
Emergent Conformal Boundaries from Finite-Entanglement Scaling
in Matrix Product States

Rui-Zhen Huang ,1,* Long Zhang,2 Andreas M. Läuchli,3,4 Jutho Haegeman,1

Frank Verstraete,5,1 and Laurens Vanderstraeten6
1Department of Physics and Astronomy, University of Ghent, 9000 Ghent, Belgium

2Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation,
University of Chinese Academy of Sciences, Beijing 100190, China

3Laboratory for Theoretical and Computational Physics, Paul Scherrer Institute, 5232 Villigen, Switzerland
4Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

5Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
6Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Brussels, Belgium
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The use of finite entanglement scaling with matrix product states (MPS) has become a crucial tool for
studying one-dimensional critical lattice theories, especially those with emergent conformal symmetry. We
argue that finite entanglement introduces a relevant deformation in the critical theory. As a result, the
bipartite entanglement Hamiltonian defined from the MPS can be understood as a boundary conformal field
theory with a physical and an entanglement boundary. We are able to exploit the symmetry properties of the
MPS to engineer the physical conformal boundary condition. The entanglement boundary, on the other
hand, is related to the concrete lattice model and remains invariant under this relevant perturbation. Using
critical lattice models described by the Ising, Potts, and free compact boson conformal field theories, we
illustrate the influence of the symmetry and the relevant deformation on the conformal boundaries in the
entanglement spectrum.
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Introduction.—The past decades have witnessed the
successful application of ideas from quantum information
theory in quantum many-body physics, providing new
insights beyond conventional many-body techniques [1].
The central insight concerns the entanglement structure in
the low-energy states of correlated quantum many-body
systems, summarized in the entanglement area law [2] for
gapped states or the logarithmic violations thereof in critical
systems [3,4]. Here the entanglement Hamiltonian HE,
also called the modular Hamiltonian, plays a pivotal role.
In a given quantum many-body state, it arises when con-
sidering the reduced density matrix of a subsystem, and is
defined as

ρ ¼ 1

Z
exp ð−2πHEÞ; ð1Þ

in whichZ is a normalization factor preserving the unit trace
of ρ. The low-lying spectrum of HE or entanglement
spectrum often contains fingerprints of the exotic nature
of a given quantum state, and can be used as a diagnostic
tool in numerical simulations. Famous examples are the
degeneracies in the entanglement spectrum of a state
with symmetry-protected topological (SPT) order in one
dimension [5,6] or the universal form of the entanglement
spectrum of a fractional quantum Hall state [7]. The

entanglement spectrum also directly determines the entan-
glement entropy in a given state,which has been identified as
one of the key quantities for characterizing topological
order [8,9].
For critical phases, the formalism of conformal field

theory (CFT) has revealed universal properties of entan-
glement spectra in one-dimensional systems [3,10,11]. It
was observed that the structure of the entanglement
spectrum in critical spin chains is the one of a boundary
conformal field theory (BCFT) [12], an observation that
was later formalized [13]. In a more recent work, the effect
of introducing a finite gap by a relevant perturbation was
also tackled in general terms [14].
On the other hand, the formalism of tensor networks [15]

has proven very fruitful for capturing the correlations in
gapped systems, because they naturally model the entan-
glement structure inherent in the low energy states in these
systems. In one dimension, gapped states are described by
the class of matrix product states (MPS), to the extent that
all gapped phases of one-dimensional matter can be fully
classified by MPS using group cohomology [5,6]. In two
dimensions, nonchiral topological order can be classified
through the class of projected entangled-pair states [16]
and tensor network techniques provide a direct way for
calculating the entanglement spectra of chiral topological
states [17,18].
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An injective MPS with finite bond dimension always has
a finite correlation length, and can therefore never capture
the critical nature of a quantum ground state directly.
Instead we have to develop a scaling theory that describes
the effect of this finite bond dimension, similar to the theory
of finite-size scaling that is used for extracting critical data
from, e.g., Monte Carlo simulations or exact diagonaliza-
tions on finite clusters. Since a tensor network effectively
truncates the amount of entanglement in a quantum state,
this gives rise to the theory of finite-entanglement scaling.
The fundamental idea has always been that simulating a
critical system through MPS induces a finite length scale in
the system [19–21], and that this length scale can be used to
perform a scaling analysis. This approach has led to a
number of interesting results [22–30], making MPS meth-
ods very powerful for simulating critical phenomena. Yet,
despite these successes, the effect of finite-entanglement
scaling on the entanglement spectrum itself has not been
addressed.
In this Letter, we use the aforementioned CFT results to

shed new light on this fundamental question. We will
simulate critical spin chain models with MPS in the
thermodynamic limit directly, for which the only approxi-
mation is due to the finite bond dimension. We will argue
that this entanglement cutoff induces a relevant perturba-
tion of the critical system, and show that this perfectly
explains the observed structure in MPS entanglement
spectra. In fact, we will show that we can engineer the
form of the perturbation by imposing symmetries on the
MPS representation.
General framework.—Consider a critical spin chain with

Hamiltonian H�, for which the low energy properties are
described by an effective CFT. We construct a variational
MPS ground state approximation for a Hamiltonian in the
vicinity of H� directly in the thermodynamic limit [31,32],
with a given bond dimensionD. We assumewe are working
in the regime of finite entanglement scaling where the
effective length scale of the MPS state ξD ≔ −1= logðjλjÞ (λ
is the subleading eigenvalue of the transfer matrix com-
posed by the MPS local tensor) [15] is much larger than the
lattice spacing but smaller than any other length scale (e.g.,
from not being exactly at criticality). We now propose that
this length scale can be modeled as arising from a small
relevant perturbation in the CFT. The MPS can thus be
viewed as the ground state of a deformed Hamiltonian

H ¼ H� þ
X

g

ξ
Δg−2
D Og þ…; ð2Þ

where the Og are all relevant operators (operators with a
scaling dimension Δg < 2) and the dots are additional
irrelevant terms. Under a renormalization group (RG) flow,
the relevant operators become more and more important.

It is the most relevant perturbationOg governing the scaling
properties of MPS.
The effect of this deformation on the entanglement

spectrum can be inferred similarly to the discussion in
Ref. [14], where the authors considered the imaginary time
action of a CFT, perturbed by a primary field. In order to
obtain the entanglement Hamiltonian in half-space, one
needs to consider a logarithmic conformal mapping,
yielding the action

S ¼ S� þ
Z

∞

0

dx
Z

2π

0

dτ eð2−ΔgÞðx−logðξDÞÞOg þ…; ð3Þ

where x and τ denote the Rindler space-time coordinates
[14], and Og is the relevant perturbation from Eq. (2). One
can see that the conformal mapping serves the role of an
RG process to the relevant deformation. Under the loga-
rithmic mapping, the uniform Og term becomes exponen-
tially large away from the entanglement boundary and the
dynamics is frozen except for the region 0 < x < logðξDÞ.
Therefore, it becomes a BCFT with one entanglement
boundary Be and one physical boundary Bp, the latter
being determined by Og. Significantly, the two boundaries
possess distinct physical interpretations and origins. The
physical boundary is determined by the relevant deforma-
tion in the bulk, while the entanglement one reflects the
relation between different degrees of freedom. The entan-
glement spectrum takes the form of a BCFT spectrum,

Δi ∼
π

logðξDÞ
ðΔh þ niÞ; ð4Þ

where ni is a non-negative integer, h is the primary that
marks the conformal tower Vh determined by the fusion
rule Ve ⊗ Vg ∼ Ch

e;gVh following the modular invariance of
the partition function [33–37]. The distribution of Δi
provides a clear indicator to identify the deformation Og

to the CFT [33–37].
Among all the allowed relevant deformations in Eq. (2),

the entanglement truncation in MPS chooses the most
relevant perturbation Og that is allowed by the symmetries
of the MPS. In generic MPS (with only translation
symmetry), the perturbation imposed by the entanglement
truncation should be the primary operator with the lowest
conformal weight in the corresponding CFT. In continuous
phase transitions with symmetry breaking, the most
relevant operator is usually a symmetry-breaking term.
This explains why finite entanglement tends to result in
ordered MPS at the critical point. However, when we
impose symmetry constraints in the MPS representation,
such a field term is not allowed in Eq. (2), and another
deformation will determine the scaling behavior. So we can
use the symmetry constraints in the MPS as a selection rule
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to impose different physical conformal boundaries in the
entanglement spectrum.
Physical conformal boundaries in MPS.—As a first

illustration of our approach, we consider the quantum
Ising chain with transverse magnetic field

H ¼ −
X

i

σziσ
z
iþ1 − h

X

i

σxi : ð5Þ

It has a global Z2 symmetry and undergoes a continuous
phase transition when tuning the field across h ¼ 1. This
model realizes an Ising CFT at the critical point. We use
variational MPS methods [31,32] to find ground state
approximations for a given bond dimension D directly
in the thermodynamic limit. We can easily constrain the
MPS approximation to be invariant under the Z2 symmetry
by imposing a sparse block structure onto the MPS tensors.
We can assume the entanglement boundary to be free [12],
but elaborate on this in the next section.
In Fig. 1, we show the correlation length and entangle-

ment spectra from nonsymmetric (top) and Z2-symmetric
(bottom) MPS simulations. The phase transition is signaled
by the singular behaviour of the correlation length ξ [38],
where the singular point approaches the true critical point.
An interesting observation is that the direction of this shift
of the critical point is different in the Z2-symmetric and
nonsymmetric cases. This indeed implies that the symmetry
of the MPS representation determines the perturbation Og,
and that the scaling behavior is therefore very different in
both cases.

Let us now investigate the entanglement spectra in some
detail. First of all, we note that they all show the 1= logðξÞ
scaling behavior, in correspondence with the finite-size
scaling of Ref. [12]. In the symmetry-broken case, the most
relevant perturbation is a field term, which induces a fixed
up jIi or down jϵi physical conformal boundary Bp.
Together with the free entanglement boundary Be, the
entanglement spectrum resembles the operator contents of a
BCFT with mixed boundaries, following the fusion rule
σ ⊗ I=ε ¼ σ. Here the fixed or free boundary means a
boundary condition without fluctuation in the temporal or
spatial direction, respectively, [33–35,39,40]. As a result,
the spectrum only contains the spin operator family Vσ. In
the Z2-symmetric MPS, the most relevant perturbation is
the energy operator, leading to a free physical boundary jσi.
As the entanglement boundary remains free, the entangle-
ment spectrum follows from the fusion rule σ ⊗ σ ¼ I þ ϵ.
A similar analysis also applies to the critical three-state

Potts model. [37,41], where we can either impose the Z3

symmetry or not. The result is shown in Fig. 2. One can also
consider the charge conjugation symmetry in MPS, where a
charge-neutral fixed physical boundary is realized [37].
Besides the minimal models, which describe symmetry

breaking transitions, we also study the entanglement
spectrum in the XXZ quantum spin chain,

H ¼
X

i

σxi σ
x
iþ1 þ σyi σ

y
iþ1 þ gσziσ

z
iþ1: ð6Þ

In the region jgj < 1, the lowenergyphysics can bedescribed
by a c ¼ 1 free compact boson CFT. When using MPS to

FIG. 1. Correlation length (a) and entanglement spectra (b)–(d) for the quantum Ising chain Eq. (5) obtained with non-symmetric MPS
(top) andZ2-symmetric MPS (bottom). In (a) the dashed line denotes the critical point h ¼ 1 and different curves correspond to different
D as shown in the legend. In (b)–(d) the entanglement spectra have been shifted and rescaled with the first gap. σ, I, and ϵ represent the
spin, identity, and energy operators, respectively. Dashed lines show the theoretical data. Here and throughout this Letter, the
entanglement spectrum is rescaled according to ½ðΔi − Δ0Þ=ðΔ1 − Δ0Þ�h0, where h0 is the smallest gap appearing in the conformal
family.
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approximate its ground state, the finite entanglement cutoff
tends to break either the Uð1Þ symmetry resulting in a Néel
ordered state, or the translation invariance resulting in a
dimerized state, as dictated by the Lieb-Schultz-Mattis
theorem [42]. Again, these two cases can be understood
as arising from a perturbation of the critical model, in casu, a
staggered field in the xy plane or a dimerization term,
respectively. The Néel ordered case is realized in the non-
symmetric MPS simulations, similar to the quantum Ising
chain calculation. The dimerized state appears ifwe useUð1Þ
symmetric MPS with a two-site unit cell, with integer Uð1Þ
charges on the odd bonds and half-integer charges on the
even bonds.
From the Abelian bosonization analysis [37,43], the Néel

and dimerized ordered states correspond to the Dirichlet
fixed boundary and the Neumann free boundary conditions
for the scalar field ϕ, respectively. To be consistent with
the Uð1Þ symmetry in the state, the entanglement boundary
realizes a free boundary condition for the scalar field ϕ.
These boundary conditions can be verified in finite spin
chains with a boundary field [37]. As a result, the entangle-
ment spectra are very different in the two cases as shown
in Fig. 3. In the Néel ordered case, the entanglement
Hamiltonian realizes a mixed boundary BCFT. This case is
particularly interesting since the spectrum does not depend
on the radius of the compact boson or g in Eq. (6) at all.
In the dimerized case, the MPS realizes a free boundary
BCFT.
Entanglement conformal boundary in topological

transitions.—We have shown how to control the physical
boundary Bp in the MPS entanglement spectrum, but the
entanglement boundary Be was fixed by the lattice model.
In order to realize nontrivial entanglement boundaries, we
can look at transitions between an SPT ordered and a
symmetry breaking state [44–47].

As an example, we take the cluster Ising spin chain

H ¼
X

i

− σziσ
z
iþ1 − h

�
σzi τ

x
i σ

z
iþ1 þ τziσ

x
iþ1τ

z
iþ1

�
: ð7Þ

This model also realizes the Ising CFT at h ¼ 1 between a
symmetry breaking phase and an SPT phase protected by
the on-site Zσ

2 × Zτ
2 symmetry. The new term is related to

the usual transverse field term in Eq. (5) through a global
unitary transformation, which can be viewed as a symmetry
twist of the quantum Ising spin chain [45–47]. This twist
results in a different entanglement boundary Be [37,47].
This is confirmed by the numerical data from the MPS

simulation as shown in Fig. 4, where we show the entangle-
ment spectrum of the nonsymmetric and Z2-symmetric
MPS at the critical point. Although the MPS share similar
bulk properties with the conventional Ising transition in
Fig. 1, the operator contents realized in the entanglement
spectrum are very different. The physical boundary Bp is

FIG. 2. Entanglement spectrum obtained from the non-
symmetric (left) and Z3-symmetric (right) MPS for the critical
three-state Potts chain. Different markers are used to represent
different conformal towers revealed by the spectrum. The
spectrum has been normalized with the first energy gap. In the
right panel, each ψ=ψ† spectrum has a twofold degeneracy (the
degeneracy in the two largest ones is slightly lifted at small length
scales). Ors represent primaries in the Potts CFT.

FIG. 3. Entanglement spectra for the XXZ spin chain obtained
with nonsymmetric MPS (left) and Uð1Þ-symmetric MPS (right).
Dashed lines show the theoretical curve. In the nonsymmetric
MPS simulation, we set D ¼ 90. In the Uð1Þ symmetric MPS
simulation, we set the truncation error to be 10−5. The spectrum
on the right is obtained by combining the entanglement spectra
from the even and odd cuts in the two-site MPS, without making
additional normalizations.

FIG. 4. Entanglement spectrum obtained from the nonsym-
metric (left) and Z2-symmetric (right) MPS for the critical cluster
Ising chain. The entanglement spectrum has been shifted and
rescaled with the first energy gap. σ, I, and ϵ represent the spin,
identity, and energy operators, respectively. Dashed lines show
theoretical values of conformal weights.
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the same as in the untwisted Ising model Eq. (5), but now
the entanglement boundary Be is a superposition of up and
down fixed boundary states [45,47]. It appears that the
entanglement boundary inherits the nature of the SPT phase
transition, even when the bulk states are ordered. As a
result, in the symmetric phase the entanglement spectrum
has an exact double degeneracy for each level due to the
symmetry twisted Be [37].
Conclusions and outlook.—In this Letter we have studied

the entanglement spectrum in infinite MPS from the BCFT
viewpoint. The entanglement Hamiltonian can be described
by a BCFT with an entanglement and physical conformal
boundary at low energies. We have explicitly related the
effect of an entanglement cutoff to a relevant deformation of
the CFT describing the critical point. By controlling the
symmetry of theMPS,we can alter this deformation and thus
the physical boundary. The entanglement boundary, on the
other hand, is related to the latticemodel and phase transition
mechanism. We expect that our Letter will prove very
valuable for extracting universal scaling properties of 1þ 1
dimensional quantum critical points with tensor networks.
It would be interesting to extend our insights to more

general algebraic symmetries in MPS [48,49] in order to
complete all physical boundary conditions. Another inter-
esting question is to identify and classify emergent entan-
glement boundaries. Since the entanglement boundary
remains invariant under bulk deformations, it can be used
as an indicator to classify symmetry-enriched quantum
critical points. It would also be interesting to study
entanglement spectra in critical models without conformal
symmetry [50,51]: Near a CFT, the conformal symmetry
breaking term can be treated as a perturbation and the
perturbative picture used here may be applied to study such
theories.
Finally, our result has potential applications for studying

the entanglement properties of two-dimensional quantum
systems. In particular, it is expected that the boundary MPS
of critical PEPS [52,53] show a similar scaling of their
entanglement spectra [54]. Since the boundary MPS is
known to encode the entanglement Hamiltonian of the
PEPS [17], we can expect that this scaling carries important
information on the topological features of the PEPS
itself [37]. Also, our results suggest that the finite correlation
length scaling in PEPS approximations for two-dimensional
quantum critical points [27–29] can also be understood in
terms of perturbed 3D CFT; in particular, we can generalize
our framework for engineering the different perturbations
arising from imposing symmetry constraints in PEPS.
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[15] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete,
Matrix product states and projected entangled pair states:
Concepts, symmetries, theorems,Rev.Mod. Phys. 93, 045003
(2021).

[16] N. Schuch, J. I. Cirac, and D. Pérez-García, PEPS as ground
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