge bosons inside the top-loop give only sub-sub le
ing contributions.
1-8
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tioned above, universal terms are related to the massless limit. For the ‘‘Born amplitude’’ of the Higgsstrahlung ve
have

M Born
Zx H5

e

2swcw
~k1

n2k2
n!. ~44!

The universal Yukawa corrections to both externalx andH states from an off shellZ line are then given by the correction
depicted in the inner fermion loop of Fig. 5. Here we find

A 1 loop
ZxH ~p1 , . . . ,p3!53

e3mt
2

4M2sw
2 E dnl

~2p!n

Tr$g5~ ł !~ ł 2k” 2!gn~c1
t v11c2

t v2!~ ł 1k” 1!%

~ l 22mt
21 i«!@~ l 1k1!22mt

21 i«#@~ l 2k2!22mt
21 i«#

1dct
ZxH

5
6Tt

3

16p2swcw

e3mt
2

4M2sw
2 ~B232B23

M !~k1
n2k2

n! ~45!
ol
E
re

e-

e

s
rgy
ns
the

cale
rgu-
o
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ex-
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and thus

M 1 loop
ZxH ~p1 , . . . ,p3!5M Born

ZxHH 12
3

2

e2mt
2

16p2sw
2 M2

log
s

M2J .

~46!

From the same line of reasoning as for the charged G
stone bosons we find that the all orders result is given by
~43!. At the subleading level, this is equivalent to the cor
sponding corrections obtained in Eq.~22!.

V. TOP-QUARK YUKAWA CORRECTIONS FOR CHIRAL
QUARK PRODUCTION

In Ref. @9# all subleading Sudakov logarithms were r
summed assuming that all invariants 2pj pl;s. The sublead-
ing kernel of the infrared evolution equation was determin
01401
d-
q.
-

d

by using the virtual contributions to the splitting function
from QCD and applying these results to the high ene
regime of the electroweak theory. Soft photon correctio
were then added by appropriate matching conditions at
weak scale. We explicitly restricted ourselves in Ref.@9# to
the case where all fermions had masses below the weak s
and thus excluded Yukawa enhanced terms. From the a
ments of Sec. IV it is now straightforward to include als
top-quark Yukawa terms for chiral quark final states. The
terms occur for left handed bottom as well as top quark
ternal lines. The situation for a typical Drell-Yan process
depicted in Fig. 6 where for the inner scattering amplitu
we have two contributions. We neglect all terms of ord
O(mf

2/s,M2/s). Using on-shell renormalization we find, fo
the inner amplitude on the left in Fig. 6 for a right hand
electron in the initial and a left handed bottom quark in t
final state from thef6 loop for the sum of theg and Z
contributions,
t in

e masses
handed
g

aA 1 loop
DY 52

e4mt
2

4sM2sw
2cw

2 ^eL
1ugnueR

2&E dnl

~2p!n

^ f Lu ł ~2l 2k12k2!nu f R&

~ l 22mf 8
2

1 i«!@~ l 2k1!22M21 i«#@~ l 2k2!22M21 i«#
1 adct

DY

52
i

32p2

e4mt
2

4sM2sw
2cw

2 ^eL
1ugnueR

2&^ f Lugnu f R&~B232B23
M !. ~47!

The scalar functions at high energy evaluate toB232B23
M52 log(s/M2) as mentioned above. For the diagram on the righ

Fig. 6 we have for the bottom again only thef6 contribution. Here we find, for the sum of theg andZ contributions,

bA 1 loop
DY 52

e4mt
2Qt

2sM2sw
2cw

2 ^eL
1ugnueR

2&E dnl

~2p!n

^ f Lu łgnł u f R&

~ l 22M21 i«!@~ l 2k1!22mt
21 i«#@~ l 2k2!22mt

21 i«#
1 bdct

DY

5
i

32p2

e4mt
2Qt

2sM2sw
2cw

2 ^eL
1ugnueR

2&^ f Lugnu f R&~B232B23
M !. ~48!

In all cases we renormalize on shell, i.e. by requiring that the vertex vanish when the momentum transfer equals th
of the external on-shell lines. All on-shell self-energy contributions do not contribute in this scheme. For external left
top quarks, thef6 loop is mass suppressed and we only have to consider thex andH corrections. They are given by replacin
Qt→2Qt(Tt

3)2 andQt→ 1
2 Qt in Eq. ~48!. It turns out that theZxH contributions equal the corrections from thegf6 andZf6

in the case of the bottom calculation. The Born amplitude is given by
1-9
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M Born
DY 5 i

e2

scw
2 ~Qf2Tf

3!^eL
1ugnueR

2&^ f Lugnu f R&

55 i
e2

6scw
2 ^eL

1ugnueR
2&^ f Lugnu f R&, f L5tL ,bL,

i
e2

scw
2

2

3
^eL

1ugnueR
2&^ f Rugnu f L&, f R5tR,

~49!

for top and bottom quarks. In all cases, log(M2/mt
2) terms can

be safely neglected to the accuracy we are working. Thus
find, for left handed quarks of the third generation,

M 1 loop
DYL ~p1 , . . . ,p4!5M Born

DY ~p1 , . . . ,p4!H 12
g2

16p2

3
1

4

mt
2

M2
d f ,tL /bL

log
s

M2J . ~50!

For right handed external top quarks we havef6, x andH
corrections. In that case we observe that theZxH, gf6 and
Zf6 loops have an opposite sign relative to the left hand
case. For the corrections corresponding to the topol
shown on the right in Fig. 6 we must replaceQt in Eq. ~48!
by Qf2Tf

35 1
6 for the f6 graph. The same contribution i

obtained by adding theH andx loops and we find

M 1 loop
DYR ~p1 , . . . ,p4!5M Born

DY ~p1 , . . . ,p4!H 12
g2

16p2

3
1

2

mt
2

M2
d f ,tR

log
s

M2J . ~51!

At higher orders we note that the exchange of gauge bos
inside the one loop process is subsubleading and we arriv

FIG. 6. Feynman diagrams yielding Yukawa enhanced logar
mic corrections to the third generation of fermions in the final sa
The inner scattering amplitude is taken on the mass shell. No
corrections originate from the inner loop. At higher orders, the s
leading corrections are given in factorized form according to
non-Abelian generalization of Gribov’s theorem as described in
text. Corrections from gauge bosons inside the Goldstone-bo
loop give only sub-sub leading contributions. DL corrections at t
and higher loop orders are given by gauge bosons coupling to~in
principle all! external legs as schematically indicated.
01401
e

d
y

ns
at

the factorized form analogous to the Yukawa corrections
Sec. IV. Since these corrections are of universal nature,
can drop the specific reference to the Drell-Yan process
the application of the generalized Gribov-theorem for ext
nal fermion lines to all orders yields

M~p1 , . . . ,pn ;m2!5M1 loop~p1 , . . . ,pn!

3expS 2
1

2 (
l 51

nf

Wl
ew~s,m2!D

~52!

whereWl
ew(s,m2) is given in Eq.~38! and the quantum num

bers are those of the external fermion lines. Since at h
energies all fermions can be considered massless, we
again absorb the chiral top-quark Yukawa corrections i
universal splitting functions as in Ref.@9#. Thus in the elec-
troweak theory we find to next to leading order the cor
sponding probability for the emission of gauge bosons fr
chiral fermions subject to the cutoffm:

Wi
f~s,m2!5

g2

16p2 F S Ti~Ti11!1tan2uw

Yi
2

4 D
3S log2

s

m2
23log

s

m2D
1S 11d f ,R

4

mf
2

M2
1d f ,L

mf 8
2

4M2D log
s

m2G . ~53!

The last line only contributes for left handed bottom and
top quarks as mentioned above andf 8 denotes the corre
sponding isospin partner for left handed fermions.

VI. SEMI-INCLUSIVE CROSS SECTIONS

Up to this point we have only considered the correctio
from virtual corrections above the weak scaleM. The physi-
cal photon, however, is massless and must be included
semi-inclusive or fully inclusive way. It is thus necessary
consider now the regime fork'

2 ,M2. The corrections for
external fermion, photon andW6 lines are given in Ref.@9#,
in each case corresponding to the logarithmic probability
emit soft and/or collinear particles below the scaleM. The
high energy solution is then the boundary condition for t
infrared evolution equation at the scalem5M . For the lon-
gitudinal particles, we only have corrections from th
charged gauge bosons below the scaleM. In this regime we
also need to consider particle masses. For real photon e
sion we assume that the detector resolution is bounded
mexpt,M , so that emission from real massive gauge bos
does not need to be considered and, for simplicity, we
strict ourselves here to the soft photon approximation.

Under these circumstances we are now able to summa
the complete expression for observable electroweak c
sections at high energies for all universal leading and s

-
.
L
-
e
e
on
1-10
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leading Sudakov corrections as follows:6

ds~p1 , . . . ,pn ,g,g8,mexpt!

5dsBorn„p1 , . . . ,pn ,g,g8…

3expH 2(
i 51

ng

Wi
g~s,M2!2(

i 51

nf

Wi
f~s,M2!

2(
i 51

nf

Wi
f~s,M2!J

3expF2(
i 51

nf

„wi
f~s,m2!2wi

f~s,M2!…

2(
i 51

nw

„wi
w~s,m2!2wi

w~s,M2!…2(
i 51

ng

wi
g~M2,mj

2!G
3exp„wexpt

g ~s,mi ,m,mexpt!…. ~54!

The functionsWi
f(s,M2) and Wi

f(s,M2) are given in Eqs.
~23! and ~53! respectively. The remaining logarithmic prob
01401
abilities are given in Ref.@9# and are summarized for conve
nience below:

Wi
g~s,M2!5F a

4p
Ti~Ti11!1

a8

4p S Yi

2 D 2G log2
s

M2

2S d i ,W

a

p
b01d i ,B

a8

p
b08D log

s

M2
~55!

with

b05
11

12
CA2

1

3
ngen2

1

24
nh , b0852

5

9
ngen2

1

24
nh

~56!

where ngen denotes the number of fermion generatio
@34,35# andnh the number of Higgs doublets. Again we no
that for external photon andZ-boson states we must includ
the mixing appropriately as discussed in Ref.@9#. For the
terms entering from contributions below the weak scale
have, for fermions,
ther with
h

wi
f~s,m2!55

ei
2

~4p!2 S log2
s

m2
23log

s

m2D , mi!m

ei
2

~4p!2 F S log
s

mi
2

21D 2log
mi

2

m2
1 log2

s

mi
2

23log
s

mi
2G , m!mi .

~57!

Analogously, for externalW bosons and photons we find

wi
w~s,m2!5

ei
2

~4p!2 F S log
s

M2
21D 2log

M2

m2
1 log2

s

M2G ~58!

wi
g~M2,m2!55

1

3 (
j 51

nf ej
2

4p2
NC

j log
M2

m2
, mj!m,

1

3 (
j 51

nf ej
2

4p2
NC

j log
M2

mj
2

, m!mj ,

~59!

for the virtual corrections and for real photon emission we have, in the soft photon approximation,

wexpt
g ~s,mi ,m,mexpt!55 (

i 51

n ei
2

~4p!2 F2 log2
s

mexpt
2

1 log2
s

m2
23log

s

m2G , mi!m,

(
i 51

n ei
2

~4p!2 F S log
s

mi
2

21D 2log
mi

2

m2
1 log2

s

mi
2

22log
s

mexpt
2 S log

s

mi
2

21D G , m!mi

~60!

6We emphasize that for photon andZ-boson final states the mixing effects have to be included correctly as described in Ref.@9#. In
particular, for transverse degrees of freedom the corrections do not factorize with respect to the physical Born amplitude but ra
respect to the amplitudes containing the fields in the broken phase. For longitudinally polarizedZ bosons, however, there is no mixing wit
photons and the corrections factorize with respect to the Born amplitude.
1-11
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wheren is the number of external lines and the uppercase applies only to fermions since forW6 we havem,M . Note that in
all contributions from the regimem,M we have kept mass terms inside the logarithms. This approach is valid in the
standard model up to terms of orderO„log(mt /M)….

VII. COMPARISON WITH ONE LOOP RESULTS

In this section we compare our results from the infrared evolution equation method with the explicit one loop calc
of Ref. @36# for longitudinalWL

6 scattering ine1e2 collisions and the general one loop results from Ref.@10#. Top production
has also been discussed in Ref.@37#. In Ref. @10# all mass singular terms were isolated and the physical basis was us
obtain the DL and SL corrections from collinear terms, wave function renormalization and RG contributions. The
presented there for fermions~up to Yukawa terms! and transverse degrees of freedom agree with our corresponding res
Ref. @9#. Also all terms calculated here are, at one loop, in agreement with Ref.@10#. The results of Ref.@36# were obtained
in terms of the physical fields. We already checked that our method gives the correct terms at one loop for transverse
of freedom and for fermions~up to top-quark Yukawa terms! in Ref. @9#. Soft real photon radiation will be included in th
comparison. This comparison is crucial as mentioned in Sec. II A since we must check that the splitting function appr
particular the factorization of the DL and SL terms, takes place with the same electroweak group factor

S g2

8p2
Tf~Tf11!1

g82

8p2

Yf
2

4 D
from the high effective scalar theory. Only the Yukawa terms factorize differently, namely withg2/8p2. In the following, the
lower index on the cross section indicates the helicity of the electron, wheree2

2 denotes the left-handed electron. W
summarize the relevant results fore1

1e2
2→WL

1WL
2 ande2

1e1
2→WL

1WL
2 from Ref. @36# for convenience as follows:

S ds

dV D
2, L

'S ds

dV D
2, L

Born H 11
e2

8p2 F2
122cw

2 14cw
4

2cw
2sw

2
log2

s

M2
1

1032158cw
2 180cw

4

12cw
2sw

2
log

s

M2
2

3mt
2

2sw
2 M2

log
s

M2
13log

s

me
2

12log
4DE2

s S log
s

me
2

1 log
s

M2
22D 2

4

3 (
j 51

nf

Qj
2NC

j log
mj

2

M2G J ~61!

S ds

dV D
1, L

'S ds

dV D
1, L

Born H 11
e2

8p2 F2
5210cw

2 18cw
4

4cw
2sw

2
log2

s

M2
1

65265cw
2 118cw

4

6cw
2sw

2
log

s

M2
2

3mt
2

2sw
2 M2

log
s

M2
13log

s

me
2

12log
4DE2

s S log
s

me
2

1 log
s

M2
22D 2

4

3 (
j 51

nf

Qj
2NC

j log
mj

2

M2G J . ~62!
ro
a

e
ell

we
e.
The Born cross sections are given by

S ds

dV D
2, L

Born

5
e4

64p2s

1

16sw
4cw

4
sin2u ~63!

S ds

dV D
1, L

Born

5
e4

64p2s

1

4cw
4

sin2u. ~64!

These expressions demonstrate that the longitudinal c
sections in Eqs.~63! and~64! are not mass suppressed. Equ
01401
ss
-

tions ~61! and~62! were of course calculated in terms of th
physical fields of the broken theory and in the on-sh
scheme. We denotecw5cosuw andsw5sinuw respectively.
Using e5gg8/Ag21g82, sw5g8/Ag21g82 and cw
5g/Ag21g82 we see that the Born cross section in Eq.~63!
is proportional to (g21g82)2 and Eq.~63! proportional to
g84. Below the scale where non-Abelian effects enter,
have running coupling corrections only from QED, i.
g2(M2)5eeff

2 (M2)/sw
2 andg82(M2)5eeff

2 (M2)/cw
2 where

eeff
2 ~M2!5e2S 11

1

3

e2

4p2 (
j 51

nf

Qj
2NC

j log
M2

mj
2 D . ~65!
1-12



th

u
riz

e
ons
s as

tric
ll–

scribe

RESUMMATION OF YUKAWA ENHANCED AND . . . PHYSICAL REVIEW D64 014011
Thus, the RG corrections to both cross sections form̄.M
are given by@usingCA52, ngen53 andnh51 in Eqs.~56!#

S ds

dV D
2, L

RG

5S ds

dV D
2, L

Born H 11
e2

8p2

41282cw
2 122cw

4

6sw
2cw

2
log

s

M2J
~66!

S ds

dV D
1, L

RG

5S ds

dV D
1, L

Born H 11
e2

8p2

41

6cw
2
log

s

M2J . ~67!

The Sudakov corrections to both cross sections from
infrared evolution equation method according to Eq.~54! in
the soft photon approximation are given below. The quant
numbers are those of the particle indices and are summa
in Table I:
01401
e

m
ed

TABLE I. The quantum numbers of various particles in th
electroweak theory. The indices indicate the helicity of the electr
and quarks. We neglect all mass terms, i.e. consider all particle
chiral eigenstates with well defined total weak isospin (T) and weak
hypercharge (Y) quantum numbers. In each case, the elec
chargeQ, measured in units of the proton charge, by the Ge
Mann–Nishijima formulaQ5T31Y/2. For longitudinally polar-
ized gauge bosons, the associated scalar Goldstone bosons de
the DL asymptotics.

T Y Q

e2
2 1/2 -1 -1

e1
2 0 -2 -1

e1
1 1/2 1 1

e2
1 0 2 1

u2 1/2 1/3 2/3
u1 0 4/3 2/3
d2 1/2 1/3 -1/3
d1 0 -2/3 -1/3
W6 1 0 61
f6 1/2 61 61
x 1/2 21 0
H 1/2 11 0
d

S ds

dV D
2,L

5S ds

dV D
2,L

BornH 12S g2

8p2
Tf~Tf11!1

g82

8p2

Yf
2

4 D S log2
s

M2
24log

s

M2D 2S g2

8p2
Te

2
2~Te

2
211!1

g82

8p2

Ye
2
2

2

4
D

3S log2
s

M2
23log

s

M2D 23
g2

16p2

mt
2

M2
log

s

M2
2

e2

8p2 F S log
s

me
2

21D 2log
me

2

m2
1 log2

s

me
2

23log
s

me
2

2 log2
s

M2
13log

s

M2
12S log

s

M2
21D log

M2

m2
2S log

s

me
2

21D S 2log
me

2

m2
22log

s

mexpt
2 D

22S log
s

M2
21D S log

M2

m2
2 log

s

mexpt
2 D 2 log2

s

me
2

2 log2
s

M2G1
2

3

e2

4p2 (
j 51

nf

Qj
2NC

j log
M2

mj
2J

5S ds

dV D
2,L

BornH 12
e2

8p2 S 112cw
2

2sw
2cw

2
log2

s

M2
27

112cw
2

4sw
2cw

2
log

s

M2D 1
e2

8p2

3F2log2
s

M2
23log

me
2

M2
24log

s

mexpt
2 S log

s

meM
21D2

3mt
2

2sw
2 M2

log
s

M2G1
2

3

e2

4p2 (
j 51

nf

Qj
2NC

j log
M2

mj
2J . ~68!

Adding Eqs.~66! and ~68! yields exactly the result in Eq.~61! from Ref. @36#. Analogously, we have, for right-hande
electrons,
1-13
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S ds

dV D
1,L

5S ds

dV D
1,L

BornH 12S g2

8p2
Tf~Tf11!1

g82

8p2

Yf
2

4 D S log2
s

M2
24log

s

M2D 2S g2

8p2
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1
2~Te

1
211!1

g82

8p2

Ye
1
2

2

4
D S log2

s

M2

23log
s

M2D 23
g2

16p2
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2

M2
log

s

M2
2

e2

8p2 F S log
s

me
2

21D 2log
me

2

m2
1 log2

s

me
2

23log
s
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2

2 log2
s

M2
13log

s

M2

12S log
s

M2
21D log

M2

m2
2S log

s

me
2

21D S 2log
me

2

m2
22log

s

mexpt
2 D 22S log

s

M2
21D S log

M2

m2
2 log

s

mexpt
2 D

2 log2
s

me
2

2 log2
s

M2G1
2

3

e2

4p2 (
j 51

nf

Qj
2NC

j log
M2

mj
2J

5S ds

dV D
1,L

BornH 12
e2

8p2 S 522cw
2

4sw
2cw

2
log2

s

M2
2

42cw
2

sw
2cw

2
log

s

M2D 1
e2

8p2

3F2log2
s

M2
23log

me
2

M2
24log

s

mexpt
2 S log

s

meM
21D2

3mt
2

2sw
2 M2

log
s

M2G1
2

3

e2

4p2 (
j 51

nf

Qj
2NC

j log
M2

mj
2J . ~69!

Again we see that after adding Eqs.~67! and~69! we obtain the result in Eq.~62! from Ref.@36#. Thus we have demonstrate
that to subleading logarithmic accuracy our results from the infrared evolution equation method in conjunction w
Goldstone boson equivalence theorem are identical with existing one loop calculations with physical fields in the high
limit.
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VIII. DISCUSSION OF THE RESULTS

In this section we discuss the size of the subleading Su
kov corrections obtained in this work. We neglect renorm
ization group corrections for simplicity and usee2/4p
51/137, g2/4p5e2(M2)/sw

24p51/(0.233128) and
g82/4p5e2(M2)/cw

24p51/(0.773128). The motivation for
investigating the size of the gauge invariant corrections at
subleading level is twofold. While this discussion is incom
plete for processes with a large angular dependence,
nevertheless useful in estimating how good the DL appro
mation is at higher orders. In addition, we gain physical
sight into the importance of Yukawa corrections and the p
tial cancellation between subleading terms.

A. Sudakov effects for longitudinal gauge boson
and Higgs production

We begin with the Yukawa corrections for external sc
lars given in Eq.~23! with the infrared cutoffm5M . Using
the quantum numbers of Table I, we have

2Wi
f~s,M2!52

g2

16p2 H F1

2 S 1

2
11D1tan2uw

1

4G
3S log2

s

M2
24log

s

M2D 1
3

2

mt
2

M2
log

s

M2J
52

g2

16p2 F0.79log2
s

M2
14.01 log

s

M2G ~70!
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l-

e
-
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i-
-
r-

-

where we useM580 GeV, mt5175 GeV andsw
2 50.23.

The first thing to notice is that the Yukawa enhanced lo
rithms dominate over the subleading Sudakov correcti
and enhance the overall Sudakov suppression. At 1 TeV
have log(s/M2)55.05 and thus almost equal contribution
from DL and SL terms. At 2 TeV we have log(s/M2)56.44
and at 3 TeV log(s/M2)57.25. In real calculations, howeve
one finds that the Yukawa terms are always proportiona
log(s/mt

2). Since the factor of the Yukawa logarithm
uniquely determined by Eq.~23!, we can replace the respec
tive mass term inside the logarithm.7 Thus, for f6 for in-
stance, we have to consider

2Wi
f~s,M2!52

g2

16p2 H F1

2 S 1

2
11D1tan2uw

1

4G
3S log2

s

M2
24log

s

M2D 1
3

2

mt
2

M2
log

s

mt
2J

'2
g2

16p2 F0.79log2
s

M2
14.01 log

s

M2

211.24G . ~71!

7Analogously forx we can putM5MZ and for H we haveM
5MH as arguments of the non-Yukawa logarithms in Eq.~23! de-
pending on which mass is the largest in a given process.
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With the above mass values we have at one loop about
~39%! at 1 ~3! TeV from the subleading terms relative to th
DL corrections and at the two loop level about 79%~77%! at
1 ~3! TeV. The subleading corrections are therefore n
negligible and enhancing the Sudakov suppression. Eve
100 TeV the subleading terms make up about 52% at the
loop level and must be taken into account. The good new
that the absolute size of the DL correction per line accord
to Eq.~71! at the one loop level is 5.7%~11.7%! at 1~3! TeV
and at two loops 0.16%~0.7%! at 1 ~3! TeV relative to the
Born cross section.

The above numbers are valid for both externalH and x
fields. Forf6 we also have to consider the purely electr
magnetic corrections according to Eq.~54!. Thus we have on
the level of the cross section for each longitudinally pol
ized W boson including soft photon radiation:

2wi
w~s,m2!1wi

w~s,M2!1wexpt
g ~s,M ,m,mexpt!

5
e2

16p2 F log2
s

M2
22log

s

mexpt
2 S log

s

M2
21D G . ~72!

Thus, the complete size of the corrections forf6 on the
level of the cross section, choosingmexpt5M , is given by

2Wi
f~s,M2!2wi

w~s,m2!1wi
w~s,M2!1wexpt

g ~s,M ,m,M !5

2
g2

16p2 F1.02 log2
s

M2
12.01 log

s

M2
211.24G . ~73!

It is clear that the DL approximation is much more approp
ate for longitudinalW bosons than for the neutral extern
scalars. For instance we have about 6.5%~4.3%! at 1 ~3!
TeV from the subleading terms relative to the DL contrib
tions. The absolute size of the DL corrections relative to
Born cross section at one loop is 7%~15%! at 1 ~3! TeV and
at two loops 0.26%~1.1%! at 1 ~3! TeV. The subleading
terms at the two loop level contribute about 13%~8.6%!
relative to the DL corrections.

B. Sudakov effects for quarks of the third generation

In order to estimate the size of the corrections for ch
heavy quark production we consider first the case of
handed bottom and top quarks. In this case we have, f
Table I,

2Wi
tL ,bL~s,M2!52

g2

16p2 H F1

2 S 1

2
11D1tan2uw

1

36G
3S log2

s

M2
23 log

s

M2D 1
mt

2

4M2
log

s

mt
2J

'2
g2

16p2 F0.814 log2
s

M2

21.246 log
s

M2
21.87G . ~74!
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The corrections of purely electromagnetic origin are differe
for the two cases. In general we have

2wi
f~s,m2!1wi

f~s,M2!1wexpt
g ~s,mf ,m,M !

5
e2Qf

2

16p2 F2 log2
s

M2
2 log

M2

mf
2 S 2log

s

M2
23D 12log

s

M2G .

~75!

The full result for the left handed top quark is therefore giv
by

2Wi
tL~s,M2!2wi

tL~s,m2!1wi
tL~s,M2!1wexpt

g ~s,mt ,m,M !

52
g2

16p2 F0.916 log2
s

M2
21.769 log

s

M2
21.39G . ~76!

Thus we see that there is a partial cancellation between
subleading and the Yukawa terms and the overall DL s
pression is somewhat reduced. In relative terms at one lo
the SL corrections are about 33%~20%! at 1 ~3! TeV, and at
two loops the relative size of the subleading terms is 6
~41%! at 1 ~3! TeV. The absolute size of the DL correction
at one loop is 5.4%~11.1%! per line at 1~3! TeV. At two
loops we have corrections of 0.15%~0.62%! at 1 ~3! TeV
relative to the Born cross section.

The full result for the left handed bottom quark~with
mb54.5 GeV) is given by

2Wi
bL~s,M2!2wi

bL~s,m2!1wi
bL~s,M2!1wexpt

g ~s,mb ,m,M !

52
g2

16p2 F0.829 log2
s

M2
21.002 log

s

M2
22.31G . ~77!

The partial cancellation between the subleading and
Yukawa terms and the overall DL suppression is reduced
relative terms at one loop, the SL corrections are about 4
~29%! at 1 ~3! TeV, and at two loops the relative size of th
subleading terms is 86%~58%! at 1 ~3! TeV. The absolute
size of the DL corrections at one loop is 5.9%~12.2%! per
line at 1~3! TeV. At two loops we have corrections of 0.18%
~0.75%! at 1 ~3! TeV relative to the Born cross section.

For a right handed top quark we have, from Table I,

2Wi
tR~s,M2!52

g2

16p2 F4

9

sw
2

cw
2 S log2

s

M2
23log

s

M2D
1

mt
2

2M2
log

s

mt
2G

'2
g2

16p2 F0.133 log2
s

M2
12.26 log

s

M2

23.746G . ~78!
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Now we need to add the corrections from Eq.~75!. The full
result is thus

2Wi
tR~s,M2!2wi

tR~s,m2!1wi
tR~s,M2!1wexpt

g ~s,mt ,m,M !

52
g2

16p2 F0.235 log2
s

M2
11.737 log

s

M2
23.27G . ~79!

Thus we see that there is a large correction of the top-qu
Yukawa terms~a factor of 7.4 for the relative coefficients!
and the overall DL suppression is strongly enhanced. In
lation to the DL contribution at one loop, the SL correctio
are about 69%~60%! at 1 ~3! TeV, and at two loops the
relative size of the subleading terms is 139%~120%! at 1 ~3!
TeV. The absolute size of the DL corrections at one loop
1.6% ~3.3%! per line at 1~3! TeV. At two loops, however,
we have corrections of only 0.013%~0.055%! at 1 ~3! TeV
relative to the Born cross section. Thus, the apparent lac
convergence of the DL approximation is irrelevant for pra
tical purposes.

From a physical point of view it is clear how the larg
subleading terms can be understood. Right handed ferm
in general couple only to photons andZ bosons and the cou
pling to theZ boson is proportional to (a8/4p) for the DL
and non-Yukawa SL corrections. The Yukawa correctio
however, are proportional to (a/4p) and in addition for the
right handed top quark, we have,

mt
2

2M2
;5.38

Yt
2

4
55.38

4

9
~80!

a~M2!;3.35a8~M2!. ~81!

The effect is somewhat softened by the electromagnetic
rections from Eq.~75!. In general the size of the subleadin
terms cannot be neglected at the two loop level for
Yukawa enhanced Sudakov corrections discussed in
work.

IX. CONCLUSIONS

In this paper we calculated the universal subleading

OS g2nlog2n21
s

M2
,g82n log2n21

s

M2D
logarithmic Sudakov corrections to longitudinal gauge bos
and Higgs boson production to all orders. We have emplo
the infrared evolution equation method and used the equ
lence theorem to obtain the high energy kernel of the eq
tion for longitudinal gauge boson production. All Yukaw
01401
rk

e-

s

of
-

ns

,

r-

ll
is

n
d
a-
a-

enhanced SL Sudakov terms in non-mass suppressed a
tudes are universal to all orders. This feature is evident in
splitting function formalism which we have adopted to ca
culate the virtual Sudakov corrections. The approach, c
cerning in particular the novel Yukawa enhanced sublead
corrections, has been verified by employing a non-Abel
generalization of Gribov’s bremsstrahlung theorem. W
agree with the literature at the one loop level, which is
highly non-trivial check considering the complicated natu
of electroweak radiative corrections and can serve as an
dependent confirmation of those results. In addition t
comparison confirms the validity of the splitting functio
approach since DL and non-Yukawa SL corrections factor
with respect to the same group factor of the effective h
energy theory. These SL contributions are determined by
spin only and are thus identical to those found in a sca
theory with an unbrokenSU(2)3U(1), while the Yukawa
enhanced SL corrections indicate the spontaneously bro
gauge symmetry.

The physical picture which is now emerging is clear:
high energies the SM behaves like an unbroken gauge th
up to DL and SL accuracy for fermions and transvers
polarized gauge bosons. Only Yukawa corrections are no
features in this picture. For longitudinally polarized gau
bosons and Higgs scalars, the effective theory is given by
Goldstone boson equivalence theorem and contains co
tions in analogy to a non-Abelian gauge theory with sca
fields in the fundamental representation. Again, Yuka
terms modify this picture as a unique ingredient of brok
gauge theories. The mass gap between the electroweak g
bosons can be included in a natural way via the match
conditions in the framework of the infrared evolution equ
tion method. Thus all universal Sudakov corrections to D
and SL accuracy are known in the electroweak theory to
orders. The remaining corrections which enter at this leve
precision are given by angular terms of the ty
log(u/t)log(s/M2). These terms are non-universal and do n
factorize with respect to the Born amplitude. While the
terms are known at one loop, for phenomenological appli
tions at future colliders a two loop analysis is desirable.
addition, subleading RG effects of the typ
anb0log2n21(s/M2) coupling effects at higher order should b
consistently resummed via the inclusion of a running co
pling in each loop analogously to the QCD Sudakov fo
factor.

In summary, all universal Sudakov logarithms in the ele
troweak SM are known at the subleading level to all ord
and are non-negligible at future collider energies. The inc
sion of the leading and full subleading electroweak radiat
corrections at least at the two loop level will be important
investigating new physics effects at TeV energies.
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