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Ultrafast light-induced long-range antiferromagnetic correlations in paramagnets

Lorenzo Amato 1,2 and Markus Müller 1

1Laboratory for Theoretical and Computational Physics, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
2Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland

(Received 22 August 2023; revised 5 January 2024; accepted 2 February 2024; published 21 February 2024)

We propose and analyze a laser-driven protocol to generate long-range ordered patterns in paramagnets, based
on nonadiabatically driven aggregation dynamics. We derive the optimal driving parameters that maximize,
respectively, the correlation length or the size of defect-free antiferromagnetic clusters in a one-dimensional
chain. We show that one can reach correlation lengths that are exponentially larger than those achieved by
adiabatic pumping schemes. The resonantly driven dynamics of cluster fronts are shown to map to an exactly
solvable model of free fermions.
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I. INTRODUCTION

The ultrafast creation of an ordered state of matter is a
prime goal in solid state physics that will enable electronic
or magnetic switches, as well as fast control of material
properties. While certain orders are relatively straightfor-
ward to induce, e.g., transient ferromagnetism created by the
inverse Faraday effect using circularly polarized light [1],
spatially alternating patterns, such as transient antiferromag-
netism (AFM), are much harder to generate.

One way to induce such order is to transiently modify
the effective parameters of a system by driving it. This is
exploited, for instance, in Floquet engineering [2–4] and in
adiabatic pumping schemes [5,6] that slowly modulate drive
frequency and amplitude. Alternative approaches avoid per-
manent driving, but rather excite the system into a metastable
off-equilibrium state which develops order, e.g., through
excitation-enhanced interactions [7], through photodoping
[8,9], or by inducing structural transitions [10,11]. These
methods rely on thermal relaxation within a kinetically
restricted configuration space, or under the action of a tran-
siently modified Hamiltonian. A more direct route, however,
creates the desired order directly by nonadiabatic resonant
aggregation dynamics [12–14], building a pattern by tailored
excitations that expand the domain walls surrounding an
initially created seed. It was shown [14] that even with a
single square pulse this scheme can achieve longer correlation
lengths than adiabatic pumping. However, the great potential
of using a sequence of optimally shaped driving pulses has
not been explored. In this paper, we analytically study such a
multipulse resonant aggregation and show that it can generate
extremely large correlated AFM clusters.

The paper is structured as follows: In Sec. II we intro-
duce the magnetic chain model, highlight the relevant energy
and time scales, and discuss possible physical realizations.
In Sec. III we describe the nonadiabatically driven resonant
aggregation dynamics. Section IV analyzes undesired, off-
resonant transitions, estimating their rates that we interpret
in terms of multiphoton processes. Section V optimizes the
parameters of the driving protocol to maximize the correlation

length or the size of defect-free ordered clusters. In Sec. VI we
compare this nonadiabatic scheme with an optimal adiabatic
protocol. Finally, Sec. VII summarizes the main results of this
paper and discusses open questions.

II. MAGNETIC CHAIN MODEL

For simplicity we consider an insulating, one-dimensional
(1D) chain of paramagnetic ions, each with a partially filled
shell, as found in the rare earth (RE) family. We consider
ions with an even number of electrons (non-Kramers), that
have a nonmagnetic singlet ground state |0〉, but possess a
higher-lying, symmetry-protected crystal field (CF) doublet
{|↑〉, |↓〉}, which carries an Ising magnetic moment pointing
along the crystalline c axis [15]. The point symmetry of the
considered ion should thus not be too high, so as to ensure that
magnetic doublets are symmetry allowed in the CF spectrum.
At the same time it should not be too low, so as to avoid a
spectrum of singlets only. Promising candidate materials that
could host chains of such ions, are, for instance, oxyborates
[such as, e.g., Ca4-RE-O(BO3)3 [16]] or certain perovskites.
While local crystal distortions often lower the point symmetry
of the RE ions significantly, it is important that the material
retain (or only weakly break) a certain amount of crystalline
symmetry, so as to allow for symmetry-protected magnetic
doublets [17].

If the excitation gap E is either very small, or exceeds
the phonon band width, such crystal field excitations can be
very long lived [18,19], as the phonon decay rate is very
small. Thus the excitation lifetime is optimized if the doublet
corresponds to the lowest crystal field level of a higher J
manifold [20], such that the only nonradiative decays are very
weak multiphonon transitions to lower manifolds.

We map the ground and the two excited doublet levels onto
the states of an anisotropic, easy-plane S = 1 pseudospin.
Exchange or magnetic dipole coupling introduces Ising in-
teractions between the doublet states on neighboring ions,
whereby we retain only the nearest-neighbor interaction J ,
which for definiteness we assume antiferromagnetic (J > 0).
An excitation on a given ion thus splits the doublet on its
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FIG. 1. Level structure of ions around the right front of a growing
AFM cluster in a chain governed by Eq. (1). The energy shifts due to
the Ising interaction with excited neighbors allow ions at the front to
be excited from the ground (|0〉) to the magnetized state ({|↑〉, |↓〉})
matching the desired pattern. Red arrows indicate resonant transi-
tions for a driving frequency ω = E − J [see Eq. (2)]. The transitions
marked by crossed purple arrows are off-resonant.

neighbors (see Fig. 1), which results in the Hamiltonian

H0 =
N∑

i=1

E
(
Sz

i

)2 +
∑
〈i, j〉

JSz
i Sz

j . (1)

The crystal field splitting E > 0 takes the role of a hard axis
anisotropy, which we assume to be much larger than the inter-
action, E � J . In general, there are also magnetic interactions
J ′ that mediate flip-flop transitions between two ions that
host a singlet and a doublet excitation, respectively. However,
assuming a large magnetic moment of the doublet, the flip-
flop interactions are significantly weaker than the longitudinal
dipole interaction among doublet states, J ′ � J [21]. Such
additional interactions dress the classical Ising configurations
by quantum fluctuations of the cluster edges, which renormal-
ize the excitation energy and the Rabi frequency. However,
the resonant aggregation dynamics is still well captured by an
effective Hamiltonian as in (1).

Spin lattice coupling introduces a finite relaxation time τR

for the excited ion states. Another important time scale is
the decoherence time, τd � τR, over which the system can
be considered as quantum coherent (while laser driven). In
practice, we expect τd to be limited by magnetic noise or
phonon decay and to substantially exceed the interaction time,
Jτd � 1 [22].

While our analysis focuses on a specific magnetic sys-
tem, it can readily be adapted to other systems with similar
Ising-type interactions between neighboring sites, where or-
der will be induced among the corresponding Ising degrees
of freedom, such as dipolar molecules [14] or Rydberg
arrays [12,13].

III. NONADIABATIC RESONANT AGGREGATION

In pseudospin language, a laser drive takes the form of a
time-dependent transverse field

Hint(t ) = 2
√

2E (t ) cos (ωt )
N∑

i=1

Sx
i , (2)

where E (t ) is proportional to the slowly varying amplitude
envelope of the laser and the numerical prefactors have
been chosen such that E (t ) corresponds to the instantaneous

(angular) Rabi frequency [see Eq. (3) below]. For the specific
model systems we have in mind, transitions between singlets
and doublets are commonly allowed via magnetic dipole cou-
pling, or alternatively via electric quadrupole coupling. In
crystals where the RE environment has no inversion symme-
try, also electric dipole transitions may be weakly allowed.

A classical Néel pattern can be generated by driving with
linearly polarized laser pulses in two steps, (see Fig. 6): First,
a small density of doublet excitations is generated [for in-
stance with a weak pulse of frequency ω = E (setting h̄ = 1)].
Then these seeds are made to expand by applying pulses
whose frequency resonantly matches the energy ω0 ≡ E − J
required to excite an ion to the pattern-matching doublet state
at the edges of existing clusters. As we will see, such a res-
onant driving induces ballistic propagation of the edges (see
Fig. 1).

The full time dependent problem H (t ) = H0 + Hint

(t )|ω=ω0 is not solvable analytically. However, within a ro-
tating wave approximation (RWA) in the interaction picture,
assuming a slow time dependence of the envelope E (t ) and
dropping terms oscillating with a high frequency of order E ,
we obtain

HI
RWA(t ) = E (t )

∑
i

{ei[J+J (Sz
i+1+Sz

i−1 )]t |i,↑〉〈i, 0|

+ ei[J−J (Sz
i+1+Sz

i−1 )]t |i,↓〉〈i, 0| + H.c.}, (3)

as derived in detail in Appendix A. The only time independent
terms, i.e., resonant transitions, in Eq. (3) are those of spins
at a cluster edge that have exactly one of their neighbors
excited, and where the cluster grows or diminishes by one
site, maintaining the AFM pattern. The nonresonant terms
eventually introduce unintended defects whose probability we
will estimate later. Dropping them for the time being, we are
left with the resonant approximation

HI
R = E (t )

∑
i

{δSz
i+1+Sz

i−1,−1|i,↑〉〈i, 0|

+ δSz
i+1+Sz

i−1,+1|i,↓〉〈i, 0| + H.c.}. (4)

This model is analytically solvable [23–25]: Under a Jordan-
Wigner transformation, it maps to a tight-binding chain of
fermions with dispersion εk (t ) = −2E (t ) cos k. They describe
the conserved edges of AFM clusters, which move freely
under the action of HI

R. The fermionic exclusion principle
reflects the fact that two cluster edges never occupy the same
bond. For the derivation and diagonalization of Eq. (4) we
refer to Appendix B. From the fermionic mapping it follows
that under a resonant pulse, every cluster edge performs an
independent quantum walk, its wave function spreading over
a range that increases linearly with time. Indeed, from the
dispersion relation one can derive that the standard deviation
of an edge’s position evolves like

√
〈x2〉 = √

2A(t ), where
A(t ) = ∫ t

−∞ E (t ′)dt ′ is the integrated pulse action.

IV. OFF-RESONANT TRANSITIONS

Every driving protocol induces undesired transitions with
finite probability. Errors come in three different types.

(i) In hole transitions an ion inside a cluster flips back to
the ground state |0〉. The transition energy is detuned from ω0
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by J . Once a hole forms inside a cluster, it expands like the
clusters do; nonetheless this will not destroy the correlation
among the remaining excited spins.

(ii) In a seed transition, also off-resonant by J , a pseu-
dospin is excited from |0〉 to a doublet state without having
neighboring excited spins.

(iii) An edge transition creates a misoriented excitation at
the edge of a cluster, introducing a domain wall. This error
type is suppressed as its energy mismatch is 2J , and will thus
be neglected in the following.

To minimize off-resonant transitions, we consider coherent
Gaussian driving pulses with carrier frequency ω0, and an
envelope with peak amplitude E0, temporal width σ , and sharp
cutoffs at t = ±τ/2, E (t ) = E0e−t2/2σ 2

�(τ/2 − |t |). Let us
estimate the probability density poff (per site in the bulk) to
create a new seed, or to create a hole inside a cluster during a
single pulse. As detailed in the following subsection, we treat
the resonant part to all orders and include the off-resonant
driving terms to leading order in time-dependent perturbation
theory. This captures the scaling of poff , for which up to
numerical prefactors we will derive [see Eqs. (14) and (17)
below]

poff (E0, σ, τ ) ≈
∣∣∣∣∣∣
∑
n�0

F[E (t )A2n(t )](J )

(2n)!

∣∣∣∣∣∣
2

≈
∣∣∣∣∣∣
∑
n�0

1

(Jσ )2n

[
Ê
(

J

2n + 1

)]2n+1
∣∣∣∣∣∣
2

, (5)

where F[·] denotes the Fourier transform. Ê (ω) = F[E] is
the spectrum of the pulse envelope, consisting of a Gaussian
bulk Ê (ω < τ/2σ 2) ∝ E0σe−ω2σ 2/2 and a tail due to the cutoff
Ê (ω > τ/2σ 2) ∝ E0e−τ 2/8σ 2

/ω. The second line in Eq. (5)
follows from a saddle point approximation for large Jσ � 1.
The terms in Eq. (5) can be read as the amplitude of mul-
tiphoton processes, each involving the absorption/emission
of a photon and the scattering of n further photons, the
dominant (2n + 1)-photon processes involving frequencies
ω ≈ ω0 ± J/(2n + 1). As long as the pulse is not too wide
(σ < σ ∗), processes that scatter a large number n∗(E0, σ ) ≈

Jσ/2√
2 log J

E0
+O(log log Jσ )

of photons in the spectral bulk dominate,

leading to poff ∼ exp[−2Jσ
√

2 log(J/E0)]. For σ > σ ∗, in-
stead, the absorption/emission of a single photon from the tail

with rate poff ∼ Ê2(J ) ∼ E2
0

J2 e− τ2

4σ2 is the leading process. The
crossover between these two behaviors of the off-resonant rate
occurs for a pulse width

σ ∗ ≈
⎡
⎣τ 2/

(
8J

√
2 log

J

E0

)⎤
⎦1/3

. (6)

A. Derivation of the off-resonant transition probability

Here, we derive the above results by carrying out a per-
turbative calculation of the probabilities, phole and pseed, for
off-resonant hole and seed transitions, respectively. We first
derive and discuss pseed. In the end, we argue that phole follows

the same parametric dependence, which justifies why we refer
to both probabilities summarily as poff .

Let us derive the result given in Eq. (5) and later parts of the
previous section. The creation of a new seed on site i during a
pulse corresponds to the creation of two neighboring domain
walls, γi−1γi, which subsequently can propagate resonantly.

We may express the leading seed-creating off-resonant
terms in Eq. (3) [neglected in Eq. (4)] in terms of domain wall
operators. A representative term takes the form

Hseed(t ) = E (t )
∑

n

(eiJtγ
†
n−1γ

†
n + H.c.), (7)

from which we estimate the transition probabilities. The above
expression omits projection factors that make sure that Hseed

always changes the number of domain walls by ±2. Those
matter when domain walls are present in the vicinity of where
the seed is to be created. However, these projectors are irrel-
evant when we describe the generation of a single seed by
acting with Hseed on the ground state.

The simplest way to compute pseed is to calculate the
transition amplitude αi, j for the process |0〉 → γiγ j |0〉 in time-
dependent perturbation theory in the interaction picture. For
an order of magnitude estimate we may restrict ourselves
to the first order in Hseed as it is the leading term that re-
lates states with the smallest energy mismatch J . Terms of
higher order in Hseed are expected to be smaller, especially
when typical domain walls separations are � 1. To first order
we find

αi, j = −i
∑

n

∫ ∞

−∞
E (t )eiJt 〈0|γi(t )γ j (t )γ †

n−1γ
†
n |0〉 dt . (8)

In Appendix C this amplitude is obtained by writing out
explicitly the domain wall operators’ time evolution and per-
forming some simplifications, leading to the expression

αi, j = −ei π
2 (i− j)

∫ ∞

−∞
E (t )eiJt j − i

2A(t )
Jj−i[4A(t )]dt . (9)

Due to translation symmetry, αi, j is only a function of i − j
(which becomes exact for i and j far from the sample bound-
aries).

The probability density (per site in the bulk) of creating a
seed during a pulse is then

pseed =
∑
j∈Z

|αi,i+ j |2

=
∑
j∈Z

j2

4

∣∣∣∣
∫ ∞

−∞
E (t )eiJt Jj[4A(t )]

A(t )
dt

∣∣∣∣2

. (10)

We focus on the case of a Gaussian pulse of total duration τ

and having a characteristic pulse width σ :

E (t ) = E0e−t2/2σ 2
�(τ/2 − |t |). (11)

We first show that the above estimate, based on first order
time-dependent perturbation theory, captures the off-resonant
transition probabilities well. Figure 2 compares the prediction
of Eq. (10) with exact numerics done for a chain with N = 7
spins. The overall agreement is very good. The remaining
discrepancies are probably due to finite size effects in the
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FIG. 2. Comparison between the exact seed creation probabili-
ties computed numerically in a finite size chain with N = 7 spins
(black dots) and the the analytic formula of Eq. (10) (blue line); for
parameters Jτ = 10, E0/J = 10−2 (top) and Jτ = 50, E0/J = 10−1

(bottom).

numerics, or our neglect of terms of higher order in the non-
resonant part of the Hamiltonian, Hseed. The subset of those
processes having an energy mismatch of J only can con-
tribute with similar amplitude as the one we estimate at first
order in Hseed.

An explicit expression for the integral in Eq. (10) is
not available. However, we will study the seed probability
pseed(E0, σ, τ ) for certain limits, which are relevant for the
optimization problems discussed in the following section.

Figure 3 plots the result of Eq. (10) for pseed/E2
0 as a

function of pulse width σ for different values of E0 (and fixed
τ and J). It is seen that the curves collapse beyond a minimum
at σ = σ ∗(E0). As explained in the beginning of this section,
for σ > σ ∗ seeds are indeed predominantly created by a single
photon process involving a photon from the tail of the trun-

cated Gaussian, pseed(E0, σ > σ ∗, τ ) ≈ E2
0

J2 e− τ2

4σ2 . We refer to
these as tail transitions. When deriving approximations for the
formula Eq. (10), we will instead focus on the regime σ < σ∗.

We focus on the term j = 1 in the series in Eq. (10), as it
is representative of the behavior of the full series. We need to
estimate

pseed(E0, σ, τ ) ≈
∣∣∣∣
∫ ∞

−∞
E (t )

J1[4A(t )]

2A(t )
eiJt dt

∣∣∣∣2

. (12)

FIG. 3. pseed/E2
0 as a function of σ/τ for Jτ = 100, evaluated

using Eq. (10) whereby the series was truncated at | j| = 4. Note
that beyond a sharp minimum, for σ > σ∗(E0 ), there is nearly no
dependence on E0.

By Taylor expanding the Bessel function, we obtain the
expression

pseed(E0, σ, τ ) ≈
∣∣∣∣∣∣
∑
n�0

∫ ∞

−∞
E (t )

(−1)n[2A(t )]2n

n!(n + 1)!
eiJt dt

∣∣∣∣∣∣
2

,

(13)

which, by using the Stirling approximation, can be rewritten
as the first line of Eq. (5), whereby we drop numerical pref-
actors cn, with c = O(1), that do not affect our analysis of the
leading scaling except for the arguments of logarithms.

We can rewrite this expression as

pseed(E0, σ, τ ) ≈
∣∣∣∣∣∣
∑
n�0

(−1)nF[∂t [4A]2n+1(t )](J )

2(2n + 1)!

∣∣∣∣∣∣
2

, (14)

which simplifies the calculations below.
This expression applies to any pulse shape. However, to

estimate the amplitude for multiphoton processes for σ <

σ∗, we may neglect the effect of cutting off the pulse, i.e.,
consider the limit τ → ∞ (since σ∗ � τ ). Then, A(t ) =√

π
2 E0σ [Erf( t√

2σ
) + 1] and, with the approximation

∫ ∞

−∞
dte−iωt Erf

(
t√
2σ

)
∼

ωσ�1

e− ω2σ2

2

ω
, (15)

we obtain that Â(ω) ∼ E0σ
ω

e− ω2σ2

2 = Ê (ω)/ω, up to numerical
prefactors and an additional piece δ(ω), which turns out to be
irrelevant for our analysis at large frequencies. We can now
evaluate the Fourier transform in Eq. (14) as a (2n + 1)-fold
convolution of Â(ω):

F[∂tA2n+1(t )](ω)

(2n + 1)!
= ω

(2n + 1)!
(A)∗(2n+1)(ω). (16)

For large frequency ω → J � 1/σ the latter can be eval-
uated via saddle point approximation, dominated by the
frequencies ω∗ = ±J/(2n + 1), with a curvature factor ≈1/σ
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FIG. 4. Comparison between pseed as calculated for Jτ = 100
from Eq. (10) (full) and using the approximation of Eq. (18) (app.)
to which we add the contribution from tail transitions.

for every frequency integration. This leads to

F[∂tA2n+1(t )](J )

(2n + 1)!
∼ J

1

σ 2n

[
Ê (ω∗)

ω∗
1

2n + 1

]2n+1

∼ Jσ

[
Ê[J/(2n + 1)]

σJ

]2n+1

∼ E0σ

(E0

J

)2n

e− J2σ2

2(2n+1) , (17)

whereby we again dropped several factors scaling as cn with
c = O(1).

With the second but last expression above we can recast
Eq. (14) as in the second line of Eq. (5).

We finally estimate Eq. (14) by determining the value n∗
which dominates the sum, n∗(E0, σ ) ∼ Jσ/2√

2 log J
E0

+O(log log Jσ )
.

This yields the leading behavior

pseed(E0, σ,∞) ∼ exp(−2Jσ
√

2 log(J/E0)), (18)

which is the result quoted in the previous section.
In Fig. 4 we show that the obtained approximation Eq. (18),

summed with the expression for tail transitions that captures
the behavior for σ > σ∗, agrees well with the fully evaluated
formula of Eq. (10).

We finally argue that phole should have the same qualitative
dependence on the driving parameters as pseed. Indeed, a hole
transition corresponds to the formation of two new domain
walls (thus, two Majoranas) within the bulk of a cluster.
The propagation of these domain walls will only slightly be
modified by the presence of the original domain walls of the
cluster if these are distant enough, and thus at the level of
the approximations made nothing significant changes between
pseed and phole.

V. OPTIMAL DRIVING PROTOCOLS

For a given interaction J and time scales for decoherence
(τd ) and relaxation (τR), optimal drive parameters depend on
the pursued goal. Typically, one either wants to maximize

FIG. 5. Visualization of the length � of uninterrupted AFM clus-
ters, and the usually much larger correlation length ξ , over which the
excited ions maintain magnetic order.

the AFM correlation length ξ of excited regions, i.e., the
range over which a given seed causes correlated excitations,
ignoring potentially large holes within the emanating clusters,
or aims for the largest possible defect-free clusters, whose
size we denote by �. These two different goals are illustrated
in Fig. 5. When maximizing ξ , the spread of correlations
is ultimately limited by misaligned seeds created within the
reach of the growing cluster. The spontaneous relaxation of
excited spins does not affect the correlation among remaining
excitations, but it does limit the growth of hole-free clusters.
In both cases, the nonadiabatic driving protocols profit from
the ability of multiple pulses to create much bigger clusters
than are reachable during a single coherent pulse.

A. Optimizing the correlation length ξ

A single coherent pulse should be cut off at τd , as on
longer time scales the dynamics are incoherent. Hence we
assume τ = τd . Under multiple pulses a cluster edge diffuses
with diffusion constant D = A2(τd )/τd ∼ (E0σ )2/τd (setting
the lattice constant to a = 1). After Np consecutive pulses a
typical cluster size scales as ∼√

DNpτd .
Consider the length scale on which the probability to gen-

erate at least one seed in an excited state uncorrelated with
the growing cluster becomes O(1). This will determine the
correlation length ξ . To reach this scale, one needs to apply
Np ∼ ξ 2/Dτd . The probability of a “seed error” within a range
∼ξ occurring during any of these pulses scales as poff Npξ ∼
poffξ

3/Dτd . Equating this to unity we infer ξ ∼ (Dτd/poff )1/3.
To maximize ξ we should essentially minimize

poff (E0, σ, τd ) in Eq. (5). For a given drive amplitude E0,
the optimal temporal pulse width is σmin = σ ∗ [given in
Eq. (6)], which is much shorter than the cutoff time τd/2. The
maximal correlation length that can be obtained then scales as

ξmax(E0) ∼ exp

(
21/3

3
(Jτd )2/3

(
log

J

E0

)1/3
)

, (19)

which requires a large number Np ∼ ξ 2
max(E0) of pulses. Note

that here we tacitly assume that the density of initial seeds
does not exceed 1/ξ . The above suggests that arbitrarily large
ξ can be reached by decreasing the pulse amplitude E0 (and
thereby the error probability) while increasing the number Np

of pulses. However, this overlooks the fact that E0 must be
strong enough, such that the initial cluster seed is more likely
to grow by at least one site, rather than to relax and disappear:
(E0σmin)2 > prel = τd/τR. This sets the lower bound
E0 > E0,c ≈ ( J2

τd τ 3
R

)1/6, from which we derive the maximal
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correlation length of AFM-correlated regions:

ξmax ∼ exp

((
2

3

)2/3

(Jτd )2/3{log[(JτR)3(Jτd )]}1/3

)
. (20)

As we will derive below, the size of contiguous,
hole-free AFM subclusters is much smaller and scales as
� ∼ (D/prel )1/3 ∼ (E0/E0,c)2/3. The last estimate holds up to
logarithmic corrections for small drive amplitudes such that
poff < prel. The holes separating such contiguous subclusters
can, however, have a diameter of order O(ξ ).

The above result holds as long as the limiting seed errors
result from multiphoton processes with n∗(E0,c, σmin) � 1.
This condition translates into log(JτR) � Jτd which applies
to most realistic situations. In the opposite case of extremely
long-lived excitations, the correlation length is limited by a
single-photon off-resonant process, which results in a maxi-
mal correlation length ξAFM ∼ exp(const. × Jτd ), as detailed
in Appendix D. In this case the clusters are typically hole free.

B. Optimizing the size of intact clusters �

The size of defect-free clusters � is limited by unintended
hole transitions where an ion relaxes back to its ground state.
We thus have � ∼ (D/phole )1/3. Note that the hole creation
probability (per site and per pulse) receives contributions
both from driving and spontaneous relaxation, phole = poff +
prel. The driven hole transitions are much less frequent than
spontaneous relaxation, unless the temporal pulse width σ

approaches the cutoff τd which results in a fat tail of the pulse
spectrum. Since D ∼ σ 2, it thus pays to increase σ (beyond
σmin) until poff ∼ prel, which yields

σopt ≈ τd/2
√

log[(E0/J )2/prel]. (21)

This is optimal since beyond that crossover phole ∼ poff in-
creases faster than D with increasing σ .

The diffusion constant D is maximized by a large Rabi fre-
quency E0 → Emax. If it is not limited by laser power one may
choose Emax of the order of, but still logarithmically smaller
than, J (to maintain a clear distinction between resonant and
off-resonant transitions). The largest contiguous clusters thus
reach a size of

�max ∼ [(σoptEmax)2/prel]
1/3 ∼ (

E2
maxτdτR

)1/3
, (22)

up to logarithmic corrections. They are generated by a se-
quence of

Np ∼ �2
max

Dτd
∼

(
τR

τ 2
d Emax

)2/3

(23)

strong and long pulses.
In the above we have assumed that the relaxation time was

sufficiently long (τR > Emaxτ
2
d , and thus Np > 1). If instead

τR is shorter, the optimal protocol consists in a single pulse,
the size of contiguous clusters being limited by the condition
� prel < 1, implying �max ∼ τR/τd .

VI. COMPARISON WITH ADIABATIC DRIVING

It is interesting to compare resonant aggregation with
an adiabatic driving protocol, which attempts to follow the

FIG. 6. Phase diagram in the rotating frame as a function of the
frequency detuning � = E − ω and the amplitude E0. Blue crosses
and yellow circles indicate the numerically determined location of
discontinuous and continuous phase transitions, respectively, sep-
arated by a tricritical point (black dot). An adiabatic single pulse
protocol (orange arrow) crosses the continuous transition. However,
the correlation length is bounded by the QKZ mechanism. Much
larger correlation lengths are achieved in the nonadiabatic multipulse
protocol: first AFM clusters are seeded with � = 0 and then grown
by keeping parameters close to the border of the first order transition,
� = J (light-blue dots).

ground state of the RWA Hamiltonian in the rotating frame,

HRWA(�, E ) =
N∑

i=1

�
(
Sz

n

)2 +
∑
〈i, j〉

JSz
i Sz

j +
N∑

i=1

√
2ESx

n,

(24)

as the detuning � = E − ω and the amplitude E of the co-
herent pulse are tuned across the quantum phase transition to
the AFM ordered phase. Figure 6 shows the transition line
between paramagnet and AFM as obtained via finite size scal-
ing analysis based on the Binder cumulant [26], as detailed in
Appendix E. A multicritical point separates a first order tran-
sition (between the classical limit E = 0 and E < 0.23J) from
a continuous transition in the Ising universality class, as is
expected from the equivalence of this 1D quantum model with
the two-dimensional classical Blume-Capel model [27–30].

The crossing of the transition necessarily becomes nona-
diabatic at some point and the achievable correlation length
is limited by the unavoidable generation of defects via the
quantum Kibble-Zurek (QKZ) mechanism [6,31]. Note that
the adiabatic preparation relies on coherence and is thus lim-
ited to a single pulse of duration ∼τd . In contrast, aggregation
dynamics starts from dilute excited nucleation centers, and
repeated pulses allow the exploration of configurations res-
onant with the initial state; hence, the only limitations are
undesired off-resonant transitions and relaxations to nontar-
geted parts of phase space (see Fig. 6). For the quasiadiabatic
scheme, the QKZ mechanism predicts a correlation length
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ξQKZ ∼ (Jτd )1/2 for a sweep at constant rate across the Ising
transition [31,32]. This is shorter than ξsq ∼ (Jτd )2/3 which
nonadiabatic aggregation dynamics achieves with a single
square pulse [14]. By adapting the rate in the adiabatic
passage through the phase transition [33] one can improve
to ξQKZ,opt ∼ Jτd/ log Jτd , which is, however, still slightly
smaller than ξopt ∼ Jτd/

√
log Jτd , obtained with an optimal

nonadiabatic Gaussian drive [34]. The main result of our anal-
ysis, is however, that these scales are exponentially smaller
than the correlation length (20) that can be achieved nonadia-
batically with multiple pulses.

VII. CONCLUSIONS

We have shown that a nonadiabatic resonant aggregation
scheme in quasi-1D nonmagnetic insulators can induce AFM
correlations up to scales that are exponentially large in the pa-
rameter (Jτd )2/3, much larger than those within quasiadiabatic
reach. This requires driving with multiple Gaussian pulses,
that minimize the creation of order-breaking excitations. The
very long correlations come at the price of relatively large
intervals of unexcited ions within one correlated region. If
instead the aim is to maximize uninterrupted AFM clusters,
one should apply fewer long and strong pulses. Also this
results in clusters parametrically larger than those obtained
with adiabatic driving.

While the model discussed here considers nearest-neighbor
interactions only, the scheme can be extended to longer-
range (e.g., dipole) interactions, where more complex, chirped
pulses might be required in the initial stages of the cluster
growth.

It will be interesting to extend the analysis of optimal
aggregation dynamics to higher dimensions. A simple trans-
lation of our proposed driving scheme to bipartite lattices is
expected to result in the growth of self-avoiding branched
polymer structures with AFM correlations extending over
a diameter comparable to the one obtained here for the
1D chain. Moreover, further interesting questions arise in
higher dimensions, as the possibility of spontaneous symme-
try breaking and genuine long-range order of Ising systems
arises. It would thus be interesting to study whether, after
a laser-driven excitation, thermalization dynamics in the re-
stricted space that conserves the number of excited ions (and
possibly also the number of domain walls) can further extend
the range of spatial correlations via coarsening.
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APPENDIX A: ROTATING WAVE APPROXIMATION
OF THE DRIVEN HAMILTONIAN
IN THE INTERACTION PICTURE

In this section, we derive Eq. (3) from the Hamiltonian Hint

[see Eq. (2)] in the interaction picture HI
int = eiH0t Hinte−iH0t ,

with H0 defined in Eq. (1). HI
int can be expressed in simpler

terms if we use the formula

eABe−A = B + [A, B] + 1

2!
[A, [A, B]] + . . . (A1)

and decompose Sx (written here in the Sz basis) as

Sx = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠ = 1√

2

⎡
⎢⎣
⎛
⎜⎝

0 1 0

0 0 0

0 0 0

⎞
⎟⎠

+

⎛
⎜⎝

0 0 0

1 0 0

0 0 0

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0

0 0 1

0 0 0

⎞
⎟⎠

+

⎛
⎜⎝

0 0 0

0 0 0

0 1 0

⎞
⎟⎠

⎤
⎥⎦

≡ S+,+ + S−,− + S−,+ + S+,−. (A2)

We consider a 1D chain with N + 2 sites, labeled by i ∈
{0, . . . , N + 1}. We assume N to be odd for simplicity. In
the following, we will be interested in the bulk of the chain
consisting of the sites {1, . . . , N}. It is easy to show that for
Sλ,λ′

i [
H0, Sλ,λ′

i

] = [
λE + λ′J

(
Sz

i+1 + Sz
i−1

)]
Sλ,λ′

i , (A3)

where λ = ± and λ′ = ±, and i is in the bulk. This implies
that[
H0,

[
H0, . . . ,

[
H0︸ ︷︷ ︸

n nestings

, Sλ,λ′
i

]]] = [
λE + λ′J

(
Sz

i+1 + Sz
i−1

)]n
Sλ,λ′

i .

(A4)

It is then possible to rewrite the bulk terms of HI
int as

HI
int(t ) = 2

√
2E (t ) cos (ωt )

N∑
i=1

{ei[E+J (Sz
i+1+Sz

i−1 )]t S+,+
i

+ ei[E−J (Sz
i+1+Sz

i−1 )]t S+,−
i + H.c.}. (A5)

With the frequency ω of the laser pulse set to resonantly
match the transition at ω = E − J , we proceed with the RWA,
removing terms with high frequencies of order E , retaining
only terms oscillating with frequencies of order J (� E ):

HI
RWA(t ) =

√
2E (t )

N∑
i=1

{ei[J+J (Sz
i+1+Sz

i−1 )]t S+,+
i

+ ei[J−J (Sz
i+1+Sz

i−1 )]t S+,−
i + H.c.}, (A6)

which is equivalent to Eq. (3), noting that
√

2S+,+
i = |i,↑〉〈i, 0|,

√
2S+,−

i = |i,↓〉〈i, 0|,
√

2S−,−
i = |i, 0〉〈i,↑|,

√
2S−,+

i = |i, 0〉〈i,↓|. (A7)
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APPENDIX B: MAPPING TO A MAJORANA CHAIN

Here we formally derive the mapping from the Hamilto-
nian of Eq. (4) to a solvable model of a Majorana chain.
Suppose we initially seed a spin |↑〉 excitation on site i.
Subsequent resonant transitions can flip spins only to the |↓〉
state on sites at an odd distance to i, and only to |↑〉 on sites at
an even distance. This suggests the possibility of reducing the
dimensionality of our Hilbert space by mapping our model to
an effective spin- 1

2 model: for a given site, the two states are
|0〉 and the resonantly reachable excited state. One can easily
check that the resonant Hamiltonian HI

R of Eq. (4) effectively
maps to

H1/2 = E (t )
N∑

j=1

δZ j−1+Z j+1,0Xj

= E (t )

2

⎛
⎝ N∑

j=1

Xj −
N∑

j=1

Zj−1XjZ j+1

⎞
⎠, (B1)

where the Pauli matrix Zi acts diagonally in the two relevant
basis states of site i, while Xi swaps them.

We employ a Jordan-Wigner transformation anchored at
the boundary site zero [25,35,36]:

ξ j = X0 . . . Xj−1Yj, η j = X0 . . . Xj−1Zj, (B2)

where 0 � j � N + 1 (with ξ0 = Y0 and η0 = Z0). The op-
erators ξ j = ξ

†
j and η j = η

†
j are Majorana fermions, obeying

anticommutation relations:

{ξi, ξ j} = {ηi, η j} = 2δi, j, (B3)

{ξi, η j} = 0. (B4)

The Hamiltonian now reads

H1/2 = −E (t )

2

N∑
j=1

i(ξ jη j+ξ j−1η j+1), (B5)

which can be mapped to the Hamiltonian of a nearest-
neighbor tight-binding chain,

H1/2 = −E (t )
N∑

j=1

(c†
j c j+1 + H.c.)

= −2E (t )
∑
k∈BZ

c̃†
k c̃k cos k, (B6)

by introducing the fermionic operators [for 1 � l �
(N + 1)/2]

c2l−1 = 1
2 (η2l + iη2l−1), c2l = 1

2 (ξ2l−1 − iξ2l ) (B7)

and the Fourier transform

c̃k = 1√
N

N∑
j=1

e−ik jc j . (B8)

The time evolution of the fermionic operator c j under the
Hamiltonian H1/2 is

c j (t ) = 1√
N

∑
k∈BZ

eik je2iA(t ) cos k c̃k

=
N∑

n=1

i j−nJj−n[2A(t )]cn, (B9)

where BZ denotes the Brillouin zone,

A(t ) =
∫ t

−∞
E (t ′)dt ′, (B10)

and Jα (x) is the Bessel function of the first kind of order α.
We now introduce a new species of fermionic domain wall

operators γ j :

γ2m−1 = η2m, γ2m = iξ2m. (B11)

We will refer to these operators as “Majoranas” even though
γ

†
j = (−1) j+1γ j . These operators anticommute and γ jγ

†
j =

1. γ j is associated with the creation or annihilation of a do-
main wall on the bond between sites j and j + 1, hosting
a |↑〉 (or |↓〉) and a |0〉 state, respectively, and flipping the
excitation state of all spins to the left of that bond. Note that
we only used the even-labeled Majoranas η and ξ , since the
odd-labeled Majoranas act very similarly. These domain wall
Majoranas evolve as

γm(t ) =
N∑

n=1

(−i)m−nJm−n[2A(t )]γn. (B12)

The above formalism allows us to calculate the transition
probability between different domain wall configurations in
a convenient way. Any product state configuration of domain
walls can be written as the result of acting with multiple γ j

operators on the |0〉 state. We adopt the notation |a〉, with
a = {a1, a2, . . . , aM} being an ordered nonrepeating M-tuple,
to indicate a configuration with M domain walls on bonds
(ai, ai + 1), and explicitly express it as

|a〉 = γ †
a1

. . . γ †
aM

|0〉. (B13)

We can now calculate the transition amplitude between any
domain wall configuration as long as the number of domain
walls is conserved. The latter is indeed the case for resonant
transitions. Let us consider the two configurations |a〉 and |a′〉,
each containing M domain walls. The transition probability
between these two states is

Pa→a′ (t ) = ∣∣〈γa′
1
. . . γa′

M
γ †

a1
(t ) . . . γ †

aM
(t )

〉
vac

∣∣2
, (B14)

where 〈. . .〉vac is the expectation value over the |0〉 state. This
can be recast, by making the time dependence explicit upon
using Eq (B12), into

Pa→a′ =
∣∣∣∣∣∣
∑

β

〈
γa′

1
. . . γa′

M
γ

†
β1

. . . γ
†
βM

〉
vac

×
M∏

n=1

Jan−βn [2A(t )]ian−βn

∣∣∣∣∣
2

, (B15)
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where
∑

β = ∑
β1

· · ·∑βM
. By using the properties of the

γ operators, one can see that the only nonzero terms of
the sum are those for which the M-tuple β is a permu-
tation of the M-tuple a′. Each index swap in the M-tuple
β comes with a minus sign, and their totality can be fac-
tored into the sign of the permutation. A global phase
exp(i π

2 (
∑M

n=1 an − ∑M
n=1 a′

n)) can be factored out of the sum.
We then finally obtain the transition probability

Pa→a′ (t ) = (det Ja→a′
)2, (B16)

where the matrix Ja→a′
i, j = Jai−a′

j
[2A(t )].

APPENDIX C: AMPLITUDE OF SEED TRANSITIONS

We start from Eq. (8) which upon using Eq. (B15) equals

αi, j = ei π
2 (i+ j)

∑
n

(−1)n
∫ ∞

−∞
E (t )eiJt {Ji−n+1[2A(t )]

× Jj−n[2A(t )] − Ji−n[2A(t )]Jj−n+1[2A(t )]}dt .

(C1)

The summation over the index n can be simplified by using
the summation theorem for Bessel functions (assuming that n
runs over all of Z, which is a good approximation inside the
bulk) [37]: ∑

r∈Z
(−1)rJr (x)Jr+ν (x) = Jν (2x). (C2)

In our case we use it for the first term with r → i − n + 1 and
ν → −i + j − 1, and for the second term with r → i − n and
ν → −i + j + 1. This yields

αi, j = − ei π
2 (i− j)

∫ ∞

−∞
E (t )eiJt {Jj−i−1[4A(t )]

+ Jj−i+1[4A(t )]}dt . (C3)

This can be further simplified using the recurrence relations
of Bessel functions, leading to Eq. (9).

APPENDIX D: THE LIMIT τR → ∞
We briefly discuss the case in which log JτR > Jτd , corre-

sponding to exponentially long relaxation times. This implies
a lower bound on E0, called E0,c in Sec. V, so small that the
condition log J

E0,c
� (Jσ )2 is not satisfied for σ ≈ σ∗(E0,c). If

log J
E0

> (Jσ )2, the largest term in the series of Eq. (14) is the
one for n = 0, and one finds

pseed(E0 → 0, σ,∞) ≈ 2πE2
0 σ 2e−J2σ 2

. (D1)

Since the off-resonant transition is dominated by a single
photon event, its probability is minimized by minimizing the
spectral density of the pulse envelope at ω = J , which requires
σ = σ∗ ≈ √

τd
2J . The requirement that an initial seed is more

likely to grow than to disappear again imposes the lower
bound on the drive amplitude E0 > E0,c = √

τd/τR/σ ∗ ≈√
2J
τR

. We conclude that, in this limit,

ξ ∼ pseed(σ ∗)−1/3 ∼ econst.×Jτd . (D2)

FIG. 7. Behavior of the Binder ratio for discontinuous (I) and
continuous (II) quantum phase transitions of the Hamiltonian HRWA

of Eq. (8) in the main text.

APPENDIX E: PHASE DIAGRAM OF THE EFFECTIVE
RWA HAMILTONIAN

In this section we briefly explain the numerical techniques
used to establish the quantum phase diagram of the Hamilto-
nian of Eq. (24).

A common numerical technique used to distinguish con-
tinuous from discontinuous phase transitions is the analysis
of the Binder ratio [26]. This statistical quantity is defined
as the ratio B = 〈m4〉

〈m2〉2 where m is the order parameter, in our

case (for a chain of size N) m = 1
N

∑N
j=1(−1) jSz

j . Deep in
the ordered phase, the ratio of the numerator and the denom-
inator of B is equal to 1. In the disordered phase instead, the
distribution of the order parameter is a Gaussian centered at
zero. Hence, B = 1 in the ordered and B = 3 in the disordered
phase, respectively. For second order transitions in finite size
systems, this steplike jump is smoothed into a continuous
evolution from one limit to the other. The critical point is
identified via finite size scaling, as the crossing point of curves
showing the Binder ratio for different system sizes. For first
order transitions, instead, a phase coexistence window of ex-
tent ∼1/N around criticality exists in the disordered phase.
This causes a volumetric (∼N) divergence of the Binder ra-
tio [38,39]. An accurate analysis of the finite size scaling
allows us to determine both the phase boundaries and the
nature of the quantum phase transition of the Hamiltonian
HRWA of Eq. (8) in the main text. As an illustration, Fig. 7,
shows numerical results for a discontinuous and a continuous
transition.
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