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Resummation of Yukawa enhanced and subleading Sudakov logarithms
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Future colliders will probe the electroweak theory at energies much larger than the gauge boson masses.
Large double(DL) and single(SL) logarithmic virtual electroweak Sudakov corrections lead to significant
effects for observable cross sections. Recently, leading and subleading universal corrections for external
fermions and transverse gauge boson lines were resummed by employing the infrared evolution equation
method. The results were confirmed at the DL level by explicit two loop calculations with the physical standard
model (SM) fields. Also for longitudinal degrees of freedom the approach was utilized for DL corrections via
the Goldstone boson equivalence theorem. In all cases, the electroweak Sudakov logarithms exponentiate. In
this paper we extend the same approach to both Yukawa enhanced as well as subleading Sudakov corrections
to longitudinal gauge boson and Higgs production. We use virtual contributions to splitting functions of the
appropriate Goldstone bosons in the high energy regime and find that all universal subleading terms exponen-
tiate. The approach is verified by employing a non-Abelian version of Gribov’s factorization theorem and by
explicit comparison with existing one loop calculations. As a side result, we obtain also all top-Yukawa
enhanced subleading logarithms for chiral fermion production at high energies to all orders. In all cases, the
size of the subleading contributions at the two loop level is non-negligible in the context of precision mea-
surements at future linear colliders.
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I. INTRODUCTION the electroweak Sudakov DL calculated in Rglf] via the
infrared evolution equation methd#] with the fields of the
The high energy behavior of the standard mo¢&M) unbroke_n phase is indeed_ reproduc_ed by explicit two loop
will become increasingly important at future colliders inves-calculations with the physical SM field,3,6. One also
tigating the origin of electroweak symmetry breaking. At theUnderstands now the origin of previous disagreements. The

o - ; esults of Ref[7], based on fully inclusive cross sections in
expected level of precision required to disentangle new phy he photon ar[e ]not gauge inva¥iant as already pointed out in

ics effects from the_ S.M n th@(§1%) regime, hl_gher O Ref. [1]. The factorization used in R€fi8] is based on QCD

der electroweakradiative corrections cannot be ignored at g effectively only takes into account contributions from
energies in the TeV-range. The largest contribution is contadder diagrams. In the electroweak theory, the three boson
tained in electroweak double logarithnBL) of the Suda-  vertices, however, do not simply cancel the corresponding
kov type and a comprehensive treatment of those correctiongroup factors of the crossed ladder diagrdassis the case in

is given in Ref[1] to all orders. The effects of the mass gapQCD) and, thus, infrared singular terms survive for left
between the photon ari@lboson has been considered in re- handed fermiongright handed ones are effectively Abeljan
cent publications[2,3] since spontaneously broken gaugein the calculation of Ref.8]. The infrared evolution _equation
theories lead to the exchange of massive gauge bosons. pethod does not encounter any such problems since all con-

general one expects the SM to be in the unbroken phase §iPuting diagrams are automatically taken into account by
high energies. There are, however, some important differ’ etermining the kernel of the equation in the effective regime

f the elect K th ith t brok above and below the weak scaié It is then possible to
ences ot the electroweak theory with reSpect 1o an unbrokeply - ;ate corrections in the effective high energy theory, in

gauge theory. Since the physical cutoff of the massive gaugg,ch case yielding the same result as calculations in the
bosons is the weak scaM=M,~Mz~My,, pure virtual  physical basis. Thus, the mass gap betweerZtheson and
corrections lead to physical cross sections depending on thge photon can be included in a natural way with proper
infrared “cutoff.” Only the photon needs to be treated in a matching conditions at the scaié For longitudinally polar-
semi-inclusive way. Additional complications arise due toized gauge bosons it was shown in REJ] that the DL
the mixing involved to make the mass eigenstates and thkernel can be obtained from the Goldstone boson equiva-
fact that at high energies, the longitudinal degrees of freetence theorem.
dom are not suppressed. Furthermore, since the asymptotic The picture that emerges has a clear physical interpreta-
states are not group singlets, it is expected that fully inclution. At high energies, where particle masses can be ne-
sive cross sections contain Bloch-Nordsieck violating elecglected, the effective theory is given by an unbroken
troweak correction$4]. SU(2)XU(1) theory for fermions and transversely polar-
It has by now been established that the exponentiation dked gauge bosons and by the equivalence theorem for lon-
gitudinally polarized gauge bosons. The contribution from
soft photons and collinear terms below the weak scale is
*Electronic address: michael.melles@psi.ch determined by QED(including mass terms in the corre-
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sponding logarithms This approach was utilized in R¢®]  can be utilized to verify analogous corrections for chiral fer-
to obtain the subleadin@L) universal terms to all orders for mions (b, ,t, ,tg) in Sec. V. Semi-inclusive cross sections
external fermion linegup to Yukawa enhanced terinand  for physical observables are given in Sec. VI and we com-
transversely polarized gauge bosons. Universal, i.e. procegare our results with existing one loop calculations in Sec.
independent, are those terms which through Ward identitie¥!l. We discuss the size of the corrections obtained in Sec.
can be related to external lines and at high energies are givefl!l and present our conclusions in Sec. IX.

by the contributions to the virtual splitting functiorisee

Ref.[9]). In addition, therezz are non-universal angular terms Il. EFFECTIVE HIGH ENERGY THEORY

g;ot:ﬁj t)tl)pe)eil!]%?l%t()alggt(l‘sl(’ '(\)/qu]r:N rt]\l/\(/:: I%%r;)st_)elr:m;:r:t;g atﬂzs In_ the foIIoWin_g we discuss the correction_s in a non-
terms cannot be resummed: they are process depen,dent e;eAnHellan theory with scalar external “quarks,” i.e. external
do not factorize with respect to the Born amplitude. At Onescalar bosons charged under the unbroken gauge group. The

loop, however, there is a general method for calculatin sucﬁ)hys’ical picture is that at high energies, we can use this
P, . ag 9 effective theory via the Goldstone boson equivalence theo-
terms[10] and in practice at most a two loop approach to

subleading logarithmic accuracy is needed rem to _describe the Iongitudinal_ degrees of freedo_m. The

An important aspect of resumming un.iversal terms isIatter WI|| .be ghsqussed in detail in Sec. 1l B. An additional
given by the fact that there is a partial cancellation betweeﬁ:omp_llcat]on 'S given by the presence of Yukawa enhanc_:ed
the DL and SL corrections at energies around 1 TeV thuéo_ganthmlc corrections which are a novel feature of theories
enabling one to see how reliable a DL analysis for a ;‘invenw.Ith spontqneously broken gauge s.ymme.try. Th.ese terms are
process really is. In addition, these are predictions of univerg|scus|sed mC[S)ec. rI]I_I.hWe begm with a discussion of scalar
sal terms which can always by used to check higher orde?maSS essQCD at high energies.
calculations which in the electroweak theory are extremely
involved due to the number of mass terms and diagrams A. Scalar QCD
contributing. It is also conceptually important for a theoreti- In this section we are interested in the collinear correc-
cal understanding of the infrared behavior of the SM. Bytions to external scalars in a non-Abelian gauge theory at the
comparing the subleading universal terms with existing onesubleading level when the external legs are taken on the
loop calculations, we gain further evidence for the overallmass shell. According to the discussion in &l we have
method employed, in particular when it comes to understandio calculate terms contributing to anomalous scaling viola-
ing differences between unbroken and broken gauge theaions. For purely virtual corrections the invariant matrix ele-
ries. ment satisfies the following differential equation for massless

From a phenomenological point of view, the correctionsscalar quarks and all invariantp,~s large compared to
to longitudinal gauge boson production are important in cas@én infrared cutoffu and denoting = log(s/u?):
of a strongly interactingV* sector without a fundamental
Higgs boson. Our perturbative approach would of course
break down in that case; however, it is important to know the
precise form of the deviation of the new dynamics from the
SM in the TeV range in order to understand the new physics
behind the electroweak breaking sector. Corrections to Higgs +ng
bosons are important for a precise measurement of the
Yukawa couplings at high energies in order to establish the ()
Higgs mechanism. At the level of 6—8 %, these corrections
can certainly not be neglected at 1 TeV for determinations ofo the order we are working here and where
the top-quark Yukawa coupling at" e~ colliders[11]. M(pP1, - - Pn,9s,u) is taken on the mass shell. Thgt)

In this paper, we complete the all orders resummation ofiré infrared singular anomalous dimensions leading to DL
all SL universal Sudakov corrections to the SM. While in corrections given in Ref9] while the gluon and scalar quark
Ref.[9] have restricted ourselves to calculating terms analoanomalous dimensions describe SL contributions. At higher
gous to QCD, we now consider terms typical for brokenorders, the subleading renormalization gro@G) correc-
gauge theories. These are in particular longitudinal degreens can be incorporated by including a running coupling in
of freedom, processes with external Higgs bosons an@ach loog12]. An additional non-mass suppressed term oc-
Yukawa enhanced logarithmic corrections. curs in the electroweak theory in the case of four scalar scat-

In Sec. Il we discuss how SL contributions are obtained irtering amplitudessuch asp "¢~ — ¢ " ¢ ") due to the mass
the scalar sector and the application of the equivalence thedatios in the coupling)(~mﬁ|/M2) at the Born level. In that
rem. In Sec. Il we give results for the virtual contributions case one has to renormalize not only the gauge couplings but
to splitting functions involving Goldstone and Higgs bosonsalso the respective scalar couplings at the one loop level
fulfilling evolution equations analogous to the Altarelli- [10]. At higher orders, mass renormalization corrections are
Parisi equations. The correctness of this approach to the Séubsubleading.
level is verified in Sec. IV by employing a non-Abelian ver-  The universality of the corrections follows from the spin
sion of Gribov’'s bremsstrahlung theorem to processes inindependence of the factorization theoref8] and, thus,

volving Yukawa enhanced contributions. A similar approachfrom the universality of the splitting functions in scalar

d
—+B%9P—4n
at B ags 9

las ocp
o)~ 5 — B33 )

XM(py, ... Pn.9s,u?)=0

1
ry(t)+ E Vss
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QCD! Such an equation is of course not physical for alous dimensionyss which gives rise to logarithmic correc-
theory with massless gauge bosons; however, in the ele¢ions due to scaling violations from the classical case. The

1. - < ,
troweak theory purely virtual corrections can lead to physicafactor ofz in Eq. (1) originates from the fact that it is written
cross sections. Only real soft photon emission needs to bfgr each external leg separately.

: y P Thus we must at one loop calculate the corrections de-

included. picted in Fig. 1 with the corresponding Feynman rules for
We are interested in determining the scalar quark anomascalar QCD:

d"l [ —akoko+ 21 (kg —kp) +12](21 + ki —ks),
(2m)" (12=N2+ie)[ (1 +ky)2+ie][(I —ky)2+ie]

A= —TCrg? f )

This is in complete analogy to the situation in Q€I5,16.  Crg2 we obtain the QCD result from E¢4). Scaling viola-
Requiring that the self-energy corrections vanish on the masgons for Smatrix elements can be described by calculating
shell and the on-shell vertex for zero momentum tradsfer  the anomalous dimension of the relevant gauge invariant op-
find the following one loop result: erators. This is due to the fact that for massless theories there
is a one to one correspondence between high and low energy
scaling[18,19. Thus for the subleading scaling violations
only the regions of large loop integratidnin Eq. (3) are
relevant heréthe double logarithms lead to infrared singular
7.,2)] anomalous dimensior0]) and the corresponding anoma-

2
Os 1 S S
(1— Born, e 2 _
M M [1+CF8772( 2Iog )\2+2Iog—)\2 8

+ 2? (3) lous dimension can be read off from the subleading logarith-
mic term:

where M B™M= —ig TP(k,—k,),. It is important to point
out that both leading and subleading logarithmic corrections _ J (=8t 8)=—C Qs )
factorize with respect to the same group factor. The repro- Vss doge oo Fr

duction of this fact in the electroweak theory when compared

to exact calculations with the physical fields is crucial in\ynere S<s denotes the counterterm from the diagram de-

establishir_lg the overa!l correctness of our approach since_ WSicted in Fig. 1, whiles, corresponds to the wave function
must obtain the factorized form with respect to the effectiveyenormalization counterterm of the scalar quark. The sum in
high energy theory. The finite terms in E®) are of course

. . . ) ) Eq. 5 is gauge independent. Since the factorization theorems
irrelevant to the discussion here and the infrared divergents pet. [13] do not depend on the spin of the quark, we can

soft and collinear terms were regulated using a fictitiougggm the leading and subleading virtual logarithmic correc-
gluon mass term. The difference from the QED re$l]  ions by using the Altarelli-Parisi equations. To this end we

for the on-shell form factor must formulate the above results in terms of the language of

’ the splitting functions for a massless scalar quark. This will
MW = AqBonl 44 _ llogzi be done in the next section. First, however, we are going to
QED™ "7 QED 2\ 277 )\2 discuss the scalar high energy sector in the standard model.
In particular, there are additional corrections of the Yukawa
+ 3I ° 2+ 27T2 4
2992 3 @ S,k
is (besides the couplingmainly present in the different col- ’
linear divergent subleading term. This term differs due to the e
. : . L v,q Va
different spin of the particle emitting the gauge boson. Here AAANNS I
MEBM= —ie(k,,7|y,|k,,7) as usual and replacingf with A
QED < 1 Tl’y | 2 T> p rgz q _2k1k2 -\\\
\\\\\
1 would like to thank J. Collins for helpful discussions on this s, kz\

point.

2We can perform this renormalization here since the non-Abelian F|G. 1. A Feynman diagram determining the DL and SL contri-
components do not enter for the scalar quark anomalous dimensiobutions to scalar quarks in the on-shell scheme. In the massless
The corresponding counterterm includes automatically the wavéeheory there are scaling violations from loop corrections which can
function renormalization contribution. be described by anomalous dimensions.
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type which need to be discussed, for which there is no ana-

logue in unbroken gauge theories.

B. Equivalence theorem

At high energies, the longitudinal polarization states can

be described with the polarization vector

e/ (k)=k"IM+O(M/Ey). (6)
The connection betweeSmatrix elements and Goldstone
bosons is provided by the equivalence theof&dj. It states
that at the tree level folSmatrix elements longitudinal
bosons at the high energy limii?/s—0 can be expressed

through matrix elements involving their associated would-be
Goldstone bosons. We write schematically in case of a single

gauge boson:

My

JE) "

MOWE  hphyd = M(™, iiphyd + 0(

2

The problem with this statement of the equivalence theore
is that it holds only at the tree levg22,23. For calculations
at higher orders, additional terms enter which change Eq
(7) and(8).

M(ZL7‘//phys):iM(X7‘//phys)+O (8

Because of the gauge invariance of the physical theory

and the associated Becchi-Rouet-Stora-Tyy#RST) in-
variance, a modified version of Eq&.) and (8) can be de-
rived [22] which reads

9

My

Vs

|

where the multiplicative factor€,, and C, depend only on
wave function renormalization constants and mass counte
terms. Thus, using the form of the longitudinal polarization
vector of Eq.(6) we can write

kVM(W;:(k)vahys) =CyM,, M( ¢i(k)a l/fphys) +0

M,

Vs

k"M(Z,(k), wphys) =iC,M ZM(X(k)-wphys) +0
(10

My,
M(Wf(k) ) l//phys) =CyM( d’i(k)u lffphys) + 0( E)
11

M,

:

M(ZL(k)v¢phys) = iCzM(X(k)v‘ﬂphys) +0

12

S
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FIG. 2. The pictorial Goldstone boson equivalence theorem for
W-pair production ine* e~ collisions. The correct SL asymptotics
for longitudinally polarized bosons is obtained by using the quan-
tum numbers of the charged would-be Goldstone scalars at high
energies.

Cw=Cw(u,M,0,9"), C,=Cxu,M,g,9"). (13
The pictorial form of the Goldstone boson equivalence theo-
rem is depicted in Fig. 2 for longitudind-boson produc-
tion at a lineare*e™ collider. In the following we denote the
logarithmic variable=log(su?), wherepu is a cutoff on the
transverse part of the exchanged virtual momdataf all
involved particles, i.e.

p2<k?=min[2(kp) (kp))/(pip)], (14)

Yor all j# 1. The non-renormalization group part of the evo-

lution equation at high energies is given on the invariant
matrix element level by9]

]
MULK), Prpnyd = KO ML (K), hphyd (15

and thus, after inserting Egdl1), (12), we find that the same
evolution equation also holds fov1(#(k), #pnyd . The nota-

tion here isL={W,Z,} and ¢={¢",x}, respectively.
Thus, the log§u?) dependence in our approach is unrelated
to the corrections to the equivalence theorem, and in general,
is unrelated to two point functions in a covariant gauge at
high energies where masses can be neglected. This is a con-
sequence of the physical on-shell renormalization scheme

where the modified minimal subtraction (M&normaliza-

tion scale parameten~M. Physically, this result can be
understood by interpreting the correction tef@sandC, as
Eorrections required by the gauge invariance of the theory in
order to obtain the correct renormalization group asymptotics
of the physical standard model fields. Thus, their origin is
not related to Sudakov corrections. In other words, the re-
sults from the previous section should be applicable to the
subleading scalar sector in the electroweak theory regarding
a non-Abelian scalar gauge theory as the effective descrip-
tion in this range. The only additional complication in the
standard model is the presence of subleading Yukawa en-
hanced logarithmic corrections which will be discussed be-
low. It is also worth noticing that at one loop, the authors of
Ref. [10] obtain the same result for the contributions from

We see that, in principle, there are logarithmic loop correcthe terms of Eq.(13). In their approach, where all mass-
tions to the tree level equivalence theorem. The importangingular terms are identified and the renormalization scale
point in our approach, however, is that the correction coeffiu= /s, these terms are canceled by additional corrections

cients are not functions of the energy variakle

from mass and wave function counterterms. At higher orders
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where the variablé=log(s/u?) for our purposes. It then fol-
lows [15] that

_ = 2
dPBA(z)=ﬁZ(1 Z)Z |VAﬂ§+C| dlogk? (17

2 spins ke

: I . . whereV,_, denotes the elementary vertices and
FIG. 3. Feynman diagrams contributing to the infrared evolution A=B+C y

equation(1) for a process wittm external scalar quarks. In a general

covariant gauge the virtual gluon with the smallest value ofis 2(1-2) < |V |2
attached to different external lines. The inner scattering amplitude is Pea(2)="" E AHEJ’C . (18
assumed to be on the mass shell. spins kT

it is then clear that corrections from two point functions are

subsubleading in a covariant gauge. The upper bound on the integral ovikf in Eq.(17) issand

it is thus directly related tdt. Regulating the virtual infrared
divergences with the transverse momentum cutoff as de-
scribed above, we find the virtual contributions to the split-
ting functions for external Goldstone and Higgs bosons:

In an axial gauge, collinear logarithms are related to cor-
rections on a particular external leg depending on the choice ,, v
of the four-vecton,, [14]. In a covariant gauge, the sum over Pdﬁ ¢t(z): Py(2)
all possible insertions shown in Fig. 3 with all invariants —PY (2)
large (~s) is reduced to a sum over allexternal legs due to HH
Ward identities. Overall, these corrections factorize with re- |

IIl. SUBLEADING CORRECTIONS FROM SPLITTING
FUNCTIONS

spect to the Born amplitude. We can therefore adopt the
strategy to extract the gauge invariant contribution from the
external line corrections on the invariant matrix element at )
the subleading level. In Ref9] we showed that in the high 3 m; J s

. . o . ; —=—16(1-2).
energy regime, subleading logarithmic corrections in mass- 2 M2
less theories are of collinear or RG origin. This is important
since it allows us to use the Altarelli-Parisi approach to cal-
culate the subleading contribution to the evolution kernel ofThe functions can be calculated directly from loop correc-
Eq. (15. We are here only concerned with virtual correctionstions to the elementary processes in analogy to QCD
and use the universality of the splitting functions to calculatd 24,16,29 and the logarithmic term corresponds to the lead-
the subleading terms. For longitudinal degrees of freedonng kernel of Ref[9]. We introduce virtual distribution func-
we have shown that to logarithmic accuracy the electroweakions which include only the effects of loop computations.
theory can be described by scalar Goldstone bosons via thEhese satisfy the Altarelli-Parisi equatiéns
equivalence theorem. Thus, at high energies, the effective
theory is analogous to scalar QCIFor this purpose we use
the virtual gauge boson contributions to the splitting func- ap(z,t) g2 [idy v
tionsPY. ,-(2), PY,(2) andP};.(2) describing the probabil- Gt gn2),y PEHYOPaY). (20
ity to emit a soft and/or collinear virtual particle with energy
fraction z of the original external line four momentum. The
infinite momentum frame corresponds to the Sudakov paThe splitting functions are related b?¢¢=P§¢+ P\<//>¢’
rametrization with lightlike vectors. In general, the splitting whereR denotes the contribution from real boson emission.
functionsPg, describe the probability of finding a partidle  p,, is free of logarithmic corrections and positive definite.

Yi 2 S
Ti(Ti+1)+tar120W(?) K —2log—; +4
y

(19

inside a particleA with fractionz of the longitudinal momen- Inserting the virtual probability of Eq(19) into the Eq.
tum of A with probability Pg, to first order[15]: (20) we find
o
dPBA(Z) = E PBAdt (16)

“Note that off diagonal splitting functions do not contribute to the
virtual probabilities to the order we are working here. In fact, for
virtual corrections there is no need to introduce off-diagonal terms

SAlthough Yukawa terms are not present in QCD with scalaras the corrections factorize with respect to the Born amplitude. The
quarks, we will show in the next section that at subleading level thenormalization of Eq(19) corresponds to calculations in two to two
Yukawa terms can be treated as an additional term in the Altarelliprocesses on the cross section. The results, properly normalized, are
Parisi splitting function for Goldstone bosons. process independent.
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2

_ g @ Yi
d(L}t)= dpgex _ﬁ T(T;+1)+ta GW(E

2 and collinear gauge boson with the smalldst| factorizes.
) } From the definition in Eq(14) it is clear thatk? ~|k|?6?,
where 6 denotes the angle between the emitted gauge boson

2 of momentumk and the external line emitting this boson;
S S 3 m; S . . L -
x| log? — —4log— | + = —log— ) . ) i.e., both soft as well as collinear emission contributions are
wu? w?l  2M2% T regularized simultaneously. In the Feynman gauge we then
have[1]
These functions describe the total contribution for the emis-
sion of virtual particledi.e. z=1), with all invariants large M(Py1y .. Pri?)
compared to the cutoffu, to the densities¢(z,t) (¢ _
={¢",x,H}). The normalization is not per line but on the =Megorr(P1: - - - \Pn)
level of the cross section. For the invariant matrix element . 2 n 4
. : ) , i g d*k P;p
involving n, external scalar particles we thus find at the - —
subleading level: 2 (2m)*i15Ti# Js=i@=u2k2+ie (kP (Kpy)

i 2
M(p1, .. Pnr9.9" %)= Mgor(P1s - - - Pn.9.9") XTHPDTHHM(p1, - - P KD) (24)
1Y 5 From Eq.(14) itis clear thatp;p, /(kpj)(kp,)=2/kf and that
xexp 5 21 WY(s, %) Eq. (24) has the required factorized form. For the DL cor-
. rections it is convenient to employ the Sudakov parametriza-
(220 tion [29] given by

where k=vpj+up+k, . (25)
Wi(s.?) = o (Ti(Ti+ 1)+tar?0WY—i2> For the boson propagator we use the identity
o 4 | i [ 2
X Iogziz—4logi2 + 3 itzbgi ' k?+ie :SUv—kf+is :T'Suv—ki +mS(suw —k7)
M o 2 M2 Mz .

(23)  writing it in form of the real and imaginary partthe prin-
ciple value is indicated b§). The latter does not contribute
Again we note that the higher order corrections should beo the DL asymptotics and at higher orders gives subsublead-
included by inserting a running coupling as in QCD2]. ing contributions. The cutoff will be introduced via the func-
The functionsW” correspond to the probability of emitting a tion ® (k> — x?). Rewriting the measure at'k=d’k, d’k;
virtual soft and/or collinear gauge boson from the partitle with
subject to the infrared cutofft=M. For u<M also pure

QED corrections need to be included fg¢r. Typical dia- d?k, =k, |d|k, |de= 3 dk®dp=7dk? (27)
grams contributing to Eg22) in a covariant gauge are de-
picted in Fig. 3. The universality of the splitting functions is d?k;=a(k%k*)/3(u,v)|dudv

crucial in obtaining the above result.

In addition to the Sudakov corrections in E83) we also
have to include terms corresponding to the renormalization
of the mass terms in the Yukawa coupling of the Born am-
plitude (~mZ/M?,mz/M?) at the one loop level10]. At  where we turn the coordinate system such that ghep,
higher orders, mass renormalization terms are connected fslane corresponds to»0and they,z coordinates to thé,
two point functions and thus subsubleading. direction so that it is purely spacelike. The last equation fol-

lows from p?=0, i.e.p; ~p;, and

s
=|pjop|x—p|0pjx|dudv%Edudv (28)

IV. SUBLEADING CORRECTIONS FROM GRIBOV'S
FACTORIZATION THEOREM (Pj P, — PPy ) >~ (P} Pi,— P1P; )*=(Pjp1)*=(8/2),

In this section we present further evidence for the results (29

of the previous section by employing a non-Abelian version
of Gribov's factorization theoreni26]. While in Ref.[26]
only real bremsstrahlung corrections are discussed, the form n

of the virtual soft and collinear divergences must factorize a; ‘ 2N —
analogously due to the Kinoshita-Lee-Nauenbékd.N )- 121 TOMPo, -y PackL) =0, (30
theorem[27,28. The non-Abelian version is discussed in

Ref.[1]. The essential point is that to DL accuracy the softwe arrive at

Using in addition the conservation of the total group charge,
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M(plr - Pn ;Mz):MBorn(plv Ce apn) . ¢+s k1/
e rd
2g? é s dkffl dv #
(4m? =1 Ju2 k2 s ’
XCIM(Py,....pnikD), (3D

. v

where C, is the eigenvalue of the Casimir operator - k\‘

T2(1)T3(l) [in QCD C,=C_4 for gauge bosons in the adjoint s ke

representation of the gauge grogp)(N) and C,=C¢ for FIG. 4. A Feynman diagram yielding Yukawa enhanced loga-

fermions in the fundamental representafiofhe differential  (ithmic corrections in the on-shell scheme. At higher orders, the

form of the infrared evolution equation follows immediately sypleading corrections are given in factorized form according to the

from Eq. (31): non-Abelian generalization of Gribov’s theorem as described in the
text. Corrections from gauge bosons inside the top-loop give only
sub-sub leading contributions. DL corrections at two and higher

IM(P1, ... \Pn §M2) 5 loop order are given by gauge bosons couplinginoprinciple all
=K(u)M(py,

Pni i) A
r7|0g(,u2) R ’ external legs as schematically indicated.
32
32 M(P1, - - Pni %) =Mpor(P1s - - - Pn)
1 n
where Xexp( -5 > Wi(s,u?) .
=1
1 & W (s, u?) (37)

K(p?)==5 2 ————= (33

This is the exponentiation of Sudakov DL in non-Abelian
gauge theorief31]. We now want to apply this result to the
electroweak theory for the subleading Yukawa corrections at
with higher orders. Since we are interested here in corrections to
order O(a"L?""1), each additional loop correction to the
universal subleading terms in the previous section must yield
two logarithms; i.e., we are considering DL corrections to
W(s,u?) = ——C, log*—. (34  the basic process like the inner fermion loop in Fig. 4. It is of
(4) m particular importance that all additional gauge bosons must
couple to external Legg, since otherwise only a subleading
W, is the probability to emit a soft and almost collinear term of ord_er(’)(a”L " )(;Nguldhbe geﬂerated.fAll sublebad—
gauge boson from the partidiesubject to the infrared cutoff Ing corrections generated by the exchange of gauge bosons

on the transverse momentui. Note that in distinction coupling both to external Goldstone bosons and inner fer-
H ) mion lines cancel analogously to a mechanism found in Ref.
to a gluon or photon mass regulator, the cutefidoes not

X . : 30] for terms in heavy quark production iy collisions in
spoil the gauge invariance of the theory and can take o l y 4 P m

bit lues: i it i i ‘v taken t - J,=0 state. Formally this can be understood by noting that
f‘r ! rilrr]y values, 1.e., 1t 1S nl:())t nec(}le'ssa;?yf axen Z ZEr0. 10ch terms contain an infrared divergent correction. The sum
ogarithmic accuracy, we obtain, directly from Eg4), of those terms, however, is given by the Sudakov form fac-

tor. Thus any additional terms encountered in intermediate

221 dlog(u?)

2

AW,(s, 1?) g2 s steps of the calculation cancel. For the one loop process in
'—"uz——Cﬂog—. (35) Fig. 4, for instance, we include only corrections with top
dlog(u?) 8m? w? quarks and assume on-shell renormalization of the external

Goldstone bosons. Thus the corrections at higher orders fac-
: . . . torize with respect to the one loop fermion amplitude and
The infrared evolution equatiof82) should be solved with
q (82 Megomn(P1, -+« Pn) =MiiooP1, - - - Pn). Note that the

an approprigte initial condition. In the case of large SCaltertter is also independent of the cutqif since the fermion
ing angles, if we choose the cutoff to be the large Seale  macs serves as a natural regulator. In principle we can

then clearly there are no Sudakov corrections. The initial hoose the top-quark mass to be much larger thafor

condition is therefore instance. This freedom is not present for subleading terms
from gauge bosons, such as the angular contributions of the
M1, PniS)=Meaor(P1s - - - Pr)s (36) type log@u/t)log(s’M?), which furthermore do not factorize
with respect to the Born amplitude as mentioned above.
Thus, the method suggested in R&¥2] for the higher order
and the solution of Eq(32) is thus given by the product of angular terms cannot straightforwardly be justified via the
the Born amplitude and the Sudakov form factors: non-Abelian generalization of Gribov's bremsstrahlung
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theorent In our case we have, for the two loop electroweak In the case of the amplitude of Fig. 4 we must use the
DL corrections at the weak scale=M, guantum numbers of the associated Goldstone bosons and

we have the Born amplitude
2

WeY ,M2 —
1 (8,M?) 1672

2
(39 Meom(P1, - -+ Pa) = scﬁ,<eR|7 le ) (ki—ka), (39

( Y2> s
Ti(T,+1)+tarf6,— | log? ek

We now want to consider specific processes relevant at fu-

turee™e” colliders and demonstrate how to apply the non-and at one loop we have two fermion loops contributitidp (
Abelian version of Gribov's factorization theorem for the andbbt). The renormalization condition is provided by the
higher order corrections. The subleading corrections are therequirement that the corrections vanish at the weak scale, i.e.
compared to the general splitting function approach of Sedor s=M?2, which amounts to subtracting the vertex for that
Il. case. The first diagram of the two is given by

e*m? dnl THo_ to,(1—K) vy, (clw, +ct o ) +K)}
tlt?oop(plr et ’p4 E 7<6R|y |eL >C+f n 2 2 . 2 ; . 2 2 . gtb
z 2sM“sy, 2m)" (I7=mp+ie)[ (I + k) —mi+ie][(1—ky)“—mi+ig]
3iQ e*m?
~ lom ; 28M2t2<eR|7 e )(B2s— By (ki— k), (40)

where . =%(1*ys) and the chiral couplings are given Iy, =Q; for the photon anct', =s,,/c,,Q; and c" = (s2Qs
—TfS)/SWCW for Z bosons respectively. The countertexﬁﬁb is chosen such that the logarithmic corrections vanishsfor
=M?2. Thus, the sum of the scalar functions is to logarithmic accuBagy- Bg"3= —log(¥M?). Analogously, we have, for the
bbt quark loop,

e*m? d" THo (—De_(—t—Kk)y,(cCow, +c® o )(—t+ky)}

bbt t A R + 1) Y\ 2
Yoy E —(e e )C

AtloodPr. -+ -Pa)= 2s,|v|253V< RIY'le0) +f(27'r)” (12—m2+ie)[ (1 +ky)2—m2+ie][(I—kp)2—mi+ie]

3i(Qp—Tp) e'm?

bbt
ct

== 16722 25MPS2 > (erly” lef ) (Bos—BY) (ki —ks), . (41)
W
|
Adding both result€40) and (41) we find in Eq. (22) agree with the corresponding results from the
application of the Gribov-theorem in E43). For longitu-
M iiood P1s - - - P2)=Meor(P1, - - - Pa) dinal Z-boson and Higgs boson production, we note that

there is only one non-mass suppressed elementary vertex
with two neutral scalars, namely tlgyH vertex. As men

Bt
X4{1— Iog— (42

22 \12

6 M X ’ k1,/

and the all orders result to subleading accuracy is given by v

M(Py, -+ - Pniu?) = Miiood P - - - Pn) Z4
2
1< q=s "\
xexp( —5 2 Wi s,u) | 43 .

2= AN

H, k'

The subleading Yukawa corrections from the Altarelli-Parisi _ o
FIG. 5. A Feynman diagram yielding Yukawa enhanced loga-

rithmic corrections to external longitudin@ bosons and Higgs
lines in the on-shell scheme. At higher orders, the subleading cor-
SUsing the MSrenormalization scheme, however, the subleadingrections are given in factorized form according to the non-Abelian
pole structure of QCD scattering amplitudes at the two loop level iggeneralization of Gribov’s theorem as described in the text. Correc-
determined only by one loop divergences and renormalizatiorions from gauge bosons inside the top-loop give only sub-sub lead-
group correction$33]. ing contributions.
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tioned above, universal terms are related to the massless limit. For the “Born amplitude” of the Higgsstrahlung vertex we
have

ZxyH_
M Born ™

o (10, (44)

The universal Yukawa corrections to both extergpandH states from an off shel line are then given by the corrections
depicted in the inner fermion loop of Fig. 5. Here we find

e3mt2f d"l Tr{ys(h(t—Kp) ¥ (cl o, +clw_)(H+ky)} e
“am2sz ) 2m)" (1P—mP+ie)[(1+k)?—mZ+ie][(1-k)2—mi+is] O
6T:  em?

= lonsc 4MZS@<BZS—B¥3><k;—k5> (45)
w

%)I(Ol_ép(pli e lp3)

and thus by using the virtual contributions to the splitting functions
from QCD and applying these results to the high energy
@2 mt s regime of the electroweak theory. Soft photon corrections
?,‘o*(',p( P1,-.-,P3)= Bom 1- > —2 0g— were then added by appropriate matching conditions at the
16m°s;M? M2 weak scale. We explicitly restricted ourselves in 8. to

(46)  the case where all fermions had masses below the weak scale
and thus excluded Yukawa enhanced terms. From the argu-
From the same line of reasoning as for the charged Goldments of Sec. IV it is now straightforward to include also
stone bosons we find that the all orders result is given by Eqop-quark Yukawa terms for chiral quark final states. These
(43). At the subleading level, this is equivalent to the corre-terms occur for left handed bottom as well as top quark ex-
sponding corrections obtained in E@2). ternal lines. The situation for a typical Drell-Yan process is
depicted in Fig. 6 where for the inner scattering amplitude
we have two contributions. We neglect all terms of order
O(mf/s,MZ/s). Using on-shell renormalization we find, for
the inner amplitude on the left in Fig. 6 for a right handed
In Ref. [9] all subleading Sudakov logarithms were re- electron in the initial and a left handed bottom quark in the
summed assuming that all invariantg;B,~s. The sublead- final state from the¢™ loop for the sum of they and Z
ing kernel of the infrared evolution equation was determinectontributions,

V. TOP-QUARK YUKAWA CORRECTIONS FOR CHIRAL
QUARK PRODUCTION

agor €M >J (fLlt (2= ki—k2)"|fr) T agD
Ly F AL i m,+ie)[(1—k)?—~M2+iel[(1—k)?~M?+ie]
i e*m? ~ ) M
=~ 5277 aawiister LI PSRN Y Ife) (Bas= B, “7

The scalar functions at high energy evaluatdBtg— BQ"Sz —log(s’M?) as mentioned above. For the diagram on the right in
Fig. 6 we have for the bottom again only tge" contribution. Here we find, for the sum of theand Z contributions,

_e'miQ [ (Fy )
a 2t2 2<elir|yy|eR>f P > 5 > . — +b5(I:DtY
2sMsuCl (2m)" (12=M2+ie)[(I—ky)2=mi+ie][(1 —ky)2—m{+ie]

b
A 1 Ioop

i 4.2

t + - v M

~ 302 m(ed%l%)(fdv |fr)(B2s—Bgg). (48)

In all cases we renormalize on shell, i.e. by requiring that the vertex vanish when the momentum transfer equals the masses
of the external on-shell lines. All on-shell self-energy contributions do not contribute in this scheme. For external left handed
top quarks, thep™ loop is mass suppressed and we only have to considey #melH corrections. They are given by replacing
Qt—>2Qt(Tf’)2 andQ,— 3 Q, in Eq.(49). It turns out that th& yH contributions equal the corrections from the~ andZ ¢~

in the case of the bottom calculation. The Born amplitude is given by

014011-9
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) f, k
e
:’b(
\\
g
f,k,

i
xexp( - % > W(s,u?)
FIG. 6. Feynman diagrams yielding Yukawa enhanced logarith- =1
mic corrections to the third generation of fermions in the final sate. (52
The inner scattering amplitude is taken on the mass shell. No DL
corrections originate from the inner loop. At higher orders, the SUb'\NhereV\/eW(
leading corrections are given in factorized form according to thebers are'

non-Abelian generalization of Gribov’s theorem as described in the those of the external fermion lines. Since at high

text. Corrections from gauge bosons inside the Goldstone-bosoﬁnerg'ei aIIbe;Lmlor;f Clatn be COES\'(dekred masslest_s, we f[:an
loop give only sub-sub leading contributions. DL corrections at twodgain absor € chiral top-quark ruxawa corrections Into

and higher loop orders are given by gauge bosons coupliri to universal splitting functions as in RgP]. Thus in the elec-

the factorized form analogous to the Yukawa corrections in
Sec. IV. Since these corrections are of universal nature, we
can drop the specific reference to the Drell-Yan process and
the application of the generalized Gribov-theorem for exter-
nal fermion lines to all orders yields

M(p1! e ,pn;,uz)=./\/l1|00p(p1, e lpn)

s,?) is given in Eq.(38) and the quantum num-

principle al) external legs as schematically indicated. troweak theory we find to next to leading order the corre-
sponding probability for the emission of gauge bosons from
2 chiral fermions subject to the cutof:

. € _
M= — (Qi=T)e | v.ler ) fLlv'Ifr)
s 2

g
f 2\ —
Wi(S,/.L )_1671'2

e’
i— (e |v.ler){fLIY"|Tr), fL=tL.by,
6SC€I<L|7|R><L|7|R> L= P

Y2
(Ti(Ti+1)+tar?aWZ')

e? 2 X

i— =(e/ |y ler TRl YIfL), fr=tr.
Sc€/3<L|7|R><R|7’|L> RTIR

, S S
log —2—3Iog—2
® 22

2 2
1+ 8¢ g M;

f!
9 ERVERRLIVE

. (63

S

Iog—2
o

for top and bottom quarks. In all cases, Imi(mf) terms can

be safely neglected to the accuracy we are working. Thus Wghe last line only contributes for left handed bottom and for

find, for left handed quarks of the third generation, top quarks as mentioned above afid denotes the corre-

5 sponding isospin partner for left handed fermions.

g
167 VI. SEMI-INCLUSIVE CROSS SECTIONS

Mo Prr - Pa)=MEg(Py, - ,p4>[ 1-

2 Up to this point we have only considered the corrections

t S
X7 W‘Sf,tL/bLIOQW} : (50)  from virtual corrections above the weak sche The physi-
cal photon, however, is massless and must be included in a

For right handed external top quarks we have, y andH semi-inclusive or fully inclusive way. It is thus necessary to
corrections. In that case we observe thatZhéd, yé* and consider now the regime fd{i<_M2. The _corre_ctions for
Z¢* loops have an opposite sign relative to the left hande@Xternal fermion, photon and/™ lines are given in Ref.9],
case. For the corrections corresponding to the topologj! €ach case corresponding to the logarithmic probability to
shown on the right in Fig. 6 we must replaQg in Eq. (48) ~ €Mit soft and/or collinear particles below the schle The

by Q;—T3=1 for the * graph. The same contribution is high energy solution is then the boundary condition for the

obtained by adding thel and y loops and we find infrared evolution equation at the scale= M. For the lon-
gitudinal particles, we only have corrections from the

92 charged gauge bosons below the sddldn this regime we
MR (P Pa)=MBaPy - - ,p4)[ 1- also need to consider particle masses. For real photon emis-
P 1672 sion we assume that the detector resolution is bounded by
5 Mexpi<M, so that emission from real massive gauge bosons
Xiﬂé lo S (51) does not need to be considered and, for simplicity, we re-
2 M2 "R QW ' strict ourselves here to the soft photon approximation.

Under these circumstances we are now able to summarize
At higher orders we note that the exchange of gauge bosortke complete expression for observable electroweak cross
inside the one loop process is subsubleading and we arrive aections at high energies for all universal leading and sub-
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leading Sudakov corrections as follofs: abilities are given in Ref.9] and are summarized for conve-
) nience below:
dO’(pl, -+ +:Pn,9.9 ’MeXpT)

/ 2
=dogom(P1s - - - Pn,9,9") Wig(S,Mz) [4a T(T,; +l)+ %) |Og S
Ng
Xexp{ - > WI(s,M?)— > Wi(s,M?)
=1
I ( Siw ,30+ Si B ﬁo |09_ (59
Ny
— > Wl(s,M? .
.2 (s )} with
Nt
C 11 1 5 1
Xex —izl (Wi(Squ )_Wi(S-M ) BO::L_ZCA_ §ngen_ ﬂnhy ,80 ngen 24nh
) (56)
Y
_;1 (W}N(S,MZ)_WYV(S,MZ))_; w(M2m?) | where Ngen denotes the number of fermion generations
[34,35 andn,, the number of Higgs doublets. Again we note
Xexqwexpt(s’mi s Hexpd)- (54) that for external photon and-boson states we must include

the mixing appropriately as discussed in Rgf]. For the
The functionsWi‘”(s,Mz) and Wif(s,Mz) are given in Egs. terms entering from contributions below the weak scale we
(23) and(53) respectively. The remaining logarithmic prob- have, for fermions,

e log? > 3l m;<<
og°—; —3lo ; P <u
N R7EE a7 |
wisuh=) " " . (57)
Iog— 1 2Iog—+|og ——3Iog— , o p<<m;.
(477) i |
Analogously, for externalV bosons and photons we find
Y(s, w?) ef | S 1|2l 2+| 2 S (58)
w'(s,uc) = 00— — 0g— +log"—
I H (477)2 MZ MZ g MZ
18 € M?2
= 2, —Nklog—, m;<u,
2 2 3751 4m? W
¥ =
w(M?, 1?) LN W (59
5 2 ——Ntlog—  ,  p<mj,
3 =1 472 mjz
for the virtual corrections and for real photon emission we have, in the soft photon approximation,
n
s s
> —log? +log?— —3log— |, m<g,
y =1 (4 I““expt M 1%
Wexpﬂsimi u“nu’expt): n m2 S S (60)
. (Iog— 1 2Iog—+|og —2—2Iog— og——1|| wm<m
i=1 (4 m; m; Mexpt mi

5We emphasize that for photon adeboson final states the mixing effects have to be included correctly as described ifORef
particular, for transverse degrees of freedom the corrections do not factorize with respect to the physical Born amplitude but rather with
respect to the amplitudes containing the fields in the broken phase. For longitudinally poakimedns, however, there is no mixing with
photons and the corrections factorize with respect to the Born amplitude.
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wheren is the number of external lines and the uppercase applies only to fermions siwe fae haveu <M. Note that in
all contributions from the regimg <M we have kept mass terms inside the logarithms. This approach is valid in the entire
standard model up to terms of ord&log(m,/M)).

VIl. COMPARISON WITH ONE LOOP RESULTS

In this section we compare our results from the infrared evolution equation method with the explicit one loop calculation
of Ref.[36] for longitudinalW," scattering ire™ e~ collisions and the general one loop results from R&®). Top production
has also been discussed in RE&7]. In Ref.[10] all mass singular terms were isolated and the physical basis was used to
obtain the DL and SL corrections from collinear terms, wave function renormalization and RG contributions. The results
presented there for fermiorigp to Yukawa termsand transverse degrees of freedom agree with our corresponding results in
Ref.[9]. Also all terms calculated here are, at one loop, in agreement with[ R&f. The results of Refl36] were obtained
in terms of the physical fields. We already checked that our method gives the correct terms at one loop for transverse degrees
of freedom and for fermiongup to top-quark Yukawa termsn Ref.[9]. Soft real photon radiation will be included in the
comparison. This comparison is crucial as mentioned in Sec. Il A since we must check that the splitting function approach, in
particular the factorization of the DL and SL terms, takes place with the same electroweak group factor

g/Z Yé

2 4

2

J T¢(T¢+ 1) +

from the high effective scalar theory. Only the Yukawa terms factorize differently, namelyg#Bh2. In the following, the
lower index on the cross section indicates the helicity of the electron, wierdenotes the left-handed electron. We
summarize the relevant results fefe-— W, W, ande’e; —W, W[ from Ref.[36] for convenience as follows:

(do-) (da>50m . e? 1—2c3v+4c;‘vI , S 103-15&i+80c, s 3m; 00+ 3100
— ~| = +—| - ————log"— + log— — og—: +3lo
do)_ \dQ/_ |7 82 222 0 w2 12c2s2 M2 282M2 M2 ome
4AE s o, ?
+2log— Iog—+|og— 2 E QjNglog— (62)
3=
(da) (do)BOm . e? 5—10c3v+sc;bI , s  65-65c;+18&;, s 3m; am N
— ~| == +—| - —————log"—+ og— +3lo
do/, “ldal, |7 e a2 09 w2 622 M2 2sm g 9_
N¢ 2
+2Iog—( Iog—+|og— 2) - = E Q?N! Iog—” (62)
|
The Born cross sections are given by tions (61) and(62) were of course calculated in terms of the
physical fields of the broken theory and in the on-shell
scheme. We denotg, = cosé,, ands,,=sin6,, respectively.
do |\ Bom e4 1 Using e=gg’/VJg’+g’% s,=9'/\Jg?+g’? and c,
a0 6477 s lﬁswc — 7 Sifg (63) =g/\/g?+g’? we see that the Born cross section in E&p)
- is proportional to ¢2+g’'?)? and Eq.(63) proportional to
g'“. Below the scale where non-Abelian effects enter, we
dor | Bom 4 have running coupling corrections only from QED, i.e.
<_U) € Sir?o. 64) g?(M?) =eZ((M?)/s2 andg’2(M?)=e2(M?)/c2 where
ae/, | " 64n?s 4c’,
1 o
These expressions demonstrate that the longitudinal cross e2(M?)=e? 1+—e— 2 QJ N! Iog— (65)
sections in Eq963) and(64) are not mass suppressed. Equa- 3 472
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Thus, the RG corrections to both cross sectionsEOfM TABLE I. The quantum numbers of various particles in the
. . _ _ a4 electroweak theory. The indices indicate the helicity of the electrons
are given byfusingC,=2, nge”_3 andn,=1 in Eqs.(56)] and quarks. We neglect all mass terms, i.e. consider all particles as
chiral eigenstates with well defined total weak isosfin &nd weak
hypercharge Y) quantum numbers. In each case, the electric
chargeQ, measured in units of the proton charge, by the Gell—-
Mann—Nishijima formulaQ=T3+Y/2. For longitudinally polar-
e? 41-82c2+22! s

(dO’)RG (do_)Born
al “laa 1+— log— the DL totics.
a0 L 1o} . 872 653\[(:&/ M2 e DL asymptotics
(©9 T v o
e_ 1/2 -1 -1
€. 0 -2 -1
el 1/2 1 1
(dcr)RG (da)Bom[H ¢ 41 s e 0 2 1
- ol ey — —log—.
dQ bl dQ b 87T2 605\, MZ u_ 1/2 1/3 2/3
u, 0 4/3 2/3
d_ 1/2 1/3 -1/3
d, 0 213 -1/3
The Sudakov corrections to both cross sections from thev* 1 0 +1
infrared evolution equation method according to Esf)) in o 12 +1 +1
the soft photon approximation are given below. The quantuny 1/2 -1 0
numbers are those of the particle indices and are summarizédt 1/2 +1 0
in Table I:
Y2
(dg) (dU)Bom 1 g Ty(Tye+1)+ 9" is)(I 2 S 41 S 9" T (T +1)+g’2 e_)
do/  “lda) | a2 T g || P9 T2 T gz et e 22
X1 2 S 3Ig—S 3gz m g—S ¢ I S 12l 2+I ° 3l
0og-— —3lo - — o o} og°— —3lo
SNVE M2 1672 M2 02 82| | om2 92 gme g_

log?— + 3l s+2(|g—S 1Ig—M2 og——1][ 21 me 2Ig—
—log=— +3lo o] —1|lo —|lo - o] o
? M? QW M2 Mz gm_(ze g_ :uexp
2|31|M2| S |ZS|2 +292anNJ| M
—2| log— — 0g— —log——| —log"— —log"— | + s — og—
M? B2 pée ’ m; MR
(dg)Bo”‘ . e? 1+ZC‘%’I , S 71+2c3\,I s e’
=| == ——| ——log"— — og— | +—
aQ/ | 8m?\ 2s2c2 SEVE 4s2c? TM?) 82
m2 3m? s e? U
2Iog2——3log— 4Iog— Iog— 1 2—2Iog— 5 E Q] N! Iog— (68)
/Uvexpt meM 2s;M 34

Adding Egs.(66) and (68) yields exactly the result in Eq61) from Ref.[36]. Analogously, we have, for right-handed
electrons,
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AT e Y PN 1 (WP [ RO i | o
df) +L_ df) +.L 8m? s(Tet D) g2 4 o0 M?2 ng 8m? e;( ® ) gn? 4 °d M?2
3log— | -3 ¢ m‘ ez | 121 2+| ° 3 | +3| >
—3lo - -——| | lo o 0g°—; —3lo 0g°— +3lo

gW 16772M2 9—2 g_ g_ g me g_ g gW
M2 s m2 s 2 s
+2 Iog— 1 Iog— log— -1 2Iog— 2log— Iog—2—1 Iog—z—logT
Mg Iu“exp M M Mexp
07> —tog? .|+ 2 > QZN"Iog—2
MR VE PR R g
_(d_ff)s"”‘ @572y o5 AC S|, €
aQ/, | 82\ 4sicz T M?  s2c2 TM?|  8x?
2 2 e2
2Iog2——3log— 4Iog— Iog— 1 g— 2 Q?N! Iog— (69)
" 2s |\/|2 3 472 !
Mexpt

Again we see that after adding E¢67) and(69) we obtain the result in Eq62) from Ref.[36]. Thus we have demonstrated

that to subleading logarithmic accuracy our results from the infrared evolution equation method in conjunction with the
Goldstone boson equivalence theorem are identical with existing one loop calculations with physical fields in the high energy
limit.

VIII. DISCUSSION OF THE RESULTS where we useM =80 GeV, m=175 GeV ands2=0.23.

da The first thing to notice is that the Yukawa enhanced loga-

Irlthms dominate over the subleading Sudakov corrections
and enhance the overall Sudakov suppression. At 1 TeV we

have log/M?)=5.05 and thus almost equal contributions

from DL and SL terms. At 2 TeV we have |®j{1%)=6.44

and at 3 TeV loggM?)=7.25. In real calculations, however,

In this section we discuss the size of the subleading Su
kov corrections obtained in this work. We neglect renorma
ization group corrections for simplicity and use?/4s
=1/137, g%l4mr=e*(M?)/si4w=1/(0.23x128)  and
9'%/4m=e*(M?)/c24m=1/(0.77< 128). The motivation for

investiggting the ;ize of the gauge ‘”.Va”'?‘m cor_rect_ions at th%ne finds that the Yukawa terms are always proportional to
subleading level is twofold. While this discussion is incom-

plete for processes with a large angular dependence, it |sm(sl/j2‘|2) ditlgfrilrrgg Ja(é;;;))fcheca\r(]urkeavlv;:;?ﬁg”rrsmef_
nevertheless useful in estimating how good the DL approxi quely y P b

mation is at higher orders. In addition, we gain physical In_'g;/aen(r:réafﬁeti;n\zntzltizntgz;(r)garlth?nThus for ¢= for in-
sight into the importance of Yukawa corrections and the par-

tial cancellation between subleading terms.

2

1/1
—W?(s,M?)=— J 5 {— —+1
A. Sudakov effects for longitudinal gauge boson 1672|1212

and Higgs production

1
+tar? O Z}

. . . 3 m?
We begin with the Yukawa corrections for external sca-

lars given in Eq(23) with the infrared cutoffu=M. Using
the quantum numbers of Table I, we have

log W_MOQW + Iog—

g 079|g2S +4.01 log
~— .79log— +4.01lo
1 2 2 9;,'2
—W?(s,M?)= 1277 HZ 5+1 +tarf6,,~ Wy M
3m s —11.2%. (71
log? ——4Iog— +—— g—

"Analogously fory we can putM =M, and forH we haveM
(70 =My as arguments of the non-Yukawa logarithms in E2p) de-
pending on which mass is the largest in a given process.

0. 79I092— +4.01 |o%v|—
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With the above mass values we have at one loop about 40%he corrections of purely electromagnetic origin are different
(39%) at 1(3) TeV from the subleading terms relative to the for the two cases. In general we have

DL corrections and at the two loop level about 79%%%) at

1 (3) TeV. The subleading corrections are therefore non-—w{(s,,u?)+wif(s,M2)+ngp[(s,mf,,u,M)

negligible and enhancing the Sudakov suppression. Even at

100 TeV the subleading terms make up about 52% at the two eZQf2 s M2 s s

loop level and must be taken into account. The good news is =, | —l0g’— —log— | 2log— —3| +2log—|.
that the absolute size of the DL correction per line according 16 M M M M

to Eq.(71) at the one loop level is 5.794.1.7% at 1(3) TeV (75)
and at two loops 0.16%0.7%) at 1 (3) TeV relative to the

Born cross section. The full result for the left handed top quark is therefore given

The above numbers are valid for both exterhabndy  py
fields. For¢™ we also have to consider the purely electro-
magnetic corrections according to E§4). Thus we have on
the level of the cross section for each longitudinally polar-
ized W boson including soft photon radiation:

t t t
—WH(s,M?) =W, (s, %) +W;5(5,M?) + W, {(S,m; , 12, M)

2

g s s
=- 0.916log— —1.769 10 —1.39|. (76)
—W}N(S,MZ) +W\iN(SyM 2) +ngpt(sa M 7Mn“expt) 1672 é M?2 %\P
e? S S S . : _
_ log?— — 2log log——1||. (72 Thus we see that there is a partial cancellation between the
1672 M2 Moxpt\  M? subleading and the Yukawa terms and the overall DL sup-

_ _ . pression is somewhat reduced. In relative terms at one loop,
Thus, the complete size of the corrections tor on the the SL corrections are about 33@#0%) at 1(3) TeV, and at

level of the cross section, choosipg,,=M, is given by two loops the relative size of the subleading terms is 65%
. ) " ) w ) (41%) at 1(3) TeV. The absolute size of the DL corrections
—WP(s,M%) =wi'(s, %) + Wi'(s,M?) + W, (S,M, u,M) = at one loop is 5.4%11.1% per line at 1(3) TeV. At two

s s loops we have corrections of 0.15068.62% at 1 (3) TeV
relative to the Born cross section.

1.02 |092|\/|2+2'Ol lo%\ﬁ 11'24' 73 The full result for the left handed bottom quaflwith

m,=4.5 GeV) is given by

It is clear that the DL approximation is much more appropri-

ate for IongitgdinaIW bosons than for the neutral external _W_bL(S’MZ)_WpL(S,M2)+WbL(S,M2)+ng (S,Mp, 1, M)

scalars. For instance we have about 6.688% at 1 (3) : : : P

TeV from the subleading terms relative to the DL contribu- 92 S S

tions. The absolute size of the DL corrections relative to the =— > 0.829 Io§—2—1.002 |o%—2.31 . (77

Born cross section at one loop is 1%6%) at 1(3) TeV and 16m M

at two loops 0.26%(1.1% at 1 (3) TeV. The subleading

terms at the two loop level contribute about 13%6%  The partial cancellation between the subleading and the

2

g

6m?

relative to the DL corrections. Yukawa terms and the overall DL suppression is reduced. In
relative terms at one loop, the SL corrections are about 43%
B. Sudakov effects for quarks of the third generation (29%) at 1(3) TeV, and at two loops the relative size of the

. . . . subleading terms is 86%%8%) at 1 (3) TeV. The absolute
In order to estimate the size of the corrections for chiralj;e of the DL corrections at one loop is 5.942.2% per
heavy quark production we consider first the case of lefling 4t 1(3) Tev. At two loops we have corrections of 0.18%
handed bottom and top quarks. In this case we have, frony 7504 at 1(3) TeV relative to the Born cross section.

Table |, For a right handed top quark we have, from Table I,
g? [[1/1 1
—WiLPL(s, M2)= — H— 41| +tarf by, — 9? |45 s s
i ’ 21(12\2 36 —WR [ J—— _ 2
167 WR(s,M*) 16.2|9 Cfv log NE 3|09W
><(Iog2 S 3Iogi)+ m Iogi m?
— — s
YE M2)  4M2 m? +—o
‘ M2 o2
2
s
-9 -1 0.814lod— 9 s s
6m M = o2 0.133I0§W+2.26I0§1\P
s
—1.24610 —1.87|. (74)
2 ~3.748. (78)
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Now we need to add the corrections from Eg5). The full  enhanced SL Sudakov terms in non-mass suppressed ampli-
result is thus tudes are universal to all orders. This feature is evident in the
splitting function formalism which we have adopted to cal-
. : . culat_e the virtgal Sudakov corrections. The approach, con-
—WiR(s,M2)—WiR(s,,uz)JrWiR(s,M2)+ngm(s,mt M) cerning in particular the no_\{el Yukawa enhanced sublead_lng
corrections, has been verified by employing a non-Abelian
g° S S generalization of Gribov's bremsstrahlung theorem. We
62 0-235|0éw+1-737 '0%_3-27 - (79 agree with the literature at the one loop level, which is a
highly non-trivial check considering the complicated nature

Thus we see that there is a large correction of the top—quaer electroweak radiative corrections and can serve as an in-
Yukawa terms(a factor of 7.4 for the relative coefficients dependent confirmation of those results. In addition this
and the overall DL suppression is strongly enhanced. In recomparison confirms the validity of the splitting function
lation to the DL contribution at one loop, the SL corrections@Pproach since DL and non-Yukawa SL corrections factorize
are about 69%60%) at 1 (3) TeV, and at two loops the with respect to the same group factor of the effective high
relative size of the subleading terms is 139220% at 1(3) energy theory. These SL contributions are determined by the
TeV. The absolute size of the DL corrections at one loop i$SPin only and are thus identical to those found in a scalar
1.6% (3.3%) per line at 1(3) TeV. At two loops, however, theory with an unbrokeisU(2)x<U(1), while the Yukawa
we have corrections of only 0.013%0.055% at 1 (3) TeV enhanced SL corrections indicate the spontaneously broken
relative to the Born cross section. Thus, the apparent lack djauge symmetry.
convergence of the DL approximation is irrelevant for prac- The physical picture which is now emerging is clear: at
tical purposes. high energies the SM behaves like an unbroken gauge theory
From a physical point of view it is clear how the large Up to DL and SL accuracy for fermions and transversely
subleading terms can be understood. Right handed fermiori¥larized gauge bosons. Only Yukawa corrections are novel
in general couple only to photons addosons and the cou- features in this picture. For longitudinally polarized gauge
pling to theZ boson is proportional tod’ /4s) for the DL bosons and Higgs scalars, the effective theory is given by the
and non-Yukawa SL corrections. The Yukawa correctionsGoldstone boson equivalence theorem and contains correc-

however, are proportional tayf4) and in addition for the tions in analogy to a non-Abelian gauge theory with scalar
right handed top quark, we have, fields in the fundamental representation. Again, Yukawa

terms modify this picture as a unique ingredient of broken
gauge theories. The mass gap between the electroweak gauge

mt2 t2 4 bosons can be included in a natural way via the matching
2M2~5.38Z=5.38§ (80 conditions in the framework of the infrared evolution equa-

tion method. Thus all universal Sudakov corrections to DL
and SL accuracy are known in the electroweak theory to all
5 L orders. The remaining corrections which enter at this level of
a(M%)~3.3%'(M?). (81) precision are given by angular terms of the type
Jgg(u/t)log(s/Mz). These terms are non-universal and do not
rections from Eq(75). In general the size of the subleading factorize with respect to the Bom amplitude. Wh”e the_se

terms are known at one loop, for phenomenological applica-

terms cannot be neglected at the two loop level for all; , S .
Yukawa enhanced Sudakov corrections discussed in thigon.s.at e colhqers a two loop analysis Is desirable. In
work. addition, subleadmg_ RG effecf[s of the type
a"Bolog?Y(s’'M?) coupling effects at higher order should be
consistently resummed via the inclusion of a running cou-
pling in each loop analogously to the QCD Sudakov form
In this paper we calculated the universal subleading factor.
In summary, all universal Sudakov logarithms in the elec-
troweak SM are known at the subleading level to all orders
s s and are non-negligible at future collider energies. The inclu-
0| g*Mog® *—,9"*"log?" "t — sion of the leading and full subleading electroweak radiative
M M corrections at least at the two loop level will be important in

logarithmic Sudakov corrections to longitudinal gauge bosod’nvestigating new physics effects at TeV energies.
and_H|ggs boson p_roductlon_ to all orders. We have employed ACKNOWLEDGMENTS

the infrared evolution equation method and used the equiva-

lence theorem to obtain the high energy kernel of the equa- We would like to thank J. Collins, A. Denner and S. Poz-
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The effect is somewhat softened by the electromagnetic co

IX. CONCLUSIONS
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