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Abstract
The atomic mobility in liquid pure gallium and a gallium-nickel alloy with 2 at% of nickel is
studied experimentally by incoherent quasielastic neutron scattering. The integral diffusion
coefficients for all-atom diffusion are derived from the experimental data at different
temperatures. DFT-based ab-initio molecular dynamics (MD) is used to find numerically the
diffusion coefficient of liquid gallium at different temperatures, and numerical theory results
well agree with the experimental findings at temperatures below 500K. Machine learning force
fields derived from ab-initio molecular dynamics (AIMD) overestimate within a small 6% error
the diffusion coefficient of pure gallium within the genuine AIMD. However, they better agree
with experiment for pure gallium and enable the numerical finding of the diffusion coefficient of
nickel in the considered melted alloy along with the diffusion coefficient of gallium and integral
diffusion coefficient, that agrees with the corresponding experimental values within the
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error bars. The temperature dependence of the gallium diffusion coefficient DGa(T) follows the
Arrhenius law experimentally for all studied temperatures and below 500K also in the
numerical simulations. However, DGa(T) can be well described alternatively by an
Einstein–Stokes dependence with the metallic liquid viscosity following the Arrhenius law,
especially for the MD simulation results at all studied temperatures. Moreover, a novel variant
of the excess entropy scaling theory rationalized our findings for gallium diffusion. Obtained
values of the Arrhenius activation energies are profoundly different in the competing theoretical
descriptions, which is explained by different temperature-dependent prefactors in the
corresponding theories. The diffusion coefficient of gallium is significantly reduced (at the same
temperature) in a melted alloy with natural nickel, even at a tiny 2 at% concentration of nickel,
as compared with its pure gallium value. This highly surprising behavior contradicts the existing
excess entropy scaling theories and opens a venue for further research.

Supplementary material for this article is available online

Keywords: self-diffusion, liquid gallium, gallium-nickel alloy, quasielastic neutron scattering,
ab-initio molecular dynamics, DFT-based machine learning force fields

1. Introduction

Supported catalytically active liquid metal solutions
(SCALMS) represent a new class of catalysts that intend to
combine the inherent advantages of heterogeneous catalysis
linked to the separated phases of the catalyst and the react-
ants with the possibility to achieve and optimize high activity
and selectivity of single-atom catalysis [1]. In SCALMS, it
is intended to provide a huge interface of solid supported
liquid metal nanodroplets with active single-atom catalysts
embedded in the essentially non-active liquid metal phase (e.g.
liquid gallium) [2]. In contrast to solid metal nanoparticles the
single-atom active sites in liquids are highly dynamic and are
assumed to diffuse into the bulk of the liquid metal support
and emerge at a later time at the interface again which leads
to a continuous reformation of the catalytically active sites
at the interface. This mechanism is expected to enhance the
long-term catalyst stability and significantly reduce deactiva-
tion effects like, e.g. coking [2]. Besides nobel metal single-
atom catalysts, nickel has recently been proposed in Ga–Ni
SCALMS for selective ethylene oligomerization [3]. In such
systems, a detailed understanding of the atomic dynamics on
a picosecond time scale is very important as it determines the
dynamic restructuring of the catalytically active interface. In
a first step, the atomic diffusion in the bulk phase of the pure
liquid metal support material (e.g. Ga) and the active alloys
(e.g. Ga1−xNix) used in SCALMS should be investigated for
understanding the atomic transport of the active catalytic com-
ponent in the liquid catalytic systems and, perspectively, their
influence on the catalytic reactions [4].

Incoherent quasielastic neutron scattering (QENS) [5–7]
provides a powerful experimental tool to investigate dif-
fusion in liquids [5] including liquid metals and metallic
alloys [8–14]. In this paper, the results of time-of-flight (TOF)
QENS experiments and molecular dynamics (MD) simula-
tions of the self-diffusion of atoms in pure liquid Ga and a
Ga1−xNix alloy at the small Ni concentration of x= 0.02 are
presented.

2. Theoretical background

The partial differential cross-section of neutrons scattered by
a system of N atoms/nuclei in a differential solid angle ∂Ω
and an infinitesimal energy interval ∂E ′ is given by a sum
[5–7, 15]

∂2σ

∂Ω∂E ′ =
N
4π

|⃗k ′|
|⃗k|

[
σcohScoh

(
Q⃗,ω

)
+σincSinc

(
Q⃗,ω

)]
(1)

of two terms. They involve the coherent, Scoh(Q⃗,ω), and
incoherent, Sinc(Q⃗,ω), scattering functions, correspondingly.
Here, Q⃗= k⃗− k⃗ ′ denotes the scattering vector which equals
the difference of the wave vectors of the incident (⃗k) and
scattered (⃗k ′) neutrons; h̄ω = E−E ′ is the difference of their
energies before and after the scattering event, and σcoh and σinc

are the coherent and incoherent averaged neutron scattering
cross-sections per nucleus, correspondingly. Equation (1) is
based on the assumption that no correlation of the position of
a nucleus with its scattering length exists, which is assumed to
hold for all systems discussed in this contribution.

Fundamentally, the coherent cross-section is related to the
average b̄= (1/N)

∑N
i=1 bi of the individual scattering lengths

bi of the nuclei with σcoh = 4π |b̄|2. b̄ is named the coher-
ent scattering length of an atom/nucleus. On the contrary σinc

is fundamentally related to the fluctuations of bi with δbi =
bi− b̄i and σinc = 4π |δb|2. The total scattering cross-section
of the whole sample (after integrating over all scattering angles
and energies) is given by σtot = N(σcoh +σinc) = 4πN|b|2 =
4π

∑N
i=1 |bi|2.

These fundamental relationships allow to find the par-
tial incoherent cross-sections of the nuclei of M various
types Sk (different isotopes of the same chemical element
or chemically different elements) in a mixture of various
atom types, with specific amounts of atoms Nk,

∑M
k=1Nk =

N and concentrations ck = Nk/N, specific coherent scatter-
ing lengths bk,c := b̄k = (1/Nk)

∑
i∈Sk bi, and partial coherent,
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σk,coh = 4π |b̄k|2, and incoherent, σk,inc = 4π |δbk|2, cross-
sections per atom of the specific type k, correspondingly. Here,
|δbk|2 = |bk|2 − |b̄k|2. In this case, the total scattering cross-
section per atom is given by σtot = 4π |b|2 = 4π

∑M
k ck|bk|2

and the coherent cross-section equals σcoh = 4π |b̄|2 with
b̄=

∑M
k=1 ckb̄k. Their difference yields the incoherent cross-

section per atom [6, 16]

σinc =
M∑
k=1

ckσk,inc + 2π
M∑
i=1

M∑
j=1

cicj|b̄i− b̄j|2

=
M∑
k=1

ckσ̃k,inc (2)

with the renormalized incoherent cross-sections

σ̃k,inc = σk,inc + 2π
M∑
j=1

cj|b̄k− b̄j|2 (3)

of the components k. This latter renormalization is usually
very important for the mixture of isotopes of the same ele-
ment, where it is named isotope incoherence. Its neglect can
lead to entirely wrong results. For example, natural nickel con-
sists mostly of the mixture of two isotopes 58Ni and 60Ni, both
having zero incoherent cross-sections. However, the incoher-
ent cross-section of natural nickel is pretty large, σNi, inc = 5.2
barn, owning to the isotope incoherence.

An akin phenomenon is called chemical incoherence [6]
but is usually neglected when applied to a mixture of chem-
ical elements. Whether or not its neglect is correct must
be clarified in any concrete case. For example, in a mix-
ture (alloy) of natural gallium (consisting of two isotopes)
and either 58Ni or 60Ni, chemical incoherence clearly can-
not be neglected. As a striking example of chemical incoher-
ence, let us consider an alloy Al1−x

58Nix of aluminium, Al,
and 58Ni. 58Ni has zero incoherent scattering cross-section,
σNi, inc = 0, and for aluminium it is tiny, σAl, inc = 0.0086 barn
[16]. However, the atoms in the alloy will have, on aver-
age, an appreciable σinc = (1− x)σAl, inc + 4π x(1− x)|bAl,c −
bNi,c|2 = 0.0086(1− x)+ 15.07 · x(1− x) barn because the
difference of bAl,c = 3.449 fm, and bNi,c = 14.4 fm for 58Ni
[16] is quite significant. It reaches 3.772 barn at x= 0.5.
Indeed, experiments show that such alloys scatter incoherently
in a very profound manner, cf figure 5.1 in [17].

To avoid dealing further with chemical incoherence in this
paper, we investigate an alloy of natural gallium and nat-
ural nickel at a small concentration of Ni. For Ga, σGa, inc =
0.16 barn and bGa, c = 7.288 fm [16]. For natural Ni, bNi, c =
10.3 fm. Thus, at atomic concentrations cGa = 0.98 and cNi =
0.02, we obtain σ̃Ga, inc ≈ 0.17 barn and σ̃Ni, inc ≈ 5.76 barn.
Hence, following equation (2), σinc ≈ 0.28 barn, which is less
than 10% larger than 0.26 barn achieved when neglecting
chemical incoherence. The relative contributions of gallium,
wGa = cGaσGa, inc/σinc, and nickel,wNi = cNiσNi, inc/σinc, in the
incoherent scattering process are almost not changed upon

renormalization: wGa ≈ 0.60 before, and w̃Ga ≈ 0.59 after the
renormalization. Therefore, we neglect chemical incoherence
in this paper.

Furthermore, Sα(Q⃗,ω) in equation (1) denotes the Fourier-
transform [5–7], Sα(Q⃗,ω) = (1/2πh̄)×

´∞
−∞ Iα(Q⃗, t)e−iωtdt,

of the coherent (α= coh) or incoherent (α= inc) inter-
mediate scattering function (ISF), respectively. The
coherent ISF is related to the double sum, Icoh(Q⃗, t) =
(1/N)

∑N
i=1

∑N
j=1⟨e−i Q⃗R⃗i(0)ei Q⃗R⃗j(t)⟩, where R⃗i(t) is the time-

dependent location operator of atom i and ⟨. . .⟩ denotes a
quantum-mechanical statistical averaging. Given this math-
ematical structure, in the case of a multi-component mixture,
the coherent dynamical spectrum part, σcohScoh(Q⃗,ω), is split
into a sum of ‘pure’ components which correspond to the
summation indices in the above double sum running only over
the subset of one species, and also the cross-terms where one
summation index i runs over one species with i ∈ Sk while
another index j runs over a different species with j ∈ Sk ′ ̸=k.
Evaluation of the corresponding sums allows finding ISFs
from the particle trajectories obtained, e.g. with the help of
MD simulations as it is implemented, e.g. in the nMOLDYN3
software [18–20]. However, the incoherent ISF corresponds
to a single sum Iinc(Q⃗, t) = (1/N)

∑N
i=1⟨e−i Q⃗R⃗i(0)ei Q⃗R⃗i(t)⟩.

Hence, there cannot be cross-terms in the case of multi-
component mixtures. It compels that the incoherent contri-
bution in equation (1) must be decomposed as

σincSinc
(
Q⃗,ω

)
=

M∑
k=1

ckσ̃k,incSk,inc
(
Q⃗,ω

)
(4)

with the renormalized σ̃k,inc given in equation (3). Indeed,
integration of equation (4) over all Q⃗ and ω must yield the
total incoherent cross-section per one atom in equation (2).
Sk,inc(Q⃗,ω) is related via the corresponding Fourier-transform
to the above single sumwith i ∈ Sk andN→ Nk. Unfortunately,
this important renormalization in equations (3), (4) is omit-
ted for a mixture of different chemical elements in most
textbooks [6, 7] and software packages [18, 20] devoted
to QENS although the importance of isotope incoherence
[5–7] and chemical incoherence [6] is well recognized. It
must be recalled here that equation (1) is derived based
on the assumption that scattering length bj and the nuc-
lei positions are not correlated [5–7]. Our way to take
chemical incoherence into account by the renormalization
(equation (3)) of incoherent cross-sections is a consist-
ency condition within a theory based on this fundamental
assumption.

Experimentally, ∂2σ
∂Ω∂E ′ is measured, e.g. in TOF exper-

iments. In the case of liquids, including liquid metals, it
allows finding integral Sinc(Q⃗,ω) at sufficiently small Q-
values, where contribution of the coherent scattering spectrum
isminor and can be included into a small background spectrum
b(Q,ω). The diffusion of atoms is reflected experimentally
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within a diffusional approximation by a Lorentzian incoher-
ent dynamical spectrum function [5–7, 10, 13, 14]

Sobs (Q,ω) =
a(Q)
π

Γ(Q)

h̄2 (ω−ω0)
2
+Γ2 (Q)

⊗R(Q,ω)

+ b(Q,ω) (5)

with a spectral half-width Γ(Q). The collected experimental
spectra Sexp(Qi,ω) are convoluted with the energy resolution
function of the spectrometer R(Q,ω) [10, 13, 14]. Moreover, a
background function b(Q,ω) = b0(Q)− b1(Q)ω (in one of the
simplest approximations) is added. It reflects a scattering back-
ground, which mostly is not originated from the scattering of
the sample, and, nevertheless, must be taken into account upon
data evaluation. While doing data analysis in the presence of
a distinct background bias, b1 ̸= 0, one should also generally
shift the Lorentzian spectrum by some ω0 ̸= 0, cf equation (5).
In such a setting, b0,b1 and ω0 are just some fitting parameters
without physical significance. For several TOF neutron spec-
trometers, the energy resolution function can be approximated
by a Gaussian, R(Q,ω)≈ (1/

√
2πϵ2)e−(h̄ω)2/(2ϵ2).

For data reduction, the data analysis software FRIDA
[21] was used. First, the raw data were corrected for the
detector efficiency and the elastic time channel was determ-
ined from the vanadium reference data. Subsequently, such
collected experimental Sexp(2θ,TOF) data were further cor-
rected for background, transformed to Q and ω scales,
and de-convoluted with the experimentally found resolution
function R(Q,ω) of the spectrometer to achieve the final
set of experimental scattering spectra Sobs(Qi,ω) for Qi ∈
{0.4Å−1

,0.5Å
−1

, . . .}. Finally, the Lorentzian of the diffu-
sion model, cf equation (5), was fitted to Sexp(Qi,ω) by a
non-linear least squares algorithm. From this procedure, both
spectral width Γ(Qi) and a(Qi), which represents an experi-
mental weight factor proportional to σinc, can be determined.
In this diffusional approximation, Γ(Q) = h̄DQ2, where D
denotes the diffusion coefficient [5]. The corresponding I(Q, t)
is a single-exponential, I(Q, t) = exp(−Γt/h̄) (after normal-
izing on I(Q,0)). This data evaluation approach has recently
been applied successfully to many liquid metals and liquid
alloys [8–10, 13, 14].

Another data evaluation approach is based on Iobs(Q, t)
determined by fast Fourier transformation of Sobs(Q,ω)
after background subtraction. Iobs(Q, t) is divided by Id(Q, t)
which represents the inverse Fourier-transform of the exper-
imental resolution function of the spectrometer Rexp(Q,ω)
and subsequently normalized to achieve Iexp(Q, t) such that
Iexp(Q,0) = 1. Iexp(Q, t) is fitted by a single exponential for the
differentQ-values. The diffusion coefficient is calculated from
a linear fit to the achieved Γ(Q2) data as Γ(Q) = h̄DQ2. The
whole procedure has also been performed using the FRIDA
program [21].

For multi-component systems, like liquid alloys, diffusion
coefficients of different atoms can be very different. In this
case, Sexp(Q,ω) is expected to be a sum of Lorentzians reflect-
ing the diffusional contributions of the different components.

Accordingly, Iexp(Q, t) is expected to be multi-exponential.
In particular, it is expected to be bi-exponential in the case
of GaxNi1−x alloys. However, when the diffusion coeffi-
cients of components, Dk, are similar, approximately a single-
exponential relaxation will be observed, and scattering spectra
will be well approximated by a single Lorentzian. It makes it
especially difficult to find particularDk-values from the exper-
iments. However, within this approximation an effective integ-
ral diffusion coefficient observed by QENS for two major
chemical components can be formulated as follows:

D= w1D1 +w2D2, (6)

where wk = ckσk,inc/[c1σ1,inc + c2σ2,inc], k= 1,2. This for-
mula will be used to compare the results of MD simulations,
where individualDk are found, with experiments providing the
integral QENS-value D within the discussed approximations.

3. Experimental

QENS experiments were conducted at the direct geometry
TOF neutron spectrometer TOFTOF [22] at the Heinz Maier-
Leibnitz neutron source (FRM II) in Garching, Germany, as
well as at the Xtof spectrometer FOCUS [23] at SINQ of the
Paul Scherrer Institute in Villigen, Switzerland.

For the TOFTOF spectrometer, an incident neutron
wavelength of 10Å was used coupled with a chopper speed
of 3000 rpm and leading to a Q range between 0.1Å−1 and
1.2Å−1 and an energy resolution of ~50µeV (FWHM). At
FOCUS, an incident neutron wavelength of 4.4Å was chosen
using a PG002 monochromator. This setup provided aQ range
between 0.4Å−1 and 2.5Å−1 with an energy resolution of
~150µeV (FWHM).

The samples were measured inside custom-made hol-
low cylindrical Al2O3 containers with a wall thickness of
0.5mm and an inner diameter of 10mm filled to a height
of 40mm with the sample. Liquid gallium samples, pro-
duced from Gallium pellets of 99.9999 % purity (Alfa Aesar),
were measured at TOFTOF at temperatures of 340K, 360K,
380K, 400K, and 420K, for 1 h and 1.5 h, respectively.
Measurements at FOCUS were carried out at temperatures of
473, 823, 1073, and 1273K, for 3 h each. The Ga0.98Ni0.02
alloy was produced dissolving 99.99% pure Ni wire (MaTeck)
into liquid Ga (99.9999 %, Alfa Aesar). A heat gun was used
to maintain the alloy in its liquid state while transporting the
samples from the preparation laboratory to the spectrometer.
The Ga0.98Ni0.02 sample was measured at 823K, 1073K, and
1273K, for 3 h. For a background measurement an empty
alumina container was measured at 360K at TOFTOF and
at 823 K, 1073K, and 1273K at FOCUS. To determine the
energy resolution and also to correct for detector efficiency
and sample-detector-distance deviations, a standard vanadium
sample was measured at room temperature at both spectromet-
ers. Experimental raw data are provided on Zenodo [24].
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4. MD simulations

The pure Ga and Ga0.98Ni0.02 alloy liquid metal systems were
studied by means of MD simulations. For this, the Vienna
ab-initio simulation package (VASP) software [25–28] was
used. Both genuine ab-initio molecular dynamics (AIMD)
using DFT and force field MD utilizing the VASP Machine
Learning force field (ML-FF) [29–31]were done. TheML-FFs
were trained on the fly based on DFT, where the DFT descrip-
tion of the system was replaced gradually by the much faster
ML-FF description. For the AIMD simulations and the DFT
steps during the ML-FF learnings, the valence electrons were
described via a set of plane wave basis functions, combined
with the projector augmented wave (PAW) method for the
description of the atomic cores [27, 28, 32]. The Ga (4s24p1)
and the Ni (3d84s2) PAW potentials were used. For the ML-FF
generations, the kinetic energy cutoff was set to 200 eV (pure
gallium) and 350 eV (Ga0.98Ni0.02 alloys), respectively, in
order to incorporate possible relaxations of the unit cell dur-
ing the heating (see below). For the AIMD simulations of pure
Ga, the kinetic energy cutoff was set to 150 eV. Exchange-
correlation effects were treated with the exchange correla-
tion functional of Perdew et al [33]. A Gamma-containing
2× 2× 2 k-point mesh was chosen for sampling the Brillouin
zone in all cases. Electronic states were always smeared with
the first-order Methfessel–Paxton scheme and a broadening of
0.2 eV [34].

For the generation of the ML-FFs within VASP, we pro-
ceed as follows. A NpT trajectory was sampled by using
the Parinello-Rahman barostat [35, 36] and the Nose–Hoover
thermostat [37–39]. No external pressure was applied. The
shape of the cubic unit cells was kept by setting contraints
with the ICONST file, only uniform volume relaxations were
allowed. For pure Ga, 343 Ga atoms were placed in a cubic
unit cell on a 7× 7× 7 grid. For Ga0.98Ni0.02, 7 Ni atoms were
placed by a home-made script in the largest hole positions of a
pre-equilibrated cell with 343 Ga atoms. During the learning,
the systems were heated up linearly from 50K to 1650K dur-
ing a span of 700 000MD steps (pure Ga) and from 500K to
1700K during a span of 530 000MD steps (Ga0.98Ni0.02). For
pure Ga, the time step was set to 5 fs, for Ga0.98Ni0.02, the time
step was set to 10 fs below 1000K and to 5 fs above 1000K.
Radial and angular descriptor cutoffs were set to 5Å (pure Ga)
and 7Å (Ga0.98Ni0.02). The number of radial and angular basis
functionswas raised during the learning to 15 for both systems,
a subsequent refit was done to improve the ML-FF perform-
ance. During the learning, 818 DFT reference configurations
were collected for pure Ga and 1820 reference configurations
were collected for Ga0.98Ni0.02.

After generation of the ML-FFs, diffusion coefficients of
both systems were obtained by averaging over several simula-
tion runs. For pure Ga, 10 ML-FF trajectories containing 343
atoms were ran at 340K, 360K, 380K, 400K, 420K, 473K,
823K, 1073K, and 1273K for 35 000MD steps of 2 ps length,
respectively, where the first 5000MD steps were always dis-
carded, serving as initial equilibration, resulting in trajectories
of 60 ps length each, and a total simulation time of 3.24 ns. The
ML-FF trajectories were simulated within the NVT ensemble,

initial cubic box sizes were set based on experimental Ga dens-
ities [40] , cf table A1 in appendix. For Ga0.98Ni0.02, 10 ML-
FF trajectories were simulated at each temperature as well
(823K, 1073K and 1273K). To get better-converged diffu-
sion coefficients for the scarce Ni atoms, larger unit cells
were set up, containing 980Ga and 20Ni atoms each, which
were initialized by placing the Ga and Ni atoms by chance
on a 10× 10× 10 regular cubic grid in the simulation box
of some initial box size, cf figure 1 (a) of the supplementary
material [41]. Since no experimental densities were available
for those alloy systems, NpT trajectories were simulated, start-
ing at densities near pure Ga, which set the initial box size. The
external pressure was set to 0 bar, corresponding to the exper-
imental conditions. The time step was set to 1 fs, resulting in
30 ps simulation time per trajectory, with an additional 5 ps
equilibration at the beginning of each trajectory. During equi-
libration simulation, boxes expanded to an equilibrium size,
as illustrated in figure 1 (b) of [41]. In order to test the pos-
sible effect of external pressure, the samplings at 1073K were
repeated with 1 bar external pressure applied.

For additional verification of the ML-FF simulations,
AIMD trajectories of pure Ga were ran. Since those are signi-
ficantly more expensive than ML-FF samplings, smaller unit
cells, containing 216Ga atoms each, were set up at the exper-
imental densities. 5 instead of 10 NVT trajectories were sim-
ulated at four significant temperatures: 340K, 420K, 823K,
and 1273K. The time step was set to 4 fs, 10 000MD steps
were simulated for each trajectory, from which the last 8750
(35 ps) were used for evaluation.

The AIMD and ML-FF simulations were evaluated with
the nMOLDYN3 program package [18–20], which focuses
on neutron-scattering oriented analysis of MD simulations
and can calculate a whole range of observables from a given
MD trajectory file. The corresponding MD trajectory files are
provided on Zenodo [24].

In the case of pure Ga the diffusion coefficients were calcu-
lated from the mean-square displacement (MSD) of the atoms

∆2 (t) =
1
N

N∑
i=1

|R⃗i (t)− R⃗i (0) |2 . (7)

In the case of an alloy the summation runs over the atoms
of a particular element (Ga or Ni) with N adjusted corres-
pondingly. It allows finding specific diffusion coefficientsDGa

and DNi, respectively. After this, an integral diffusion coeffi-
cient to compare with the QENS experiments was found as
D= wGaDGa +wNiDNi following equation (6). Theoretically,
the diffusion coefficient can be found from the MSD as

D= lim
t→∞

∆2 (t)
6t

. (8)

In practice, it was calculated by summing up the MSDs of all
atoms between the first (after equilibration) and the last time
steps of the respective trajectory. After obtaining the diffu-
sion coefficients for each trajectory by equation (8), their aver-
ages and standard deviations for a certain temperature were
calculated.
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Figure 1. (a) Incoherent intermediate scattering functions versus time for pure liquid gallium at T = 340K for several wave vector values Q
given in the legend. Experimental results obtained by experiments at the TOFTOF spectrometer are indicated by symbols. The
corresponding results from MD simulations (cf text) are indicated by thin dashed lines for ten different ML-FF MD simulation runs. The
ISFs were calculated from the trajectories using nMOLDYN3 software [18–20]. The averaged ISFs are represented by thick solid lines. The
experimental and numerical simulation data essentially agree within the statistical errors. (b) Visual representation of the relaxation rate
Γ(Q) of the experimental I(Q, t) in part (a) as a function of Q2 (symbols). From the slope of the linear fit to the data the diffusion coefficient
DGa can be calculated. The values of DGa are listed in table 1 and visualized in figure 2 for different temperatures.

5. Results and discussion

5.1. Pure liquid gallium

QENS experiments and MD simulations were performed on
natural liquid gallium (a mixture of two isotopes) at differ-
ent temperatures. Initially, experiments were performed at the
TOFTOF spectrometer of the Heinz Maier-Leibnitz neutron
source (FRM II) in Garching for T = 340K, 360K, 380K,
400K, and 420K. This spectrometer has nearly Gaussian
energy resolution function with ϵ≈ 21 µeV (and FWHM
w= 2

√
2ln2ϵ≈ 49.4 µeV). Some experimental results on the

decay of the ISF are shown (with symbols) for T = 340K and
several values of Q in figure 1(a). The exponential fits of the
data yield a relaxation rate Γ(Q) which is depicted with sym-
bols as a function of Q2 in figure 1(b). The linear fit of this
latter dependency comes through all experimental data points
within tiny, less than 1% error bars. It yields the diffusion coef-
ficients of gallium given in table 1 and figure 2 (black circles)
for different temperatures. The diffusion coefficient of Ga was
also derived for two of these temperatures fromAIMD simula-
tions, as well asML-FF-MD simulations with the results given
in table 1 and figure 2 (red asterisks for AIMD and blue dia-
monds for ML-FF-MD). AIMD and ML-FF-MD well agree
within statistical errors at T = 340K and T = 420K. However,
ML-FF-MD somewhat overestimates the diffusion coefficient
compared with AIMD, which leads to a partial error cancel-
lation with respect to the experimental values below 500K.
It is a general feature valid also for other temperatures in our
simulations.

The agreement between theoretical and experimental res-
ults is also clearly present. Importantly, ML-FF-MD agrees
within error bars for four temperatures out of five with
the experimental results, and for T = 340K, a discrepancy
is small, less than 6% in the mean values. The agree-
ment between AIMD and experiment is slightly lower.
Nevertheless, at T = 420K simulations and experiments agree
within the error bars, and at T = 340K the discrepancy

between the mean values is less than 12%. The small devi-
ations between ML-FF-MD and AIMD indicate ML-FF-MD
as a method of choice in further studies.

ISFs were also obtained from ML-FF-MD simulations
using nMOLDYN3. The results presented in figure 1(a) for
ten MD realizations and their average at 340K and four values
of Q, namely, 0.5Å−1, 0.6Å−1, 0.8Å−1, and 1.1Å−1 mostly
agree with the experimental results within the error bars. This
confirms that theory and experiment agree well.

Measurements for higher temperatures, namely, 473K,
823K, 1073K, and 1273K were performed at the neut-
ron spectrometer FOCUS at the Paul Scherrer Institute,
Switzerland. It also possesses a nearly Gaussian energy res-
olution function with somewhat larger ϵ≈ 64.3µeV (FWHM
w≈ 151.4µeV). In this case, the calculation of the ISFs from
experimental data was not possible due to the limited count-
ing statistics. However, the experimental scattering functions
S(Q,ω) could be calculated from the raw data and are visual-
ized for T = 823K in figure 3(a) for two values of Q including
the plots of the corresponding Lorentzian fits convolved with
the experimental resolution function R(Q,ω) of the spectro-
meter, and the background intensity present. The correspond-
ing plots for two additional larger values of Q are provided
in figure 2(a) of supplementary material [41]. The half-width
Γ(Q) of the Lorentzians is plotted as a function of Q2 in
figure 3(b) together with a linear fit. The values of the extrac-
ted diffusion coefficients are included in table 1 and plotted
with black circles in figure 2. Due to the reduced counting stat-
istics and a significantly broadened signal at the higher tem-
peratures, the experimental errors are larger compared to the
TOFTOF data. Hence, some discrepancies with the theoretical
MD results (not within error bars) become apparent.

At T = 823K the discrepancy is about 12 % of the mean
values. Despite this, the agreement with the AIMD result is
almost present within error bars (cf table 1). However, for
two highest temperatures, the discrepancy increases to 21–
32% and becomes distinct beyond error bars. Nevertheless,
for T = 473K the numerical theory and the data from the
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Figure 2. (a) Arrhenius plot for the diffusion coefficient of liquid gallium. Experimental values (black circles) agree well with both ab initio
(red asterisks) and classical MD simulation results using machine-learning force fields (blue diamonds) for T < 500K. Black solid and
dashed lines represent the best Arrhenius fit, cf equation (9), and the fit with the Einstein–Stokes dependence, cf equation (12), of the
experimental data. Notice that the effective viscosity activation energy Eav in the later fit is about four times smaller than Ea. Blue solid line
presents best fit of the numerical MD results with equation (12). (b) Linear plot of the data presented in subfigure (a). The linear fit (red
dash-point line), D(T)≈ kB(T− T0)µ0, describes the experimental data well. This already follows from the expansion of the
Einstein-Stokes temperature dependence for a small viscosity activation energy Eav = kBTav ≪ kBT and using a fitting value T0 instead of
Tav. It is also shown in the plot. Orange squares represent experimental data extracted from figure 3 in [11], and maroon crosses reproduce
AIMD data extracted from figure 7(a) in [42] using Engauge-Digitizer [43]. (c) The same as (b), but restricted to T < 500K, with the fit to
the experimental values from part (a) added. (d) Arrhenius plot with experimental and ML-FF MD results from (a) compared against the
numerical results (red crosses) stemming from the new entropic scaling in equation (11) and obtained by evaluation and interpretation of
MD results in terms of the excess entropy, see tables 1 and 2 in [41]. The red line comprises the product of two terms. The first is the
exponential entropic factor analytically described by equation (10) with fitting parameters S0 = 0.5057 and Ts = 625.3K, cf figure 5(b) of
[41]. The second is the prefactor function from figure 6(a) of [41].

Table 1. Diffusion coefficient for Ga (in 10−9m2s−1, including
standard deviation) at different temperatures.

T, K DGa, experiment DGa, AIMD DGa, ML-FF

340 1.755± 0.010 1.560± 0.155 1.660± 0.080
360 1.903± 0.013 1.898± 0.094
380 2.115± 0.014 2.094± 0.127
400 2.326± 0.016 2.314± 0.151
420 2.505± 0.017 2.419± 0.153 2.525± 0.195
473 3.108± 0.810 3.083± 0.162
823 6.500± 0.205 7.332± 0.537 7.470± 0.298
1073 7.425± 0.355 10.961± 0.612
1273 10.634± 1.335 13.502± 0.773 13.907± 0.719

experiment at FOCUS still agree within the statistical errors.
Overall it can be concluded that a discrepancy between the
experimental and simulation data appears at temperatures

above 500K (cf figure 2). Its origin could not be clarified yet.
Notice that at T = 823K and T = 1273K AIMD was closer to
experiment than ML-FF-MD which yielded diffusion coeffi-
cients up to 6% larger than achieved from AIMD.

It is worth also mentioning that for the largest diffusion
coefficients in table 1, e.g. at T = 1273K one can question
the standard way of how they were obtained because the dif-
fusional spread of particles becomes at the end of simulation
of the box size. However, the alternative way of calculating
diffusion coefficient as integral of stationary velocity auto-
correlation function [5, 19], which decays on a much shorter
time scale of merely few picoseconds, yielded (AIMD) D=
13.551 · 10−9 m2 s−1 at T = 1273K, see section 3 and figure 4
in [41]. It agrees very well with D= 13.502 · 10−9 m2 s−1 in
table 1. Hence, smaller MD diffusion coefficients in this table
are also beyond doubt. Thus, we trust the MD results for three
largest temperatures because the experimental results in those
cases have poorer statistics than for other temperatures. To
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improve it one needs to dramatically increase the time duration
of the experiment, which would require a separate investiga-
tion beyond the present study.

5.2. Temperature dependence of the diffusion coefficient in
liquid gallium

The experimental dependence of gallium self-diffusion coef-
ficient scaled logarithmically on the inverse temperature in
figure 2(a) can be fitted by a straight line revealing an
Arrhenius dependence on temperature

D(T) = D0e
−Ea/(kBT), (9)

with Ea = kBTa ≈ 64.3meV, and D0 ≈ 15.303 · 10−9m2 s−1.
This fit also agrees very well with the MD results at tem-
peratures below 500K. The physical origin of this fit for
liquids can be rationalized with a scaling theory based on
the excess entropy Se(T,n) being the difference between the
entropy per one particle of the condensed system considered
and the corresponding ideal gas at the same temperature T
and number density n [44–50]. Within the corresponding
scaling theory [44–50], D(T) exponentially depends on Se,
D(T) = D0(T)Aexp[αSe(T)], with α being a constant of the
order of unity, and A is some other numerical constant. In
the Rosenfeld theory α= 0.8 and A= 0.6 [45, 47], whereas
in the Dzugutov theory α= 1 and A= 0.049 [46, 48]. These
two variants of scaling theory essentially differ in prefactors
D0(T), cf [41], section 4, for some detail. In the Rosenfeld scal-
ing, D0(T) = vTn−1/3 is determined by the product of thermal
velocity, vT =

√
kBT/m, where m is the mass of particle, and

the mean distance n−1/3 between particles. In the Dzugutov
scaling, D0(T) = σ2ΓE, where σ is the position of the max-
imum of the radial (pair) distribution function g(r), and ΓE =
4
√
πσ2g(σ)nvT is the Enskog collision frequency between

hard spheres of diameter σ in the gas of density n [46, 51].
The Dzugutov scaling was also derived from a mode-coupling
theory [50] showing that D0(T) = D0 is not temperature-
dependent; see also table 2 and figure 6(a) in [41] along with
the corresponding discussion. Together with the assumed tem-
perature dependence (Se is scaled here in the units of kB)

Se =−S0 −Ts/T. (10)

It justifies equation (9) with Ea = kBTs, and the renormalized
D0 → D0Aexp(−S0). Astoundingly, theDzugutov scalingwas
confirmed in many liquid metals, Pb, Cu, Ag, Au, Cu, Pd, Pt,
including Ni, as well as several alloys, Ni3Al, AgI, AuPt [46,
49], what makes it especially relevant for our study. However,
as we show in [41] based on our MD results, it fails for liquid
gallium, which is also an important result. Namely, it overes-
timates the diffusion coefficient by a factor of four. After a
corresponding rescaling by this factor, it does fit well our res-
ults for T < 500K with Ea = kBTs = 53.9meV, cf figure 6(b)
in [41]. However, it fails for T > 500K to describe both exper-
imental and theoretical results. Nevertheless, it is important

because of the physical insight it provides. Moreover, the cor-
responding activation energy of 53.9meV is not much differ-
ent from our fit value of 64.3meV. It allows us to fit the results
alternatively for T < 500K [41].

Furthermore, the Rosenfeld scaling with D0(T)∝ T1/2 and
Ea = 43.1meV [41] also strongly overestimates the Ga diffu-
sion coefficient. However, with the additional factor of 0.35,
it fits the experimental data in the whole temperature range.
It is much closer to MD simulation results at large temper-
atures than the rescaled Dzugutov scaling, cf figure 6(b) in
[41]. One should notice in this respect that having a power-
law temperature dependence of the prefactor function D(T)
instead of being constant while fitting the same data corres-
ponds to a numerically different activation energy. In a com-
parison of the two discussed variants of the scaling theory,
the difference is accounted for by the factor α= 0.8, even
though in both variants, the physical origin of this activa-
tion energy is due to the inverse temperature dependence of
the excess entropy in equation (10). Bastea suggested one
more scaling [52]. Like one of Rosenfeld, it has α= 0.8; how-
ever, the prefactor function comprises of Boltzmann diffusion
coefficient, DB = (3

√
π/8)lBvT, where lB = 1/(πnσ2) is the

Clausius-Boltzmann mean free path length in the gas of hard
spheres with diameter σ [51], multiplied with g(σ). It agrees
with one of Dzugutov at large −Se > 3 [52]; however, it devi-
ates from it at smaller −Se. Like Rosenfeld scaling, it also
overestimates the diffusion coefficient by a factor of three in
gallium [41]. As a remedy for this, we propose a new pre-
factor scaling very similar to one of Bastea by dropping the
factor g(σ):

D(T) = ÃlBvTe
0.8Se(T), (11)

where Ã= 3
√
π/8≈ 0.6647. It is very similar at the same time

to the Rosenfeld scaling with l0 = n−1/3 being replaced by lB
and A= 0.6 with Ã. Our new prefactor scaling agrees well with
the experimental results in figure 2(d). It has the same activ-
ation energy Ea = 43.1meV as in the Rosenfeld scaling. The
prefactor has the main

√
T dependence stemming from vT. The

mean free path lB is almost constant for T < 500K. However,
it increases for T > 500K; see table 1 in [41]. Interestingly,
neither n−1/3 nor σ as characteristic spatial scales indicate
such a change [41]. This behavior correlates with lowering the
coordination number of the first coordination shell from 11 to
11.5 at T < 500K to 9.5 at 1273K, see figure 7 in [41]. It indic-
ates a gradual structural transition in liquid Ga. From a tightly
packed liquid resembling a hard sphere system at T < 500K,
it becomes less densely packed upon further temperature elev-
ation. It explains the failure of earlier scaling theories for this
anomalous liquid, which, like water, becomes heavier upon
melting. The failure of known scaling theories for anomal-
ous liquids like water, Si is already well recognized in the
literature [44, 49]. From this perspective, their failure for Ga is
not that surprising. However, our new scaling dependence in
equation (11) works for Ga. In future research, it needs to be
clarified whether it will work for other anomalous liquids and
correspond to some sufficiently broad universality class as the
Rosenfeld and Dzugutov scalings do.

8



J. Phys.: Condens. Matter 36 (2024) 175403 A Shahzad et al

Figure 3. (a) QENS spectra of pure liquid gallium at T = 823K (symbols, FOCUS spectrometer) for two Q-values. The solid lines
represent the best fits by a single Lorentzian (cf equation (5)) to the experimental data. (b) Γ(Q) of the Lorentzian (symbols) derived from
the fits to the experimental data and plotted as a function of Q2. The solid line represents the best linear fit to the data.

We would also like to note that pioneering experiments
on self-diffusion in natural gallium using radioactive gallium
tracer yielded much lower activation energy Ea = 11.63meV
with D0 = 10.7 · 10−9m2 s−1 and Ta = 134.95K [53]. In the
light of our results displaying an excellent agreement of exper-
iment with simulations at T < 500K, this old result must be
questioned. From a theoretical point of view, once the integral
of VACF converges after a few picoseconds to a constant dif-
fusion value, it will characterize diffusion on arbitrarily larger
timescales, provided that the liquid remains homogeneous on
larger spatial scales. Deviation from the liquid’s homogeneity
in first experiments might be the reason for the deviation of
old results from the correct ones. However, whether it was or
not the case is impossible to clarify.

More recent QENS results [11], which were extracted from
figure 3 in [11] using Engauge-Digitizer [43], are depicted
with orange squares in figures 2(a)–(c). They agree quite
closely with our results. Also the reported activation energy of
60meV [11] is close to the value found in our QENS study.
Interestingly, the results of AIMD simulations of Ga diffu-
sion in [42] differ from our AIMD results at lower temper-
atures but are, nevertheless, closer to our results at temperat-
ures above 500K. At T = 673K and T = 793K, the MD sim-
ulation results interpolated by connecting lines appear some-
what closer to the experimental results in [11], which, how-
ever, do not agree quantitatively with the MD simulations
at lower temperatures, in contrast to our experimental res-
ults. Additional MD simulation results were extracted using
Engauge–Digitizer [43] from figure 7(a) in [42] and are depic-
ted with maroon crosses in figures 2(a)–(c). From this data,
an activation energy of Ea = 84.1meV (8.12 kJmol−1) was
extracted at temperatures below 1000 K [42]. It is significantly
larger than the value observed in our simulations. Moreover,
the AIMD simulations in [42] exhibit a different even larger
activation energy of Ea = 163.5 meV (15.78 kJ mol−1) for
temperatures above 1000K (cf figure 7(a) in [42]). Our MD
simulations reveal an essentially smaller activation energy for
T < 500K, cf figure 2(c). However, the simulations also reveal
an increase of the activation energy for T > 500K, which does
not agree with our experimental data, as it can clearly be seen
in figure 2(a).

Alternatively, our experimental data can also be fitted very
well by an Einstein-Stokes dependence

D(T) =
kBT
η (T)

= kBTµ0e
−Eav/(kBT), (12)

where it is respected that the diffusion coefficient and the
mobility µ(T) are linked by the fluctuation-dissipation the-
orem at thermal equilibrium: D(T) = kBTµ(T). It is further
assumed that the inverse atom mobility 1/µ(T) = η(T) or
viscous friction coefficient of gallium can be described by
the Stokes formula η(T) = 6πRζ(T), where R is the effective
hydrodynamic radius of gallium and ζ(T) denotes the viscosity
obeying the Arrhenius dependence ζ(T) = ζ0 exp[Eav/(kBT)]
with the activation energy Eav = kBTav. The latter depend-
ence is well established for gallium with Tav = 204.3ln(10) =
469.8K, Eav = kBTav = 40.5meV, and ζ0 = 0.3577mPa·s for
T between 303K and 800K [40]. For a small activation energy
(Eav/(kBT)≪ 1), equation (12) yields

D(T)≈ kBµ0 (T−Tav) . (13)

Using a free fitting value T0 for Tav in equation (13) and
another fitting value of µ0 is expected to provide better results.

However, the fit with equation (12) yields much smal-
ler values for Tav = 184.6K and Eav = kBTav = 15.9meV, cf
figure 2(a). Interestingly, these values are closer to the fit-
ting values in [53] where equation (9) has been used. Our
fitting value µ0 is µ0 = 6.686 · 1011 s kg−1. Using the Stokes
formula with the above experimental value for ζ0 yields
R= 2.22Å which is only about 19% larger than the van-der-
Waals radius of gallium RvdW = 1.87Å and is, therefore, a
reasonable estimate.

Strikingly enough, our MD simulation results are excel-
lently fitted by equation (12) (cf solid blue line in figure 2(a–
c)) at all temperatures with Tav = 376K and Eav = kBTav =
32.4meV which are not that far from the experimental val-
ues given in [40] and µ0 = 1.056 · 1012 s kg−1. This fit should
be preferred over the fit with equation (9) on general theor-
etical grounds, and in the view of the failure of the Dzugutov
scaling theory justifying this fitting dependence in equation (9)
for many other melted metals, as discussed above. Using the
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Figure 4. (a) QENS spectra of the liquid gallium-nickel alloy Ga0.98 Ni0.02 at T = 823K (symbols, FOCUS spectrometer) for two Q-values.
The solid lines represent the best fits by a single Lorentzian, cf equation (5), to the experimental data. (b) Half-width Γ(Q) of the Lorentzian
(symbols) derived from the fits to the experimental data is plotted as a function of Q2. The solid line represents the best linear fit to the data.

Table 2. Diffusion coefficients for Ga0.98Ni0.02 (in units of 10−9m2s−1, including standard deviation) at different temperatures.

T (K) DGa, MD DNi, MD D, theory D, experiment

823 3.881± 0.126 2.202± 0.343 3.209± 0.157 3.602± 0.719
1073 5.905± 0.142 3.762± 0.824 5.047± 0.340 4.639± 0.306
1273 7.381± 0.283 5.162± 1.250 6.493± 0.528 5.759± 0.604

experimental value of ζ0, it yields R= 1.41Å, which is close
to σ/2 in table 1 [41], which varies with temperature very
weakly. This striking correspondence provides an additional
justification for this fit. The Einstein–Stokes formula with
a constant R≈ σ/2 combined with an exponential depend-
ence of the gallium viscosity on the temperature measured
in experiments [40] fully suffices to parameterize and thus
explain the MD results on gallium self-diffusion. This phys-
ical explanation is a reasonable alternative to one based on the
excess entropy scaling and equation (11).

Of course, application of the macroscopic hydrodynam-
ics Stokes formula to atomic diffusion is rather questionable
and is not warranted to hold on the microscopic time scale of
picoseconds probed by QENS. This was the reason for using
equation (9) for initial fits to the data, as it was also done earlier
for other liquid metals and alloys [8–10, 13, 14]. However, we
stress that a linear fit of experimental results with equation (13)
stemming from equation (12) works also remarkably well (cf
figure 2(b)) revealing T0 = 139.9K. It cannot be distinguished
from the fit with equation (12) by the fit quality. Moreover, our
numerical theory data much better comply with equation (12)
while avoiding to introduce a temperature-dependent diffusion
activation energy.

5.3. Liquid gallium-nickel alloy

The liquid alloy of natural gallium and nickel Ga0.98 Ni0.02
has been studied at the FOCUS spectrometer at three differ-
ent temperatures of 823K, 1073K, and 1273K. The experi-
mental scattering functions S(Q,ω) at T = 823K are plotted
in figure 4(a) for two Q-values together with the correspond-
ing Lorentzian fits convolved with the energy resolution func-
tion of the spectrometer and respecting a background linear
intensity, see also figure 2(b) of supplementary material [41]

for two larger values of Q. Γ(Q) of the Lorentzian fit is plot-
ted as a function of Q2 in figure 4(b) together with a linear fit.
The integral diffusion coefficients obtained in this way for all
temperatures are listed in table 2 and visualized as a function
of temperature by blue up-triangles in figure 5. We also per-
formedML-FF-MD simulations for this alloy at the same tem-
peratures, which yielded theoretical values for diffusion coef-
ficients of gallium and nickel in this alloy separately. They are
also given in table 2 and presented in figure 5 by red aster-
isks (gallium) and magenta diamonds (nickel). We obtained
an integral diffusion coefficient from these specific values, to
compare it with one measured by QENS. These values are also
listed in table 2 and visualized as dark green up-triangles in
figure 5. The simulation and experimental results agree within
the error bars.

We also checked the influence of pressure on the MD
diffusion coefficient upon changing it from 0 to 1 bar
at T = 1073K. We found DGa(1 bar) = (5.778± 0.124) ·
10−9 m2 s−1 vs. DGa(0 bar) = (5.905± 0.142) · 10−9 m2 s−1

for gallium and DNi(1 bar) = (3.474± 0.567) · 10−9 m2 s−1

vs. DNi(0 bar) = (3.762± 0.824) · 10−9 m2 s−1 for nickel.
The diffusion coefficient decreased by about 2% for Ga and
about 8% for Ni with increasing pressure, which is an expected
result as the fluid density increases with increasing pressure.
The change is, however, small and within the error bars.

Furthermore, the incoherent ISFs were calculated for this
alloy at T = 1073K from MD trajectories using the nMOL-
DYN3 software [18, 20]. For several Q-values the ISFs are
visualized in figure 6 by lines of different color and width.
Thin dashed lines correspond to ten separate MD simulation
runs and the corresponding thick solid lines represent their
average values. Numerical ISFs of separate simulation runs
strongly scatter at large times because of the correspondingly
low statistics. However, the average values agree well with
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Figure 5. (a) Arrhenius plot for diffusion coefficients (cf legend) of the liquid Ga0.98 Ni0.02 alloy and of pure liquid gallium. Experimentally
derived values of an integral diffusion coefficient of all atoms in the alloy (blue up-pointing triangles) agree well within error bars with the
results stemming from MD simulations done with ML-FFs (dark green down-pointing triangles). The latter were obtained from MD
diffusion coefficients for gallium (red asterisks), DGa, and nickel (magenta diamonds), DNi, upon taking a weighted sum D= 0.6DGa+
0.4DNi reflecting relative contributions of these two different chemical species to QENS spectra in the investigated alloy (cf text). The blue
dash-dotted line presents an Arrhenius fit to the experimental integral diffusion coefficient, whereas the red dashed line and magenta
dash-double-dotted line present Arrhenius fits of the theoretical results for Ga and Ni atoms, respectively. The corresponding activation
energies and prefactors are given in the legend. (b) Linear plot of the results presented in (a) and their fits with an Einstein-Stokes
dependence with the corresponding activation energies and prefactors given in the legend.

Figure 6. Incoherent intermediate scattering function of Ga0.98
Ni0.02 liquid alloy plotted as a function of time at T = 1073K for
several Q-values (symbols). Thin dashed lines represent the results
obtained from ten runs of ML-FF simulations. Thick full lines
represent the ensemble averages. The agreement between the
averaged MD results and the experimental data is remarkably good
for Q= 0.7Å−1 and Q= 1.0Å−1. For Q= 0.5Å−1, the agreement
is less good but still in the range of the MD simulation statistical
error.

the experimental results exemplary plotted with symbols for
Q= 0.7Å−1 and Q= 1.0Å−1 in figure 6. For Q= 0.5 Å−1,
the average values deviate from the experimental result but are
still within the statistical fluctuations.

One of the most striking features is that the diffusion coef-
ficient of gallium in the alloy of 98 at% of gallium with only
2 at% of nickel is significantly smaller than that in pure gal-
lium at the corresponding temperatures. This is not the com-
mon case since at such a low concentration of Ni addition,
one would expect that the melt properties, including molar
volume or packing fraction, stay the same, and, hence, the
diffusion coefficient should stay the same. Indeed, the density

of alloy at the same temperature, e.g. 1073K, with only 2%
of Ni, is significantly, about 10%, lower than the density of
Ga at the same temperature, see figure 1 of [41] and the cor-
responding discussion. Moreover, the coordination number of
the first coordination shell of Ga reduces in this case from 9.8
to 8.5 [41]. Both intuitively and following the excess entropy
scaling theory, this should even increase diffusivity rather
than reduce it [41]. Hence, a strong reduction of DGa is strik-
ingly counter-intuitive. This might have to do with the bond-
ing nature between Ga and Ni and is likely associated with a
change of the microscopic structure of the liquid, which needs
to be studied further and is beyond the scope of the present
work.We onlywish to remark that the study of the radial distri-
bution functions gαβ(r) (α,β = Ga,Ni) derived from our MD
simulations reveals [41] that the first maximum of gGaNi(r)
occurs at σGaNi = 0.2425 nm much shorter than the position
of the first maximum σGaGa = 0.2725 nm of gGaGa(r), and
the maximum value gGaNi(σGaNi) = 3.7871 is essentially lar-
ger than gGaGa(σGaGa) = 2.1448. It implies that the sparse Ni
atoms are more tightly surrounded by Ga atoms than Ga atoms
do [41]. In a videoclip of visualizedMDdynamics correspond-
ing to 40 ps duration of physical time provided at [41], one can
observe temporally highly correlated movements of Ni atoms
with the surrounding Ga atoms. Ni atoms also seem to make
time from time short-living dimers; see the videoclip. The first
maximum of gNiNi(r) is located at σNiNi = 0.2525 nm in figure
8 of [41] and gNiNi(σNiNi) = 0.9567 is not essentially smaller
than the second and third maxima of this distribution function,
which also agrees with our observations. Overall, a multi-peak
structure in gNiNi(r) indicates a local order in the position of Ni
atoms. It is astounding, given only 20 Ni atoms in simulations
as compared with 980Ga atoms, which somehow mediate the
emergence of this local Ni order. All this points in the direc-
tion of locally existing temporal clustering order and requires
a further investigation of a highly collective and correlated
nature of diffusion processes in GaNi alloys.
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Moreover, our results do not exclude that at higher tem-
peratures the diffusion coefficient of gallium in the alloy can
even exceed its diffusion coefficient in pure gallium at the
same temperature. One can come to this supposition upon
extrapolating the corresponding linear fitting dependencies in
figure 5(a) to lower 1000T−1 values. It would happen for
T > 1700 K, given the fitting parameters in this plot.

5.4. Temperature dependence of the diffusion coefficient of a
liquid gallium-nickel alloy

The integral diffusion coefficient measured by QENS exhib-
its an Arrhenius dependence (equation (9)) with an activation
energy Ea = 95.3meV and D0 = 13.50 · 10−9m2 s−1 as it is
visualized in figure 5(a). Alternatively, it can also be fitted
using equation (12) leading to a significantly smaller activ-
ation energy Eav = 7.3meV, cf figure 5(b). Interestingly, the
diffusion coefficients of Ga and Ni achieved from theMD sim-
ulations possess much larger and different activation energies
in the Arrhenius fit, Ea = 129.2meV and Ea = 173.1meV,
respectively, cf figure 5(a). However, the corresponding pre-
factors D0 are rather similar: D0 ≈ 23.9 · 10−9 m2 s−1 for
Ga and D0 ≈ 24.9 · 10−9m2s−1 for Ni. The activation energy
for pure nickel is essentially larger in a QENS experiment
(Ea = 470± 30 meV) with a significantly larger D0 = (77±
8) · 10−9m2 s−1 [8]. This implies that extrapolated to temper-
atures in our experiment and simulations, equation (9) would
yield a much smaller DNi, e.g. DNi = 1.06 · 10−9m2 s−1 at
T = 1273K. This is about five times smaller compared to the
values found by our MD simulations at the same temperat-
ure. Thus, assuming the validity of the Arrhenius behavior for
supercooled nickel as observed in [8] down to very low tem-
peratures, nickel seems to diffuse much faster in a GaNi-alloy
at low nickel concentration as in pure (heavily supercooled)
liquid nickel at the same temperature.

The same effect as described above for gallium rich
Ga1−xNix liquid alloys is observed in silicon-rich Si1−xNix
liquid alloys, where the self-diffusion coefficient of nickel is
by a factor of about five larger compared to the value for pure
nickel indicating that the nickel diffusion is highly coupled
to the silicon diffusion [9]. In this case, the activation energy
Ea = 280± 30meV was found to be independent of the alloy
composition, but, in contrast, the prefactor D0 depended on
the alloy composition and was much larger than the value
observed in pure nickel at the same temperatures [9]. This
diffusion activation energy was also reduced compared to the
activation energy of pure nickel. However, it was essentially
larger than the value observed for the Ga0.98Ni0.02 alloy stud-
ied here by MD simulations.

The fit of the MD data by equation (12) visualized in
figure 5(b) yields activation energies of Eav = 40.6meV for
Ga and Ea = 83.7meV for Ni with very similar mobilit-
ies µ0 = 6.111 · 1011 skg−1 (Ga) and µ0 = 6.296 · 1011 skg−1

(Ni). Remarkably, in this case (and interpretation) the viscosity
activation energy of gallium is indeed very close to the value
of the pure gallium on the macroscale [40]. At first glance, it
is a striking agreement. However, if this interpretation were
fully correct, the diffusion of the diluted nickel atoms would

also reflect the temperature dependence of the viscosity of sur-
rounding gallium liquid. However, it is not the case. In addition
to this, the similarity of temperature-independent prefactors
for Ga and Ni self-diffusion coefficients despite rather differ-
ent activation energies—independently of interpretation with
either equation (9) or equation (12) - is an interesting obser-
vation. It is in line with the excess entropy scaling theory.
However, this theory cannot be justified overall for the con-
sidered alloy [41]. It needs to be checked and clarified for
other Ni concentrations and compositions in future research.
A physical theory to explain these complexities represents a
genuine challenge for further investigation.

6. Conclusions

The diffusional processes in liquid natural gallium and the
gallium rich gallium-nickel alloy Ga0.98Ni0.02 were studied
experimentally using QENS and theoretically based on MD
simulations. It was demonstrated that chemical incoherence
is negligible for neutron scattering for the systems studied.
Despite the small concentration of nickel its contribution to
the QENS signal is about 40% and the integral diffusion coef-
ficient of atoms in the alloy as observed by QENS repres-
ents a weighted sum of the diffusion coefficients of gallium
(about 60%) and nickel (about 40%). The experimental res-
ults for pure gallium and MD simulations agree very well in
the temperature range between 360 K and 473 K. But also at
340 K and 873 K the observed discrepancies were found to be
very small. However, for temperatures above 1000 K the dif-
fusion coefficients determined from the MD simulations were
found to increase faster with temperature than the experiment-
ally observed values.

It was demonstrated that MD simulations based onML-FFs
can be used as a reliable substitute for computationally very
costly ab-initio MD simulations. Due to their linear scaling
with system size, ML-FF-MD simulations allow for a signi-
ficantly larger number of particles and hence larger simulated
systems, as well as longer simulation time scales and there-
fore reduced statistical errors at the same computational costs.
This, in turn, allows to find the diffusion coefficient of highly
diluted Ni atoms in the liquid matrix of Ga atoms. ML-FF-MD
andAIMD simulations essentially agreedwithin the error bars.
However, ML-FF-MD systematically overestimates diffusion
coefficients compared to AIMD by less than 6%.

The existing excess entropy scaling theories were shown to
overestimate the diffusion coefficient of gallium by a factor
of three to four. However, their small modification with a
prefactor chosen as the classical Boltzmann diffusion con-
stant fitted the experimental data remarkably well. Moreover,
the MD simulation results were excellently described by the
Einstein-Stokes formula, with an effective diameter of gallium
atoms corresponding to the position of the first maximum of
the radial distribution function found in the MD simulations,
and a liquid viscosity exponentially dependent on temperat-
ure, in agreement with the known experimental data on gal-
lium viscosity, although with a slightly different activation
energy. Moreover, the activation energies in the alternative
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descriptions are generally different, which is explained by dif-
ferent temperature dependences of the prefactors in the com-
peting theories.

In the case of the GaNi alloy, ML-FF-MD also agreed with
the experimental results in the temperature range from 823 K
to 1273 K within the error bars. From the presented exper-
imental data, the values of DGa and DNi cannot be determ-
ined separately. However, these diffusion coefficients could
be determined by MD simulations reliably validated by the
experimental data for the integral diffusion coefficient. It turns
out that the diffusion of gallium is significantly reduced com-
pared to its value in pure liquid gallium at the studied temperat-
ures. However, on an absolute temperature scale the diffusion
coefficient of nickel is significantly larger than expected by an
extrapolation via the temperature dependence of the diffusion
coefficient of pure nickel by equation (9) using the data in [8].

In the case of the studied gallium-nickel alloy, the existing
excess entropy scaling theories failed completely to explain
our findings on a strong reduction of the gallium diffusion
coefficient in the alloy, even with a modification that was suc-
cessful for gallium liquid alone. We assume that this is due to
temporally highly correlated motions of Ni atoms with the sur-
rounding Ga atoms and their dynamical clustering. The study
of radial distribution functions obtained fromMD simulations
revealed that the sparse Ni atoms are more tightly surroun-
ded by Ga atoms than Ga atoms. The emerging puzzle opens
a venue for further research.
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Appendix

Ga density used in simulations was calculated following
[40] as

ρ(T) = ρ0 −κ(T−Tref) (A1)

with ρ0 = 6077 kg m−3, κ= 0.611 kg (m−3K), Tref = 302.914
K, cf table A1. The sizes of MD simulation boxes containing
343Ga atomswere calculated accordingly. They are also given
in table A1.

Table A1. Ga densities obtained from equation (A1) at different
temperatures, and the corresponding lengths of cubic box including
343 atoms.

T (K) ρ (kg m−3) ρ (amu Å−3) b (Å)

340 6054.340 454 3.646 009 18.719 065
360 6042.120 454 3.638 650 18.731 676
380 6029.900 454 3.631 291 18.744 321
400 6017.780 454 3.623 932 18.757 000
420 6005.460 454 3.616 573 18.769 714
473 5973.077 454 3.597 071 18.803 573
823 5759.227 454 3.468 288 19.033 487
1073 5606.577 454 3.376 300 19.204 798
1273 5484.277 454 3.302 709 19.346 391
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