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quantummagnets
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Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully
frustrated bilayer Heisenberg antiferromagnet to demonstrate that an appliedmagnetic field creates a
previously unknown emergent criticality. The quantum phase diagram contains four states with
distinctly different symmetries, all but one pair separated by first-order transitions. We show by
quantum Monte Carlo simulations that the thermal phase diagram is dominated by a wall of
discontinuities extending between the dimer-triplet phases and the singlet-containing phases. This
wall is terminated at finite temperatures by a critical line, which becomes multicritical where the
Berezinskii-Kosterlitz-Thouless (BKT) transition of the dimer-triplet antiferromagnet and the thermal
Ising transition of the singlet-triplet crystal phase also terminate. The combination of merging
symmetries leads to a 4-state Potts universality not contained in the microscopic Hamiltonian, which
we interpret within the Ashkin-Teller model. Our results represent a systematic step in understanding
emergent phenomena in quantummagneticmaterials, including the “Shastry-Sutherland compound”
SrCu2(BO3)2.

Classical and quantum field theories, formulated to capture the low-energy,
long-wavelength behavior of a system, have a foundational role in theore-
tical physics. At a continuous classical or quantum phase transition (QPT),
the characteristic energy scale vanishes and the correlation length diverges,
ensuring a profound connection between field theories and the statistical
mechanics of critical phenomena1. In both situations, the microscopic
details become irrelevant and the critical properties of the system are dic-
tated only by global and scale-invariant characteristics such as the dimen-
sionality, symmetry, and sometimes the topology. Because these most basic
attributes are all discrete, field theories are readily classified and phase
transitions can be categorized by their universality class.

One of the organizing principles of modern condensed matter is the
concept of “emergence,” meaning large-scale patterns of behavior that
cannot be predicted from a knowledge of the short-range interactions.
Quantum magnetic materials and models are widely recognized for the
wealth of emergent phenomena they exhibit at low energies, which include
multiple types of fractional excitation and of quantum spin liquid2. Many

more phenomena emerge when a system is driven into the critical regime
around a phase transition3. Beyond the continuous (second-order) transi-
tions that are now well studied in experiment4,5, theory predicts that the
order parameters of two phases with unrelated symmetries can vanish
continuously and simultaneously. This deconfined quantum critical point
(DQCP)6,7, or multicritical point8,9, should be accompanied by emergent
fractional excitations, exhibit unconventional critical scaling10, and possess
an enhanced continuous symmetry. More generally, emergent enhanced
symmetries have recently been discussed at a first-order transition11 and at
topological phase transitions12,13.

The many-body states of quantum spin systems can be altered by a
variety of experimental methods, including an applied magnetic field4, a
hydrostatic pressure5,14, and controlled substitional disorder15, to obtain a
wide range of possibilities for the investigation of phase transitions
and related emergent phenomena. The field-induced magnetic order
observed in dimerized spin systems can be described as a Bose-Einstein
condensation of triplet excitations into the singlet ground state4, while the

1BeijingNational Laboratory for CondensedMatter Physics and Institute of Physics, ChineseAcademyof Sciences, Beijing 100190,China. 2Department of Physics
and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China. 3School of
Engineering, Dali University, Dali, Yunnan 671003, China. 4Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern
University of ScienceandTechnology, Shenzhen518055,China. 5Laboratory for Theoretical andComputational Physics, Paul Scherrer Institute,CH-5232Villigen-
PSI, Switzerland. 6Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. 7Key Laboratory of Quantum State
ConstructionandManipulation (Ministry of Education), RenminUniversity ofChina, Beijing 100872,China. e-mail: bruce.normand@psi.ch; rong.yu@ruc.edu.cn

npj Quantum Materials |            (2024) 9:25 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-024-00636-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-024-00636-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-024-00636-4&domain=pdf
http://orcid.org/0009-0007-5856-3593
http://orcid.org/0009-0007-5856-3593
http://orcid.org/0009-0007-5856-3593
http://orcid.org/0009-0007-5856-3593
http://orcid.org/0009-0007-5856-3593
http://orcid.org/0000-0001-5936-1159
http://orcid.org/0000-0001-5936-1159
http://orcid.org/0000-0001-5936-1159
http://orcid.org/0000-0001-5936-1159
http://orcid.org/0000-0001-5936-1159
mailto:bruce.normand@psi.ch
mailto:rong.yu@ruc.edu.cn


pressure-induced transition5 is a triplet condensation in the 3D XY uni-
versality class. It was pointed out recently that critical phenomena in
quantum magnets are not restricted to second-order QPTs, but that the
combination of quantum and thermal fluctuations can produce a critical
point when the QPT is first-order16. Using the S = 1/2 “fully frustrated
bilayer” (FFB) model shown in Fig. 1a, it was found that the discontinuity
across theQPT, between thedimer-singlet anddimer-triplet phases (DSand
DTAF inFig. 1b), decreaseswith increasing temperature and terminates at a
finite-temperature critical point. In this minimal model, there is no spon-
taneous symmetry-breaking across the line of discontinuities (meaning at
T > 0, by the Mermin-Wagner theorem) and the extent of singlet-triplet
order provides a quantummagnetic analog of the liquid-gas transition, the
two-component nature conferring an Ising universality17.

This type of physics and its extensions have recently been pursued in a
number of frustratedquantumspinmodels18–20, but came to the forewhen it
was shown to be the origin of critical-point behavior found21 in specific-heat
measurements on the frustrated quantum antiferromagnet SrCu2(BO3)2.
This compound provides a remarkably faithful realization of the Shastry-
Sutherland model (SSM)22, not only at ambient pressure23 but also in its
pressure-induced QPTs14. However, the first-order QPT in SrCu2(BO3)2
and the SSM separates a DS phase from a plaquette-singlet phase, which
does have long-ranged order at low temperatures and a continuous thermal
transition21,making the situationmore complex than the FFB. In an applied
magnetic field, SrCu2(BO3)2 shows a spin-nematic phase24 followed by a
complex cascade of QPTs into different magnetization-plateau states23,25,
raising important questions about the nature of criticality under combined
fields and pressures. The possibilities range from emergent enhanced
symmetries and emergent types of multicriticality to the appearance of a
DQCP suggested by theory26, numerics27, and experiment28.

Here we look more deeply into the FFBmodel to study how its phases
and phase transitions evolve in an appliedmagnetic field. The field enriches
the phase diagram, turning the dimer-triplet state into a Berezinskii-
Kosterlitz-Thouless (BKT)phasewithquasi-long-rangedorder (qLRO) and
the DS state into a checkerboard triplon crystal (TC) phase with LRO at
finite temperatures. The Ising critical point becomes a critical line, first
retaining its Ising character but then gaining an emergent 4-state Potts
symmetry on the multicritical phase boundary to the TC regime, before
terminating at a quantum critical endpoint (QCEP). All our thermal cal-
culations are performed using large-scale quantum Monte Carlo (QMC)
methods enabled by the recent qualitative breakthrough that the fully fru-
strated system formulated in the dimer basis has no sign problem.Wemap
the quantum FFB model to a classical equivalent and then to the Ashkin-
Tellermodel in order to trace the origin of emergent criticality, and hence to
shed light on its possible appearance in highly frustrated quantummagnetic
materials such as SrCu2(BO3)2.

Results
FFB Model
The Hamiltonian of the FFB model is

H ¼ P
i
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where S
!

i;m is a quantum (S = 1/2) spin at site i and layer m of the square-
lattice bilayer shown in Fig. 1a, H is the applied magnetic field, and the
antiferromagnetic (AF) Heisenberg interactions are J⊥ on the interlayer
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Fig. 1 | Phase diagram of the fully frustrated bilayer Heisenberg model in an
applied magnetic field. a FFB model. Quantum spins (S = 1/2) are located at every
site of a pair of square lattices. The interlayer dimer unit hasmagnetic interaction J⊥,
the intralayer interaction is J∥, and the interlayer interaction between adjacent sites is
J×; all three interactions are antiferromagnetic (AF) and of Heisenberg type.
b Representations of the four different ground states in an applied field, the dimer
triplet antiferromagnet (DTAF), dimer singlet (DS), checkerboard triplon crystal
(TC), and fully polarized ferromagnet (FM). cGround-state phase diagram obtained
by the iPESS method. Apart from the field-driven DTAF-FM transition (cyan line),
which is continuous, all other transitions are first-order (black lines). The red circle
marks the quantum critical endpoint (QCEP) at J = 4 and h = 8. d Magnetization
shown as a function of J at low temperature (t = 0.2), calculated by quantumMonte
Carlo (QMC) for a system of size L × L dimers, with L = 24. The half-magnetization

plateau characterizes the TC state. e Thermal phase diagram. Long-ranged DTAF
andFMorder is present only at zero temperature. TheTCorder parameter persists at
finite temperatures, and this ordermelts continuously at the orange surface. Thewall
of discontinuities in the triplet density that separates the DTAF and DS phases
terminates at a line of Ising critical points (purple) at finite temperatures, while the
wall separating the DTAF and TC phases terminates at a line of emergent multi-
critical points (red). Each point on the red line is simultaneously the endpoint of a
BKT transition of the DTAF (blue line with stars) and of a thermal Ising transition of
the TC (orange), and exhibits an emergent 4-state Potts criticality. At high fields, the
line of emergent multicritical points terminates at the QCEP (red circle). The
magenta and green dashed lines mark characteristic crossover temperatures deter-
mined by computing the specific heat. Error bars on the phase-boundary points in
panels c and e are smaller than the symbol sizes.
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dimer bond, J∥ within each square lattice, and J× between next-neighbor
interlayer sites, which frustrates J∥. We consider only the fully frustrated
case, J× = J∥, where the model can be rewritten in the dimer basis as

H ¼ Jk
X
i;j

T
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with T
!
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!
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i;2 the total spin of each dimer; T
!

i

2
is proportional to

the spin-triplet density and is locally conserved, meaning on every dimer, i.
This is the property that causes the sign problem, which conventionally
accompaniesQMCsimulations on frustrated spin systems, to be completely
absent29,30. Thuswe canuse the stochastic series expansion (SSE) algorithm31

to obtain highly accurate simulation results for square-lattice dimensions
L × L up to a linear size of L = 40.We take J∥ as the unit of energy and define
the reduced coupling J = J⊥/J∥, reduced field h =H/J∥, and reduced
temperature t = T/J∥, with the lowest temperature we access being t = 0.1.
To complement these thermal results, we calculate the quantum (t = 0)
phase diagram of the FFB in a field by applying the tensor-networkmethod
of infinite Projected Entangled Simplex States (iPESS)32 as summarized in
the Methods section.

The FFB model has been studied in detail by SSE QMC at zero field16,
and our aim here is to reveal the complex and emergent phenomena
induced by the magnetic field. Some properties of the FFB in a field have
been investigated by Derzhko, Krokhmalski, Richter, and coworkers in a
series of studies33–35. These authors drew attention to the fact that the class of
fully frustrated models has maximally localized spin excitations (magnons,
to which we refer due to their local rung-triplet nature as triplons), and
hence completely flat bands. The action of the magnetic field on this rather
simple excitation spectrum is a systematic alteration of the energies of the
different multiplets, leading to clear field-controlled level-crossings of
macroscopic numbers of states. These authors also studied the use of clas-
sical lattice-gas models to analyze the physics of these quantum spin sys-
tems, but did not discuss the full phase diagram or emergent critical
properties.

Quantum Phase Diagram
We begin by using iPESS to identify the four ground states of the model
illustrated schematically in Fig. 1b. A straightforward energy comparison,
described in SupplementaryNote 1, yields the t = 0 phase diagram shown in
Fig. 1c. The DS and dimer-triplet antiferromagnet (DTAF) phases are
familiar at zero field. Beyond a finite field, the DS is driven into the inter-
mediate TC state, of alternating dimer singlets andfield-aligned triplets, and
the magnetization shows a plateau at half of its saturation value (Fig. 1d)34.
Sufficiently strong fields cause a full polarization of the DTAF and TC
phases into the FM state. Because only the DTAF and FM phases have the
same triplet density (nt = 1), every phase boundary in Fig. 1c is first-order,
other than the line of continuous DTAF-FM transitions. This line termi-
nates at a QCEP at J = 4 and h = 8, where it meets the first-order phase
boundary of the TC state.

Figure 1e shows the thermal phase diagram we obtain from our SSE
QMC simulations. Only the TC phase has LRO, which is terminated at a
thermal transition (orange surface), although the DTAF has qLRO that is
lost at a BKT transition (blue). The first-order DS-TC and TC-FM transi-
tions become continuous at any finite temperature, an unconventional
propertywegive the simple terminology “zero-temperaturefirst-order line.”
The first-order DTAF-DS and DTAF-TC lines persist to finite tempera-
tures, forming a wall of discontinuities across the phase diagram, which is
terminated by a (multi)critical line whose nature is the primary focus of
our work.

DS and TC phases
To analyse the rich variety of phenomena on display in Fig. 1e, we start on
theDS side by considering the field-induced behavior at fixed J = 4 (Fig. 2a).
TheDSphase hasnoorder parameter, but can be characterized by the dimer
spin correlation21. At finite fields, the average of the three Zeeman-split

triplon branches determines the position of the broad maximum in the
specific heat (Fig. 2b), while the closure of the gap to the lowest triplon sets
the DS-TC transition, shown in Fig. 1c. At J = 4 and t = 0, the ground state
undergoes first-order transitions from DS to TC at h = 4 and TC to FM at
h = 8, where the TC phase supports true LRO and thus has a continuous
thermal phase transition at any point on the orange surface in Fig. 1e. By the
scaling-collapse analysis presented in Fig. 2c and described in the Methods
section, we show that this transition has the critical exponents of Ising
universality, ν = 1 and β = 1/8, as might be anticipated from the twofold
degeneracy (i.e. broken Z2 sublattice symmetry) of the checkerboard
TC state.

We reiterate the curious nature of the critical surface of the TC
phase at the DS and FM transitions, which changes from second- to
first-order precisely at t = 0. The termination of a second-order line on
a first-order one is known as a critical endpoint36,37, and a second-order
line turning first-order is a tricritical point, but the DS-TC and TC-FM
boundaries lack a first-order surface (cf. the QCEP at (J = 4, h = 8)) or
half-surface; thus we use instead the term zero-temperature first-order
line. The physics of the DS-TC line is that any state excluding nearest-
neighbor triplon pairs minimizes the energy, resulting in a highly
degenerate ground state33–35. Away from the line, these states form low-
energy excitations, while excitations containing at least one triplon pair
have a gap of order J∥, and these two types of process account for the
two peaks in C(t) (Fig. 2b). Exactly analogous behavior is observed
around the TC-FM line as a consequence of particle-hole symmetry
about nt = 1/2. By contrast, the TC-DTAF transition remains first-
order up to a finite temperature, where the TC surface meets the line of
critical points to establish the emergent criticality we analyse below.

Quantum Critical Endpoint
Finally, to investigate theQCEP, defined as the termination point of a line of
continuous QPTs (the DTAF-FM line), we characterize the low-energy
excitation spectrumbycomputing the thermal energy,E(t)− E0, at different
pointson the zero-temperaturefirst-order lines.AsFig. 2d shows for the two
transitions at J = 6, E(t) has the same exponential form, indicating gapped
excitations above the ground manifold, with the same prefactor, thereby
respecting the particle-hole symmetry. However, in Fig. 2e we observe a
departure from this symmetry when the QCEP is compared to its coun-
terpart (h = 4), with additional thermal energy at t≲ 0.5 suggesting low-
energyAF spin-wavefluctuations, in finite-sized regimes of the neighboring
DTAF phase, appearing within the gap.

DTAF phase
Turning to theDTAF side of the phase diagram (Fig. 1e), the field breaks
the SU(2) spin symmetry down to U(1) and the DTAF phase supports
qLRO below a finite-temperature BKT transition38,39. In Fig. 3a we use
the specific heat to show that the thermodynamic properties of the
DTAF phase, computed at h = 6 for a number of J values, remain similar
to those at h = 0, with a single peak marking a characteristic crossover
temperature. An accurate determination of tKT can be obtained

40,41 from
the finite-size scaling of the spin stiffness, ρs(t), as we explain in the
Methods section and show in Fig. 3b, c. As expected17, tKT is not
reflected in the conventional thermodynamic response (Fig. 3a), lying
systematically beneath the crossover such that the two temperatures
form two sets of surfaces that meet along the line of (multi)critical
points (Fig. 1e); in Supplementary Note 2 we show further data illus-
trating this situation in the DTAF phase.

Critical Line
Given the qLROof theDTAFphase below tKT, and the LROof theTCphase
below a transition that also appears to converge on the critical line, the
crucial question arises of how these field-induced phases affect the uni-
versality.We preface the discussion to followwith an important remark: we
have found in Fig. 4a–c that all the transition and crossover lines meet with
an accuracy of 0.01 in our units, as we show in Supplementary Note 2.
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Rather than perform extensive numerical calculations to achieve a higher
accuracy,which stillwouldnot serve as aproofof exactconvergence,webase
our discussions, particularly of the multicritical DTAF-TC point, on the
analysis of additional symmetries and related models below. At zero field
(Fig. 4a), where neither the DS nor theDTAF possesses finite-t order due to
symmetry-breaking, usingnt as an effectiveorderparameter reveals a liquid-
gas-type transition16, where the first-order line is terminated by a critical
point with Ising universality, and crossover lines (determined from the
specific-heat peaks, Supplementary Note 2) appear on both sides of the
transition18.

Ising Criticality
At a fixed low field, where the DTAF has a BKT transition that meets
the first-order line at the critical point (Fig. 4b), we investigate the
nature of criticality by computing the specific heat as a function of
system size, as shown in Fig. 4d. The progressive sharpening of
the peak can be characterized by its height, CmaxðLÞ, which in the inset
we find follows precisely the ln L scaling of Ising universality16.
Thus we conclude that the BKT transition has no effect on the uni-
versality of the critical point in this instance, and we explain this
result below.
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Emergent Criticality
Turning now to the DTAF-TC transition, in Fig. 4c we show the
situation at h = 6 and in Supplementary Note 2 we present results
elsewhere on this phase boundary. Figure 4e shows explicitly how the
discontinuity in the TC order parameter at t < tc becomes smooth at and
above tc = 0.31. At minimum (neglecting the BKT transition), the
merging of the discontinuous DTAF-TC line with the continuous
thermal transition of the TCphase should change the Ising critical point
to a tricritical Ising point. To determine how the universality is altered,
in Fig. 4f we consider the scaling collapse of all our finite-L data at tc for
h = 6 and extract the critical exponents ν = 0.67 ± 0.03 and
β = 0.083 ± 0.005. These values are far from the Ising and tricritical Ising
cases, instead corresponding very well to 4-state Potts universality,
where ν = 2/3 and β = 1/1242.

A priori, this Potts criticality comes as a complete surprise, because
the FFB model in a field has no S4 permutation symmetry, and thus it
satisfies all the criteria of an emergent phenomenon. Our discovery of
such an exact 4-state Potts universality also appears highly unlikely if
the meeting of the three transition lines at a single multicritical point
were not exact. To gain further insight, we follow a series of mappings to
unveil the underlying symmetries of the system, and summarize the
procedure here (a more complete discussion is presented in Supple-
mentary Note 3).

Classical Model
First wemap the quantummodel of Eq. (2) to a classicalmodel consisting of
anO(3) rotor, representing the spin degrees of freedom, coupled to an Ising
variable representing the triplon density. It is easy to perform large-scale
MonteCarlo simulationsof thismodel, and inFig. 5awe showthat thephase
diagram at h = 6 is very similar, even semi-quantitatively, to the quantum
one (Fig. 4c). A BKT transition arises for the rotors in an applied field and a
density-driven Ising transition breaks the sublattice symmetry. Across the
critical point where the BKT and Ising transitionsmeet, we again find ν≃ 2/
3 and β≃ 1/12, meaning that the classical model also has 4-state Potts
universality.

Spin-Anistropic Model
Next we introduce an Ising-type spin anisotropy, Δ > 1, that breaks the
U(1) spin symmetry to Z2, turning the BKT transition into a thermal
Ising transition, belowwhich the system has true LRO that we denote as
“x-Ising” in Fig. 5b. In this situation, the two Ising transitions meet at a
bicritical point, belowwhich the transition directly from x-Ising to TC is
first-order. The bicritical scenario provides a well accepted instance
where the three transition lines do meet at a single point, as our
numerical results indicate for the FFB model (Fig. 4c). The correlation-
length exponent, ν, that we obtain from scaling collapse at the bicritical
point varies between 2/3 and 1 with the strength of the spin anisotropy,
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DTAF, below which the system exhibits qLRO. Orange lines and circles show the
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field, all of the transition and crossover lines meet at a critical point that termi-
nates the line of first-order transitions: this point is located at
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universality (red circle). d Specific heat, C(t), calculated at J = Jc for h = 1 using a
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collapse are ν = 0.67 ± 0.03 and β = 0.083 ± 0.005, which are fully consistent with
4-state Potts universality.
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as we show in Supplementary Note 3, and thus the anisotropic classical
model has non-universal behavior.

Ashkin-Teller Model
Because both theDTAF andTCphases break the sublattice symmetry, each
has two degenerate configurations, and in total four ground-state config-
urations are degenerate at the transition. Here the triplon density drops
from nt = 1 in the DTAF to nt = 1/2 in the TC, and the evolution of nt with J
across the emerging critical point indicates a particle-hole symmetry about
nt = 3/4 (Fig. 5c). Defining the Ising variables σi, associated with the sub-
lattice symmetry, and ηi, associated with the particle-hole symmetry, the
Ising variable τi = σiηi obeys the relations τ→− σ and σ→− τ under spin
inversion. With these variables we construct the minimal effective model
that should describe the critical properties around the emerging critical
point in the form

Heff ¼ �J
X
i;j

ðσ iσ j þ τiτjÞ � K
X
i;j

ðσ iσ jÞðτiτjÞ; ð3Þ

as discussed in detail in Supplementary Note 3. This Z2 × Z2 × Z2-sym-
metricmodel is precisely theAshkin-Tellermodel (ATM). It iswell known43

that the ATM exhibits non-universal exponents along the critical line
obtained for 0 <K/J < 1, with Ising universality atK/J = 0 and a higher Potts
universality at K/J = 1.

To analyse the correspondence between this ATM and the classical
model with variable spin anisotropy, we define a composite order

parameter,O2
b ¼ O2

x þ O2
TC, that contains the order of both the x-Ising and

TC phases (Supplementary Note 3C). We then consider the Binder
cumulant associated with Ob, U ¼ 2ð1� hO4

bi=2hO2
bi

2Þ, which has the
property that U→ 1 deep in both ordered phases, but dips across the
bicritical point. Figure 5d shows this evolution of U for a range of system
sizes, from whose touching point we determine both the location of the
bicritical point and the value Uc. Because of its dimensionless nature, Uc

should also reflect the universality of the critical point44–47, and the scaling
collapse shown in Fig. 5e presents an accuratemeans of extracting ν. For the
spin-anisotropicmodel, we find that bothUc and ν vary with the anisotropy
Δ, exhibiting a non-universal evolution such that ν at the bicritical point
varies between 1 and 2/3, signalling a continuous change between Ising and
4-state Potts universality. Themonotonic dependence ofUc onΔ, shown in
Fig. 5f, compares exactly with the K/J scaling of the ATM, and its extra-
polated value asΔ→ 1 agrees well with the valueUc→ 0.792 ± 0.003 found
for the ATM at the Potts point47.

Discussion
We have presented the global phase diagram of the FFB Heisenberg model
in an appliedmagneticfield, showinghow thefield allows systematic control
over the phase competition. We have explained the rich variety of
phase transitions and (multi)critical lines or points, and found numerical
evidence for a striking example of emerging critical behavior. This emergent
4-state Potts universality, arising along the line ofmulticritical points where
the BKT transition of the DTAF and the Ising one of the TC phase meet,
implies that the multicritical system has a higher S4 permutation symmetry
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a Phase diagram of the classical spin-rotor model extracted from the FFB model,
shown at h = 6. b Phase diagram of the classical model with spin anisotropy, shown
at h = 6withΔ = 1.3 (weak Ising anisotropy). The qLRO of theDTAF phase becomes
a true LRO with a thermal Ising transition occurring at a rather higher ordering
temperature. Because the TC phase retains its Ising transition, the emergent critical
point becomes a bicritical point (red circle) where the two Ising transition lines meet
at (Jc, tc) = (2.0792(14), 0.3097(8)). Error bars on the phase-boundary points in both
panels are smaller than the symbol sizes. c Triplet density, nt, computed for L = 24
and shown as a function of J for various temperatures at h = 6. nt = 0.75 at the
multicritical point and reflects the approximate particle-hole symmetry between the

DTAF and TC phases at their transition. d Binder cumulant, U, computed as a
function of J across the bicritical point with h = 6 and Δ = 1.3 for a range of system
sizes. Jc = 2.0792 ± 0.0014 is determined from the touching point of the Binder-
cumulant curves. e Collapse of the Binder-cumulant data shown in panel d, from
which we estimate the non-universal critical exponent ν = 0.81 ± 0.05. f Critical
value of the Binder cumulant at the bicritical point, Uc (black circles), shown as a
function of the spin anisotropy. For comparison we show Uc values at the critical
points of the Ashkin-Teller model (ATM, red circles). Themagenta line is a linear fit
which shows that extrapolating Uc to the spin-isotropic limit (Δ = 1) gives good
agreement with the critical value obtained at K/J = 1 in the ATM, where this model
has 4-state Potts universality.
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that the microscopic spin model does not possess. This result is clearly
different fromprevious studies of transitionsbetweenBKTand Isingphases,
such as the well known FFXY [U(1)⊗ Z2] model48, of anisotropic Hei-
senberg spin models49, and of higher symmetries emerging from combined
Ising order parameters12,13. In the FFB, a symmetry analysis reveals an
additional particle-hole symmetry that lies beyond all of these models and
can be used to map the critical system to an effective ATM. The generic
ATM has a wide parameter regime where one line of critical points has
nonuniversal and continuously varying exponents, as we find in the model
with spin anisotropy. In the isotropic limit, where the spin symmetry is
enhanced to U(1), we expect 4-state Potts universality (i.e. an enhanced S4
symmetry), because the Potts point is the only multicritical point with
enhanced symmetry in the ATM50. Precisely how this effective S4 symmetry
emerges in the critical behavior as the spin symmetry is restored to U(1) is a
well defined problem that deserves further exploration in the expanding
field of emergent phenomena.

We foundat lowfields that theBKTphase of theDTAFhasno effect on
the Ising nature of the zero-field critical point. This result is explained by the
fact that the phase mode associated with the BKT transition couples only
marginally to the Ising variable (the triplet density, which is an amplitude
mode), as we discuss in Supplementary Note 3. At fields high enough to
create theTCphase, once again theBKTnature of theDTAFplays no role in
determining the properties, including the emergent Potts universality, of the
multicritical line: our construction of the ATM relied on the three sym-
metries of the system, but not on the presence of qLRO when the spin
anisotropy is removed.

It is instructive to consider our results in the context of the con-
formally invariant field theories (CFTs) describing criticality in two-
dimensional systems51. In CFTs with central charge c < 1, c may only
take discrete values, which characterize critical points of different
universalities, including the Ising transition (c = 1/2). In c ⩾ 1 CFTs, on
the other hand,models with continuously varying critical exponents are
allowed, and this makes the space of these CFTs very rich. In particular,
the family of c = 1CFTs includesmanymodels that can be distinguished
by their compactification radius on a circle or an orbifold52. As exam-
ples, the BKT transition is described by the c = 1 CFT on a torus,
whereas anATMwithK ⩽ J is described by the c = 1CFT on an orbifold,
whose compactification radius changes over a continuous range of
values. Our derivation of the effective model representing the physics of
the FFB makes clear that it is the emergent particle-hole symmetry
which provides the third Z2 symmetry elevating the model to an ATM,
and thus conferring the orbifold character. The effect of the BKT
transition on the ATM is expected to be marginal because it does not
alter either the central charge or the orbifold nature.More generally, the
unexpected emergent 4-state Potts symmetry of the multicritical line
offers the possible realization in frustrated quantummagnetic materials
of a c = 1 orbifold CFT previously discussed in physics only in the
context of fractional quantum Hall states53.

We expect that the multicritical points, emergent critical properties,
and QCEP we find in the FFB model are directly relevant to a number of
dimerized and frustrated quantum magnetic materials. The compound
Ba2CoSi2O6Cl2 was found to have the FFB geometry54, and its magnetic
properties were studied using the FFB model with a strong in-plane spin
anisotropy35. Thus one might anticipate exploring some of the FFB phase
diagram under the combined application of magnetic field and hydrostatic
pressure in this material. The zero-field Ising critical point of the FFB has
been found in the orthogonal-dimer geometry of SrCu2(BO3)2

21, which has
the same quality of ideal frustration. Both the plaquette phase of this system
and the TC phase of the FFB model have broken Z2 symmetry, allowing
finite-temperature order, andhence our results for theTCphase boundaries
should help to interpret the transitions into the plaquette-solid and the
putative plaquette-liquid phases of SrCu2(BO3)2. Of particular concern is
the issue of whether an isolated Ising critical point21 can persist at finite
fields, or whether more complex (multi)critical behavior should set in28, as
we find at the DTAF-TC transition in the FFB. At applied magnetic fields

above 20 T, SrCu2(BO3)2 exhibits a spin-nematic phase24 followed by a
cascade of fractional magnetization-plateau states25, and at higher pressures
is believed to show the AF phase of the SSM above the plaquette phase14.
While these phases lie somewhat beyond those of the FFB model, they do
raise the prospect of multiple opportunities to search for emergent critical
behavior along the associated phase-transition lines55. Thus we expect our
more global results, concerning symmetries and effectivemodels, to provide
a useful foundation for new theoretical and experimental studies of criti-
cality and emergent phenomena in SrCu2(BO3)2.

Methods
iPESS
We study the quantum phase diagram of the FFB model using the PESS
tensor-network method32. The simplex basis allows a highly efficient
encoding of the entanglement in frustrated quantum spin systems, and its
construction is described in Supplementary Note 1. The lattice translation
symmetry is used to work on a spatially infinite system and the ground state
is found by evolution in imaginary time, for which a simple-updatemethod
is sufficient in the FFB. Because three of the four ground states are known
exactly, detailed calculations pushing the limits of the truncation parameter
(D, the tensor bond dimension) are not required to achieve accurate con-
vergence (Supplementary Note 1).

QMC
As noted above, the total absence of a sign problem in the fully frustrated
model (J∥ = J×) makes SSE QMC simulations possible on large systems and
at low temperatures. To extract the maximum accuracy from our simula-
tions, in particular for the determinationof critical points and exponents, we
exploit the finite-size scaling properties of the known phases. Error bars
shown on all QMC data represent the standard deviation (s.d.).

The transition to the TC phase is studied by defining the dimer-triplet
correlation function

Rð k!Þ ¼ L�2
X
ij

ei k
!

�ð r!i� r!jÞ T2
i � 1

� �
T2
j � 1

� �D E
; ð4Þ

from which we obtain the correlation length

ξ ¼ 2π
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðQ!Þ=RðQ!þ δQ

!Þ� 1

q
ð5Þ

and the order parameter

O2 ¼ RðQ!Þ=L2; ð6Þ

where Q
!¼ ðπ; πÞ is the ordering wavevector and δQ

!¼ ð2π=L; 0Þ. We
obtain the critical exponents by establishing the scaling collapse of both
quantities in the forms41

ξ ¼ LFξ;g jgjL1=ν
� �

; ð7Þ

O2 ¼ L2β=νFO;g jgjL1=ν
� �

; ð8Þ

where ∣g∣ denotes the three quantities ∣J− Jc∣, ∣h− hc∣, and ∣t− tc∣ that we
use to effect a systematic approach to the critical points when the other
variables are fixed to their critical values. F denotes a single function that
describes all the data when scaled in this way, allowing a highly accurate
determination of the critical exponents.

To study the BKT transition, we calculate the spin stiffness from the
expression ρs ¼ 1

2 thw2
x þ w2

yi, in which wα ¼
P

bðNþ
b;α � N�

b;αÞ=L with α
denoting the direction x or y and N ±

b;α expressing the number of operators
T ±
iðbÞT

∓
jðbÞ associated with bond b in direction α appearing in the QMC
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operator sequence41. The system size can again be used to effect a scaling
collapse of ρs to the form employed in Fig. 340,41,

ρs ¼
2tKT
π

1þ 1
2 ln Lþ c

	 

Fρ ln L� a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tKT

p� �
; ð9Þ

where a and c are fitting parameters and Fρ(t, L) is a single scaling function.
This collapse allows an accurate determination of the BKT transition
temperature, tKT.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The code that supports the findings of this study is available from the
corresponding authors upon reasonable request.
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