Transient grating spectroscopy on a DyCo$_5$ thin film with femtosecond extreme ultraviolet pulses

Victor Ukleev; Ludmila Leroy; Riccardo Mincigrucci; Dario De Angelis; Danny Fainozzi; Nupur Ninad Khatu; Ettore Paltanin; Laura Foglia; Filippo Bencivenga; Chen Luo; Florian Ruske; Florin Radu; Cristian Svetina; Urs Staub

Struct. Dyn. 11, 025101 (2024)
https://doi.org/10.1063/4.0000223
Transient grating spectroscopy on a DyCo$_5$ thin film with femtosecond extreme ultraviolet pulses

Victor Ukleev,¹,a) Ludmila Leroy,² Riccardo Mincigrucci,³ Dario De Angelis,³ Danny Fainozzi,³ Nupur Ninad Khatu,³,4,5 Ettore Paltanin,⁵ Laura Foglia,⁵ Filippo Bencivenga,⁵ Chen Luo,¹ Florian Ruske,¹ Florin Radu,¹ Cristian Svetina,⁶,7,8 and Urs Staub²,b)

AFFILIATIONS
¹Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
²Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
³Elettra—Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
⁴Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Scientific Campus, Via Torino 155, 30172 Mestre (Venice), Italy
⁵European X-ray Free Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
⁶SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
⁷Madrid Institute for Advanced Studies, IMDEA Nanociencia, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
⁸European XFEL, Holzkoppel, 4, 22869 Schenefeld, Germany

a)Author to whom correspondence should be addressed: victor.ukleev@helmholtz-berlin.de
b)Electronic mail: urs.staub@psi.ch

ABSTRACT
Surface acoustic waves (SAWs) are excited by femtosecond extreme ultraviolet (EUV) transient gratings (TGs) in a room-temperature ferromagnetic DyCo$_5$ alloy. TGs are generated by crossing a pair of EUV pulses from a free electron laser with the wavelength of 20.8 nm matching the Co M-edge, resulting in a SAW wavelength of $\lambda = 44$ nm. Using the pump-probe transient grating scheme in reflection geometry, the excited SAWs could be followed in the time range of ~ 10 to 100 ps in the thin film. Coherent generation of TGs by ultrafast EUV pulses allows to excite SAW in any material and to investigate their couplings to other dynamics, such as spin waves and orbital dynamics. In contrast, we encountered challenges in detecting electronic and magnetic signals, potentially due to the dominance of the larger SAW signal and the weakened reflection signal from underlying layers. A potential solution for the latter challenge involves employing soft x-ray probes, albeit introducing additional complexities associated with the required grazing incidence geometry.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/4.0000223

I. INTRODUCTION
In recent years, significant advancements have been made in transient grating (TG) spectroscopy techniques, leveraging the capabilities of extreme ultraviolet (EUV) and x rays delivered by free-electron lasers (FELs).¹ ¹ Recent developments in FEL photon sources have enabled new approaches for probing ultrafast dynamics at the nanoscale, such as TGs, which was recently used to study thermoelastic and magnetic dynamics in condensed matter systems.² ⁴ ⁸

In EUV TG, coherent FEL beams intersecting at the sample surface give rise to spatially periodic excitation patterns with periods in the tens of nanometer range and time duration on the order of tens of femtoseconds.¹¹ This allows for exploring dynamics at both nanoscale dimensions and ultrafast timescales.

EUV TGs can be used for studying nanoscale magnetic dynamics, provided that the probe is tuned to a magnetic edge, as recently demonstrated in a Gd–Co alloy at the Co M-edge.⁹ This element-specific tool can help in shedding light on the coupling of magnetic and structural dynamics, inherently intertwined through magnetoelastic interactions.¹²

The binary intermetallic DyCo$_5$ alloy belongs to the family of binary rare-earth (RE)–transition metal (TM) compounds, renowned for their magnetic properties that find applications in permanent magnet technologies,¹³ spintronics,¹⁴ and ultrafast optical switching.¹⁵
Particularly, DyCo$_5$ exhibits remarkable magnetic properties, including a high Curie temperature of approximately 970 K, attributable to the large exchange coupling of Co spins, as well as a high coercive field stemming from a considerably high magnetic anisotropy. Such properties arise from the antiferromagnetic coupling between the Dy and Co sub-lattices, resulting in a nontrivial magnetic phase diagram, which includes a compensation point at 174 K and a spin-reorientation transition at approximately $T \sim 360$ K. The presence of a compensation point, a key factor for thermally assisted magnetization switching, making DyCo$_5$, a promising candidate for ultrafast optical manipulation. Moreover, thin films and nanostructures of ferrimagnetic Dy-Co alloys combine magnetic properties, such as perpendicular magnetic anisotropy and room-temperature magnetization, which are relevant for applications in magnetic memory storage.

A. Synthesis

II. MATERIALS AND METHODS

A. X-ray reflectometry

The magnetic moment of the sample was probed utilizing soft x-ray magnetic circular dichroism (XMCD) in the total electron yield (TEY) detection mode. The probing depth of the TEY method extends to a few nanometers from the surface, thereby providing valuable information about the magnetic properties of the sample.

B. X-ray reflectometry

Due to the limited penetration depth of EUV radiation in the material, experiments were performed in reflection geometry, which demands a high-quality (uniform and low roughness) surface of the sample. To assess the surface quality, a characterization of the DyCo$_5$ film was performed using x-ray reflectometry (XRR) (Fig. 1). The XRR measurements were conducted at the x-ray CoreLab facility of the HZB using the PANalytical MPD instrument. The experimental data were obtained in the specular reflection geometry using x rays with a wavelength $\lambda = 1.54$ Å and fitted employing the GenX 3 software for precise assessment of the surface and the interlayer roughness.

C. X-ray magnetic circular dichroism

The magnetic moment of the sample was probed utilizing soft x-ray magnetic circular dichroism (XMCD) in the total electron yield (TEY) detection mode. The probing depth of the TEY method extends to a few nanometers from the surface, thereby providing valuable information about the magnetic properties of the sample.
insights into the surface quality and potential oxidation state of the sample. X-ray absorption spectra (XAS) were acquired with a 77% degree of right-circular polarization using the VEKMAG instrument at BESSY-II, Berlin, Germany. Given that the TG experiment was conducted using EUV radiation at the Co M edge, our focus is limited to the soft x-ray spectroscopy characterization of cobalt. To extract the magnetic contribution from the XAS data, spectra were measured under saturating magnetic fields of $\pm 2 T$ at the Co $L_{2,3}$ edges. The XAS and XMCD spectra are depicted in Fig. 1(c).

The absence of multiplet features in the XAS spectra indicates the metallic nature of the DyCo$_5$ film and the absence of surface oxidation. The XMCD signal was observed at both $L_{2,3}$ edges (bottom panel in Fig. 1), indicating the fully polarized ferromagnetic state of cobalt at room temperature. Employing sum rule analysis on the XMCD data, the extracted spin and orbital magnetic moments of cobalt are found to be $m_s = 1.20(3)\mu_B$ and $m_o = 0.16(1)\mu_B$, respectively. In agreement with the previous study, the net moment of Co at the DyCo$_5$ surface probed by TEY is considerably reduced compared to the bulk of the film ($m_s + m_o \approx 1.6\mu_B$) as seen in transmission and fluorescence XMCD measurements.

D. X-ray transient grating spectroscopy

The TG experiments were conducted at the EIS-TIMER beamline at the FERMI FEL, Trieste, Italy. The experimental configuration is described in Refs. 5 and 36 and schematically depicted in Fig. 2(a), including a variable magnetic field (B) applied to the sample, whose value, was varied in the 0–0.5 T range by adjusting the distance between the sample and a permanent magnet.

Two circularly polarized pump pulses, designated as pump A and pump B in Fig. 2(a), intersected at the sample surface under an angle of $\theta = 27.6^\circ$ to generate an interference pattern with a period of $\Lambda = \lambda/2 \sin(\theta) = 44$ nm, where $\lambda = 20.8$ nm is the excitation wavelength. The time-delayed vertically polarized probe pulse at the same wavelength ($\lambda_{pr} = 20.8$ nm; matching the Co M-edge) was directed onto the sample at an angle of 13°. In this configuration, the vertically polarized beam is mainly sensitive to the out-of-plane magnetization component, which, in DyCo$_5$ films at room temperature, corresponds to the magnetization direction.

\[I(t) \sim (S_0(t) - A \exp\left(-\frac{t}{\tau}\right) \cos(\omega t))^2 \]
\[= S_0(t)^2 + 2S_0(t)A \exp\left(-\frac{t}{\tau}\right) \cos(\omega t) + \frac{1}{2} A^2 \exp\left(-\frac{2t}{\tau}\right) (\cos(2\omega t) + 1). \]

Here, $S_0(t)$ describes the exponential decay of the thermal grating, while A, τ, and $\omega = 2\pi f$ are, respectively, the amplitude, decay time, and angular frequency of the SAW. At $\lambda = 44$ nm, the SAW oscillations most likely persist without decay within a 100 ps timeframe, and the observed signal corresponds to the gradual intensity decline of the thermal grating, modulated by the SAW.

Surprisingly, within the initial 1 ps time window [as illustrated in the inset of Fig. 3(a)], the ultrafast electronic response from cobalt
remains conspicuously absent, as well as the rise of the magnetic response—an observation that contrasts the Gd–Co study conducted in transmission geometry, where electronic and magnetic dynamics are observed within 500 fs after the FEL pulse. This initial response is subsequently followed by a decaying TG signal spanning tens of picoseconds. The magnetic TG signal in the Gd–Co study became evident when comparing data acquired in magnetically saturated and remanent states the magnetic response was only discernible in the former scenario, attributed to the emergence of multiple magnetic domains in zero field. However, in the present study, no significant response to external magnetic fields is observed. In DyCo5, applying a saturation magnetic field of 0.5 T does not cause any noticeable change in dynamics, as shown in Fig. 3(c).

The absence of any magnetic appreciable response in the present EUV study is surprising, since a previous study has demonstrated ultrastark demagnetization via 40 fs infrared (IR) laser pulses with a photon energy of 1.5 eV. At incident laser fluences of a similar magnitude, i.e., 10–15 mJ/cm², IR photons induced 40% and 80% demagnetization of the Co sub-lattice within the first 2 ps. On the other hand, an ultrafast magnetic response to the both IR and EUV pumps was observed in Gd–Co, a system rather similar to DyCo5. The absence of the magnetic TG signal in DyCo5, thus, deserves further discussion. Indeed, it is noteworthy that even a modest increase in the total pump fluence is sufficient to induce the permanent imprint of the grating via radiation damage after about 20 s exposure. Hence, the pump fluence should also be sufficient to induce the change in magnetization.

Assuming that the fluence level was adequate to drive a magnetization grating, the absence of a detectable signal could be due to the experimental geometry. Indeed, the observed backward-diffracted signal arises from both the spatially periodic perturbation of the material’s refractive index, which modulates the EUV reflectivity, and from coherent surface displacements arising from the thermal expansion driven by the thermal grating. The latter contribution is expected to be relatively weaker in experiments conducted in transmission geometry on sample with optimal thickness, since the signal from refractive index modulations increases on crossing the excited thickness of the sample. When the probe resonates with a magnetic edge, refractive index alterations come from electronic population modulation affecting core-hole transitions (electronic grating signal), dichroic component modulation (magnetization grating signal), and density modulation (density grating signal). The latter, featured by longitudinal acoustic phonons but typically weaker due to its dependence on the square of thermal expansion, contrasts with the more pronounced magnetization grating signal, as seen in previous studies. The transmission geometry is, thus, advantageous in removing the competing signal due to the SAWs, making it in capturing the transient magnetic signal compared to reflection geometry, despite the high structural and magnetic quality of our sample. In addition, by taking into account absorption of Pt, DyCo5/DyCo5/Ta at the probe wavelength, the transmission of the corresponding layers are 70%, 22%, and 64%, respectively. The backscattered intensity from vacuum/Pt/DyCo5/DyCo5/Ta, and Ta/Si interfaces are estimated as 2%, 0.98%, 0.016%, and 0.0023% of the intensity upstream the sample, respectively, as we estimate by taking into account reflectivity of each interface and absorption of the incoming and reflected beams. Hence, the observed scattering mainly originates from the Pt/vacuum interface, which is expected to be not sensitive to the magnetic state of DyCo5 when the probe wavelength is away from Pt edges, while intensities from DyCo5/Ta and Ta/Si interfaces are two order of magnitude weaker. Therefore, TG experiments in reflection geometry require not only sub-nm roughness of surface and interfaces for ensuring high reflectivity, but also careful selection of the adjacent layers of the material under study. An alternative approach for isolating in reflection geometry a weak magnetic signal out of a strong SAW signal is to use transient polarization gratings, which is possible by employing a special FEL configuration. Using L-edge soft x-ray energies to detect the magnetic TG signal could mitigate the issue of absorption losses. However, this approach complicates the experimental geometry since substantial soft x-ray reflectivity is only possible at grazing incidence.

IV. CONCLUSION

This paper presents a study of the coherent generation of SAWs within DyCo5 thin films through the utilization of femtosecond EUV FEL pulses in a transient grating geometry. SAWs hold significant promise for applications in spintronics, offering potential avenues for, e.g., coherent domain wall nucleation, topological structure manipulation, and spin current generation.

Despite the high quality of the sample used in our study, we did not observe any electronic or magnetic signals. This could potentially be attributed to the significantly larger signal originating from SAWs.
and the complexities associated with reduces backscattering signal from relevant interfaces within the material. Our findings highlight the challenges encountered when employing EUV TG in reflection geometry, particularly in the context of detecting magnetic dynamics. While this setup potentially expands the applicability of the technique to a wider range of magnetic materials that may not be transparent to EUV radiation, it is essential to carefully consider these factors to ensure the reliable detection of magnetic phenomena. Addressing these challenges will be crucial for advancing our understanding of magnetic dynamics using EUV TG in reflection geometry.

ACKNOWLEDGMENTS

Authors thank FERMI free-electron laser facility for provided beamtime according to the Proposal 20214012. The x-ray spectroscopy experiment was carried out at the beamline PM-2 VEKMAG at BESSY II synchrotron as a part of the Proposal 231-11957. We kindly acknowledge x-ray and correlative microscopy and Spectroscopy CoreLabs of HZB for provided instrumentation and René Guder for his assistance with the sample characterization. We thank C. David, I. Bykova, J. Raabe, R. Abruad, and N. Jaouen for fruitful discussions. This study was supported by the Swiss National Science Foundation (SNSF), Grant Nos. 200021_16550/1, 200021_169017, and 200021_196964 as well as the SNSF National Centers of Competence in Research in Molecular Ultrafast Science and Technology (NCCR MUST-No. 51NF40-183615). The research leading to these results has received funding from LASERLAB-EUROPE (Grant Agreement No. 871124, European Union’s Horizon 2020 research and innovation programme). Authors acknowledge financial support of the VEKMAG end station by the German Federal Ministry for Education and Research (Nos. BMBF 05K10PC2, 05K10WR1, and 05K10E1) by HZB. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 860553.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Victor Ukleev: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (lead); Visualization (lead). Writing – original draft (lead). Ludmila Leroy: Investigation (equal). Riccardo Mincigrucci: Conceptualization (lead); Data curation (equal); Investigation (equal); Validation (equal); Writing – review & editing (equal). Dario De Angelis: Investigation (equal). Danny Fainozzi: Investigation (lead). Ettore Paltanin: Investigation (equal). Laura Foglia: Investigation (equal). Filippo Bencivenga: Formal analysis (equal); Investigation (equal); Validation (equal); Writing – original draft (equal). Chen Luo: Investigation (equal). Florian Ruske: Investigation (equal). Florin Radu: Investigation (equal); Writing – review & editing (equal). Cristian Svetina: Conceptualization (equal); Funding acquisition (equal); Supervision (equal). Urs Staub: Conceptualization (lead); Funding acquisition (lead); Investigation (equal); Supervision (lead); Writing – review & editing (lead).
C. Luo, H. Ryll, C. H. Back, and F. Radu,

A. Kirilyuk, A. V. Kimel, and T. Rasing,

bias systems,

Radu, L. Szunyogh, and U. Nowak,

reorientation transition in ferrimagnetic DyCo$_5$ with ultrafast reversal of antiferromagnetically coupled spins,

C. Luo, H. Ryll, C. H. Back, and F. Radu,

A. Kirilyuk, A. V. Kimel, and T. Rasing,

Ultrafast optical manipulation of magnetic order,

Rev. Mod. Phys. 82, 2731 (2010).

A. Unal, S. Valencia, F. Radu, D. Marchenko, K. Merazzo, M. Vázquez, and J. Sánchez-Barriaga,

Ferrimagnetic DyCo$_5$ nanostructures for bits in heat-assisted magnetic recording,

F. Radu and J. Sánchez-Barriaga,

K. Chen, D. Lott, A. Philipp-Kobs, M. Weigand, C. Luo, and F. Radu,

"Frequency-independent terahertz anomalous hall effect in DyCo$_5$, Co$_2$FeAl, and Gd$_2$Fe$_5$ thin films from DC to 40 THz," Adv. Mater. 33, 2007398 (2021).

A. del Moral, P. Algarabel, and M. Ibarra,

"Magnetoeelastic coupling and spin reorientation in RECo$_5$ uniaxial magnets (RE$

J. Kamarad, Z. Arnold, and M. Ibarra,

P. Puebla, Y. Hwang, S. Maekawa, and Y. Otani,

C. Luo, H. Ryll, C. H. Back, and F. Radu,

A. Glavic and M. Björck,

D. Dillaint and A. Gibaud,

D. Stohr and H. C. Siegmann,

T. Noll and F. Radu et al.,

R. Mincigruci, L. Foglia, D. Naumenko, F. Pedersoli, A. Simoncig, R. Cucini, A. Gessini, M. Kiskinova, G. Kurdi, N. Mahne et al.,

L. Paolasini,

V. Ukleev, M. Burian, S. Gilga, C. Vaz, B. Rössner, D. Fainozzi, G. Seniutinas, A. Kubec, R. Mankowsky, H. T. Lemke et al.,

D. Naumenko, R. Mincigrucci, M. Altissimo, L. Foglia, A. Gessini, G. Kurdi, I. Nikolov, E. Pedersoli, E. Principe, A. Simoncig et al.,

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson,

H. Zhou, A. Talbi, N. Tiercelin, and O. Bou Matar,

O. Kading, H. Skurk, A. Maznev, and E. Matthias,

F. Bencivenga, F. Capotondi, L. Foglia, R. Mincigrucci, and C. Masciovecchio,

A. C. Thompson and D. Vaughan et al.,

L. Foglia, B. Wehinger, G. Perosa, R. Mincigrucci, E. Allaria, F. Armillotta, A. Bynes, R. Cucini, D. De Angelis, G. De Ninno et al.,

L. Foglia, R. Mincigrucci, A. Maznev, G. Baldi, F. Capotondi, F. Caporalletti, R. Comin, D. De Angelis, R. Duncan, D. Fainozzi et al.,

T. Yokouchi, S. Sugimoto, B. Rana, S. Seki, N. Ogawa, S. Kasai, and Y. Otani,

C. Chen, T. Lin, J. Niu, Y. Sun, L. Yang, W. Kang, and N. Lei,

D. Kobayashi, T. Yoshikawa, M. Matsuo, R. Ijichi, S. Maekawa, E. Saitoh, and Y. Nozaki,
