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Abstract 19 
The Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation 20 
monitor (ACSM) mass spectral fingerprints are widely used to determine organic aerosol (OA) 21 
elemental composition and oxidation state, and to quantify OA sources. The OA CO2

+ fragment is22 
among the most important measurements for such analyses. Here, we show that a non-particle 23 
bound CO2

+ signal can arise from reactions on the particle vaporizer and/or ion chamber induced24 
by thermal decomposition products of inorganic salts. In our tests (8 instruments, n=29) 25 
ammonium nitrate (NH4NO3) causes a median CO2

+ interference signal of +3.4% relative to26 
nitrate, and is highly variable among instruments and with measurement history (percentiles P10-27 
90=+0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference 28 
compared to NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 29 
times lower. As the CO2

+ interference is propagated to other mass spectral ions, it affects the30 
calculated OA mass, mass spectra, molecular oxygen-to-carbon (O:C) ratio and f44. The resulting 31 
bias may be trivial for most ambient datasets, but can be significant for aerosol with higher 32 
inorganic fractions (>50%), e.g. at low ambient temperatures, or in laboratory experiments. The 33 
large inter-instrument variation makes it imperative to regularly monitor the extent of this effect 34 
on individual AMS/ACSM systems. 35 
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Introduction 40 

Aerosol climate1 and health2 effects depend on many parameters, including particle size and 41 

chemical composition. Organic aerosol (OA) is often a large fraction of the total ambient aerosol 42 

mass, with highly variable properties and sources.3 Its chemical composition, especially the 43 

oxidation state, is a key parameter for the description of OA volatility4, hygroscopicity5 and 44 

atmospheric processing3. 45 

The Aerodyne aerosol mass spectrometer6-8 (AMS) and the aerosol chemical speciation monitor9, 46 
10 (ACSM) permit simultaneous quantification of ammonium nitrate (NH4NO3), ammonium 47 

sulfate ((NH4)2SO4), ammonium chloride (NH4Cl) and OA mass in sub-micron aerosol in real-48 

time. OA mass spectra provide valuable information on the degree of oxygenation of organic 49 

species and are used extensively in factor analysis to quantify primary vs secondary organic 50 

aerosol sources (SOA).11 SOA is typically captured by one or more oxygenated organic aerosol 51 

(OOA) factors which are characterized by different fractional contribution of the CO2
+ fragment 52 

at m/z 44 (f44) a surrogate for organic acids and therefore aged aerosols.5, 8, 11, 13 The effect of the 53 

CO2
+ fragment is further amplified in total OA mass and molecular oxygen-to-carbon (O:C) 54 

calculations, because it is used to estimate the intensities of several other related OOA fragments, 55 

such as CO+ and H2O+.12, 13 Therefore, the accurate measurement of the CO2
+ fragment is 56 

important for OA quantification, estimations of bulk elemental composition and properties, such 57 

as O:C ratio14 and f44-f43 relationship15, and source apportionment. 58 

AMS/ACSM instruments impact and flash-vaporize a focused particle beam in a high vacuum 59 

onto an inverted cone-shaped porous tungsten vaporizer, typically heated to 600 °C 8, 16 to 60 

generate vapors that can undergo electron ionization and mass spectral classification. When 61 

applied to heterogeneous mixtures of chemical constituents, the flash-vaporization technique may 62 

be sensitive to memory or matrix effects. For example,instrument-to-instrument variability of 63 

especially f44 was recently indicated in an inter-comparison of 14 quadrupole (Q)-ACSMs, 1 high 64 

resolution time-of-flight (HR-ToF)-ACSM and 1 HR-ToF-AMS for ambient winter time aerosol 65 

in Paris.19, 20 The observed variability is interpreted as instrument-dependent degree of pyrolysis 66 

and species dependent evaporation time scales in the samples, and is currently under further 67 

investigations (publication forthcoming). While no matrix effects between inorganic species and 68 

organic/inorganic mixtures were observed in the above mentioned inter-comparison19, 20 and other 69 

studies17, 18, 21, the direct interactions of particles with the vaporizer, and small memory effects 70 
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were reported in the past.16, 21, 22 Therefore, interactions of particles with the vaporizer and its 71 

surrounding ion chamber merit further investigations. Here we assess the effect of inorganic 72 

matrices on measured OA mass spectra. We focus, in particular, on the CO2
+ fragment signal, and 73 

the impact that inorganic salts can have on the determination of OA mass and degree of oxidation 74 

in typical datasets. 75 

Experimental 76 

AMS/ACSM Instruments. 6 HR-ToF-AMS7 (HR1-6), 1 compact-ToF-AMS23 (CToF) and 1 Q-77 

ACSM10 (ACSM), all equipped with inverted cone-shaped porous tungsten vaporizers, were 78 

examined. The HR- and CToF-AMS provide quantitative size-resolved mass spectra of the non-79 

refractory particle components. The particle beam is sampled through an aerodynamic lens and 80 

focused onto the heated porous tungsten vaporizer in high vacuum (10-5 Pa). The non-refractory 81 

particle components flash-vaporize and the resulting gas is ionized by electron ionization (EI) and 82 

classified in a mass spectrometer. We operated the instruments under standard conditions with a 83 

vaporizer temperature (Tvap) of 600 °C unless noted otherwise. Prior to flash-vaporization, the 84 

beam is either alternately blocked (closed) and unblocked (open), yielding particle mass spectra 85 

(MS mode) following subtraction of the two, or modulated by a spinning chopper wheel, yielding 86 

size-resolved spectra (PToF mode). Beam open and closed times are given in Table S1 (SI) for 87 

the conducted experiments; general switching times were 2.5 or 5 s for the HR instruments and 88 

7.5 s for the CToF. Gas phase interferences are further accounted for by subtracting the signal 89 

during measurements of particle free sampling air. The Q-ACSM is limited to integer mass 90 

resolution and does not have a size resolution module, but provides quantitative mass spectra of 91 

the non-refractory aerosol, by alternately measuring the total and the filtered air. ACSM scans 92 

were recorded between m/z 10 and 149 at a scan rate of 200 ms amu-1 and the filter was switched 93 

after each scan, resulting in a switching time of 30 s. All data presented derive from open minus 94 

closed signals. 95 

Experiments. Investigations were performed using laboratory aerosols generated  (a) by 96 

nebulization of solutions, and (b) in smog chamber experiments (α-pinene (AP) SOA and 97 

NH4NO3). Analytical grade chemicals (Sigma-Aldrich, purity at least ≥ 98%) including NH4NO3, 98 

(NH4)2SO4, NH4Cl, sodium nitrate (NaNO3), potassium nitrate (KNO3), calcium nitrate 99 

(Ca(NO3)2), and isotopically labelled ammonium nitrate (NH4N18O3, 95 atom-% 18O), were 100 

studied. Ultra-pure water (18.2 MΩ cm, total organic carbon < 5 ppb, 25°C) was used. a) 101 
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Laboratory aerosol from high purity salts. The salts were dissolved in ultra-pure water and 102 

nebulized in a custom-built nebulizer using synthetic, CO2-free air (N2/O2, 4.6) or argon (5.0) . 103 

The aerosol was dried and either sampled directly by the instruments, or passed through a bipolar 104 

charger and size selected with a differential mobility analyzer before sampling. Blank 105 

measurements with ultra-pure water were conducted identically.  106 

b) Smog chamber (SC) experiments. To study the effect of NH4NO3 when mixed with OA, a 107 

series of experiments were performed in a 7 m3 Teflon film SC: (i) pure α-pinene (AP) SOA 108 

(experiment HR3-ExptAP-1 to 3, Table S1-2), (ii) AP SOA mixed with NH4NO3 (HR3-ExptAP-109 

AN-1 to 6), and (iii) pure NH4NO3 aerosol (HR3-Expt4/5) were investigated. Prior to each 110 

experiment the SC was reduced to a volume of 1 m3, cleaned with O3, water, and UV lights for 1 111 

h, and thereafter flushed with dry clean air for 12 hours. For the AP SOA experiments, the SC 112 

was filled with humid air. Then (i) 30-40 ppb of AP were reacted with 300 ppb O3. To study (ii) 113 

AP SOA mixed with NH4NO3 50 - 400 ppb NH3 (6.0) was injected into the SC after all AP was 114 

reacted, followed by subsequent injections of HNO3 to form internally mixed AP SOA/NH4NO3 115 

particles. The HNO3 was provided by nebulization of a diluted solution. Two experiments were 116 

conducted in which only pure NH4NO3 was formed in situ in the SC (iii). The SC was filled with 117 

humid air. Then, 200 ppb NH3 and nebulized HNO3were injected (HR3-Expt4). In the second 118 

experiment,HNO3 was formed in situ by OH oxidation of NO2 (HR3-Expt5).. 1 ppm NO2 (1.8) 119 

and 300 ppb O3 were injected. Nitrous acid (HONO) was prepared online according to Taira et 120 

al.24, continuously flushed into the SC, and UV lights were turned on. Thereafter, 400 ppb NH3 121 

was injected to form NH4NO3. Particle phase instruments included an HR-ToF-AMS (HR3), a 122 

scanning mobility particle sizer and a condensation particle counter, all placed behind a Nafion 123 

dryer (RH behind dryer below 25%). A PTR-ToF-MS25 was used to measure the concentrations 124 

of AP and d9-butanol, the decay of which is used as an OH tracer.26  125 

Results and Discussion 126 

Non-particle-bound CO2
+ from NH4NO3. AMS/ACSM aerosol mass spectra of NH4NO3 - the 127 

most abundant form of inorganic nitrate in ambient aerosol - show CO2
+ at m/z 44 (exact mass 128 

43.9898), which cannot be explained by the main ions expected from the decomposition and 129 

fragmentation of NH4NO3, i.e. NH+, NH2
+, NH3

+, NO+, NO2
+ and HNO3

+(Fig. 1 and SI). A subset 130 

of tests conducted in argon to minimize the gas phase nitrogen background at m/z 28 reveals that 131 
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CO+ is also observed. Additional unexpected ions were not detected above instrument 132 

background. 133 

The observed CO2
+ signal is directly proportional to the nitrate signal (denoted NO3 to distinguish 134 

from the NO3
+ ion (m/z 62) measured by the AMS/ACSM), which refers to the summed signal of 135 

all ions attributed to NO3 following the standard fragmentation assumptions.12, 13 CO2
+ increases 136 

monotonically with increasing NH4NO3 concentrations (Eq. 1, Fig. S1, CO+ shows similar trends 137 

as CO2
+ but is not presented as only a limited number of tests were conducted in argon The 138 

magnitude of CO2
+ relative to the anion signal is described by the slope k in Eq. 1. If a gas phase 139 

CO2 background or any other constant source of CO2 is not subtracted in this analysis, a non-zero 140 

intercept d is observed.  However, this does not influence the determined k. 141 

CO#$ = 𝑘	anion	signal + d      Eq. 1 142 

To derive k for NH4NO3  the orthogonal distance linear fit is determined from CO2
+ and NO3 143 

signals in nitrate equivalent mass (i.e. using a relative ionization efficiency of RIE=1).8 This is 144 

equivalent to deriving k from ion counts in Hz.  145 

CO2
+ related to NH4NO3 sampling on the vaporizer is observed on all the tested instruments (6 146 

HR, 1 CTOF and 1 ACSM), albeit the magnitude of k varies significantly between the tested 147 

instruments, and for a given instrument as a function of operation history. Our experiments (n=29 148 

across 8 instruments) indicate a median, i.e. 50th percentile P50 of +3.4% (10th and 90th percentiles: 149 

P10-90=+0.4 to +10.2%, Fig. 2a and Fig. S1). While HR4-6 (n=1-2) fall around the P10 estimate, 150 

the ACSM (n=1) falls above P75. A wide spread of k as a function of measurement history is 151 

observed on instruments if monitored over a longer time period (HR1-3 as well as CTOF, for 152 

which data points spanning several years are available). Critically, these results show that an 153 

assumption of a single k for a given instrument or a standard k for all AMS/ACSM instruments is 154 

not warranted (further discussed below and in SI).  155 

 Carbonaceous species (“organic signal”) including CO2
+ (and CO+) are generally detectable in 156 

the instrument background (closed mass spectra) even in the absence of active aerosol sampling. 157 

These signals are due to memory effects21, and the slow release and thermal decomposition of 158 

semi-refractory residues deposited by particles on the 600 °C heated AMS/ACSM vaporizer and 159 

ion chamber walls. These deposited carbonaceous residues may include charred organic carbon 160 

(OC), elemental carbon (EC), and semi-refractory carbonates.  161 
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It is, in addition to contributing to the background signal, released as a consequence of reactions 162 

induced by thermal decomposition products of impinging NH4NO3 particles, leading to the rapid 163 

generation of CO2 presented in the current study. As the instruments are exposed to varying levels 164 

and composition of aerosol over time, k varies with the instruments’ memory. The relatively high 165 

k for the tested ACSM is thereby not surprising, due to longer sampling intervals on the vaporizer 166 

(typically 30 sec) compared to below 5 sec for AMS instruments, which favors memory effects 167 

(Fig. 2, Fig. S1, Fig. S2).  168 

A contribution of particle-bound carbon or CO2 in the aerosol source in our experiments is ruled 169 

out by using high purity chemicals, water and gases, along with simultaneous measurements on 170 

multiple instruments, and sampling of high purity NH4NO3 synthesized from gas phase precursors 171 

in a SC.  However, other sources of carbon in the system might be impurities in the vaporizer 172 

material (99.9% porous tungsten, SI) itself as well as carbided tungsten filaments.27 173 

Oxidation of organic carbonaceous residues to CO and CO2 by HNO3/NOx is well known in mass 174 

spectrometry research of NO2 and HNO3.27, 28 Soot oxidation research and the automobile 175 

industry make use of carbon oxidation under high NOx conditions.29-32 For instance, high NOx 176 

levels and enhanced temperatures in the vehicle exhaust are used to facilitate regeneration of 177 

diesel particulate filters and to burn off carbonaceous deposits to CO2. On the other hand, 178 

(elemental) carbon is used as a catalyst for the selective catalytic reduction of NOx to N2.33-35 179 

Likely, similar conditions drive the CO and CO2 formation inside the ion chamber, when 180 

NH4NO3 or other nitrate salts decompose to HNO3, NO2 and NO (NOx) on the 600 °C heated 181 

AMS/ACSM vaporizer. Also the observed CO+/CO2
+ ratio around 1 (note: EI impact CO+/CO2

+ 182 

ratio36=0.1) is in line with literature reports on soot oxidation with nitrogen oxides (0.2-1).37 The 183 

fact that other small oxygenated fragments are not observed to similar extents is likely a result of 184 

induced surface oxidation of larger molecules The linear relationship observed between the CO2
+ 185 

and NO3 signal, and its evenly distributed fit residuals as a function of NO3 concentration (Fig. 186 

S1f), imply that the CO2 production follows first order reaction kinetics with respect to NO3, 187 

where the actual oxidants (HNO3/NOx) are in turn proportional to NO3.   188 

Isotopically labelled ammonium nitrate (NH4N18O3, 95 atom-% 18O) was used to study the source 189 

of oxygen in the observed CO2
+. The replacement of the 16O isotope by an 18O isotope in the 190 

NH4NO3 reduced the C16O2
+ observed at nominal m/z 44 at least by 40-70% (Fig. 2b). 191 

Contributions to C16O18O+
 (m/z 45.9940) and C18O2

+
 (m/z 47.9983) could not be directly 192 

estimated, due to peak overlap and thereby potential contributions of N16O2
+ (m/z 45.9929) and 193 



8 

 

N16O18O+ (m/z 47.9971). The reduction at m/z 44 confirms our hypothesis that a significant part of 194 

the CO2
+ arises from the reactions of HNO3/NOx with deposited refractory carbonaceous matter 195 

(charred OC or genuine EC). The remaining C16O2
+ (30-60%) in these labelled experiments can 196 

arise from oxygen in the previously deposited carbonaceous material (e.g. OC and oxidized EC). 197 

Alternatively, deposited carbonates may release CO2 upon reaction with HNO3/NOx,  contributing 198 

to C16O2
+ in these experiments, and to CO2 in normal operation (e.g. CO2 release from Ca(NO3)2 199 

upon reaction with HNO3).38 Likewise,16O impurities in the tungsten vaporizer material could 200 

contribute to the remaining C16O2. Drewnick et al.16 showed recently that the contribution of gas 201 

phase 16O2 for vaporizer-oxidation processes is negligible. Oxygen however facilitates carbon 202 

oxidation by NOx
39 and the presence of gaseous O2 in the instrument background during NH4NO3 203 

sampling might therefore be another contributor to CO2
+.  204 

Non-particle-bound CO2
+ from other salts. Non-particle-bound CO2

+ is also induced by other 205 

salts, which decompose and give reactive species upon heating on the AMS/ACSM vaporizer 206 

(Fig. 2b). While k of CO2
+ vs NO3 is higher for KNO3 (×2.5-4), Ca(NO3)2 (×4.5) and NaNO3 207 

(×3.5-11.5) on the tested instruments when compared to k of NH4NO3, k of CO2
+ vs SO4 is 3-10 208 

times lower for (NH4)2SO4 (×0.10-0.30). NH4Cl did, as expected, not induce CO2
+ formation in 209 

our experiments. Lower levels of CO2
+ from (NH4)2SO4 compared to that from NH4NO3 may 210 

result from a lower oxidative power of sulfur oxides compared to nitrogen oxides. Decomposition 211 

and fragmentation of the salts are presented in SI. Higher k for KNO3, Ca(NO3)2 and NaNO3 212 

compared to that from NH4NO3 may result from semi-refractive behavior of those salts at 600 °C 213 

and the thereby enhanced interaction of reactive species (i.e. NO/NO2, as HNO3 does not form) 214 

when they thermally decompose (see discussion in SI).  215 

Influence of aerosol properties on the interference. As discussed above, we show that k is 216 

independent of the NH4NO3 concentration (Fig. S1f). Further, it is independent of particle 217 

diameter (Fig. 3a). For mixed particles of AP SOA with NH4NO3, k, shows a similar magnitude 218 

as induced by pure NH4NO3 (Fig. 3b). This indicates that there are no significant additional 219 

matrix effects on the production of CO2
+ for the system looked at (AP SOA/NH4NO3). We 220 

suggest therefore, that k is not affected by simultaneous presence of carbonaceous particles. Note 221 

that the intercept in Fig. 3b represents the particulate CO2
+ contained in AP SOA (at NH4NO3=0).  222 

Impact on organic aerosol mass and chemical composition measurements. To date, 223 

AMS/ACSM analyses have not considered the possibility of non-particle-bound CO2
+ signal 224 

formed on the instrument vaporizer, and have instead classified this as particle-bound organic 225 
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mass. This can result in an overestimation of the organic mass at m/z 44 (Org44). Additionally, 226 

CO2
+-derived ion intensities and mass at m/z 28 (CO+), 18 (H2O+), 17 (OH+), 16 (O+) and the 227 

associated isotopes are overestimated, when using standard fragmentation assumptions such as 228 

Org28=Org44*1, Org18=Org44*0.225, Org17=Org44*0.05625 and Org16=Org44*0.009.12, 13  229 

As noted above, the NH4NO3 induced non-particle-bound CO2
+ affects directly Org44, and 230 

indirectly also Org18, Org28, to smaller extent Org17 and Org16, and the associated isotopes, in 231 

standard data analysis routines.12, 13 An example for an impacted data set is illustrated in Fig. 4, 232 

showing SOA formed from AP, and subsequently mixed with NH4NO3. SOA is formed from the 233 

reaction of AP with O3 and OH radicals. The formed OA mass decays after reaching its peak due 234 

to particle wall losses. Subsequent injections of NH3 and HNO3 lead to mixing of OA with 235 

NH4NO3, introducing primarily an increase in the m/z 44 signal due to NH4NO3 induced non-236 

particle-bound CO2
+. The total OA mass, the mass spectrum and the f44-f43 relationships are 237 

biased. Enhancements in other fragments, such as m/z 43 in these experiments, are assigned to 238 

collection efficiency changes due to mixing with NH4NO3 (detailed in the SI). 239 

The magnitude of the bias introduced in ambient or laboratory data sets depends on multiple 240 

parameters. The (i) vaporizer’s measurement history and (ii) the inorganic salts present (NH4NO3, 241 

(NH4)2SO4, etc.) directly affect the relationship k. The (iii) mixing ratio of the inorganic salt to 242 

OA mass (e.g. NO3/OA for NH4NO3) and (iv) the true f44, O:C and H:C determine the extent of 243 

bias that a certain k will cause.  244 

Fig. 5 presents estimations of the induced bias on (a) O:C and (b) H:C ratios, (c) f44, and (d) OA 245 

mass for ambient (covering both summer and winter conditions) and laboratory data sets, using 246 

the percentiles of k (CO2
+ vs NO3) for NH4NO3 as determined on the investigated instruments 247 

(Fig. 2a, percentiles: P10=+0.004, P25=+0.019, P50=+0.034, P75=+0.064, P90=+0.102). Note that 248 

these values reflect the specific instruments tested and should be interpreted as case studies rather 249 

than a statistically significant assessment of AMS/ACSM performance; individual instrument 250 

performance varies widely.  251 

We assume three scenarios for the true particle composition in terms of O:C and H:C (see  Fig. 5 252 

caption). The associated f44 and organic matter (OM) / organic carbon (OC) content are estimated 253 

based on Canagaratna et al.14. Equations in SI.  254 

Ratios of NH4NO3 (and other inorganic salts) to OA vary spatially and with diurnal or seasonal 255 

changes, as well as with variations in source activities. For example, high NH4NO3 contributions 256 
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to the total sub-micron aerosol have been reported during winter in Europe with NO3/OA ~1.2 vs 257 

0.1 for summer3 40-44, and for  combustion emission studies, with ratios up to 10.46, 47 Therefore, 258 

we span a NO3/OA ratio of 0.1 – 10 in Fig. 5. Different ratios may also represent spatial 259 

differences between e.g. ammonia (NH3) rich and poor regions.  260 

Fig. 5 shows that for NO3/OA=1 and our determined median NH4NO3 instrument interference 261 

(k=3.4%) the measured f44 would be overestimated by +20% at a true f44=0.10, by +44% for 262 

f44=0.05 and by +12% for f44= 0.14. The median bias in f44 is not large enough to significantly 263 

affect the classification of the oxidized organic material as SV- and LV-OOA based on Ng et al.15, 264 
48 (SV-OOA: f44=0.07±0.04, O:C=0.35±0.14; LV-OOA: f44=0.17±0.04, O:C=0.73±0.14). 265 

However, instruments with k in our P10-90 range can lead to f44 biases  from +1.6% to +117%. The 266 

higher end can shift the classification of oxidized aerosol from SV- to LV-OOA and also 267 

significantly bias O:C values for HR-AMS, and also when estimated from f44 in unit mass 268 

resolution AMS/ACSM spectra12,14. For the other parameters, the bias observed for a P50 k is 269 

estimated to be +7.8% (P10-90=+0.7-+37%) for O:C, +6.2% (P10-90=+0.8-+18%) for OA mass, and 270 

-3.3% (P10-90 -0.4 to -10.4%) for H:C. The P50 biases are mostly within the uncertainties for O:C 271 

and H:C estimations by Canagaratna et al.14 (28% and 13% respectively) and for OA mass by 272 

Bahreini et al. (38%)49.Combustion emissions yield a complex mix of organic and inorganic 273 

components in the submicron particle phase. The inorganic material is either emitted directly (ash 274 

components in solid fuel combustion), or formed via secondary processes (for instance NH4NO3 275 

and (NH4)2SO4). As example, recent gasoline vehicles are equipped with three-way catalysts, 276 

which can emit NH3, due to over-reduction of NOx in the exhaust.50, 51 Upon ageing, particulate 277 

NH4NO3 is formed as a secondary compound, and may by far exceed the formation of SOA. 278 

Ratios up to 10 and more NO3/OA have been observed when testing gasoline vehicle exhaust in 279 

smog chambers.46, 47 At an NO3/OA=5, , a P50 k results in a bias of +82% on the f44 (P10-90=+7.8 to 280 

~ +360%), along with a P50=+31% bias for the OA mass (P10-90=+4.0-+92%), and +34% on the 281 

O:C (+4-+133%). This would shift a true O:C=0.50 to O:C=0.67. In fact, unexpectedly high O:C 282 

ratios of 0.7 and higher have been previously reported for vehicle emission aging studies.45 A 283 

maximum bias on the H:C under these mixing conditions is -37% (P90).  284 

Sulfuric acid and (NH4)2SO4 are formed in emission plumes from coal combustion or marine fuel 285 

combustion in ship engines, and may be present at relatively high concentrations under those 286 

conditions. (NH4)2SO4 is also frequently used as seed aerosol in smog chamber experiments. An 287 

estimated bias on f44 from (NH4)2SO4 interference at relevant SO4/OA ratios for ambient 288 
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observations (0.5-2)3, 52 spans from +1.6% and +23% at a P50 interference for k (CO2
+ vs 289 

SO4)=0.007. The upper estimation at SO4/OA=2 (P90) is +63%. The respective P90 bias is +9.2% 290 

for OA mass, +19% on the O:C and -5.5% on the H:C ratio (Fig. S5).  291 

During measurements of ambient aerosol, NH4NO3 and (NH4)2SO4 are the dominant inorganic 292 

species detected with AMS/ACSM.3 Other salts (NaNO3, KNO3, Ca(NO3)2) with enhanced 293 

interference k under standard measurement conditions can introduce significant biases already at 294 

lower mixing ratios and may be relevant in particular environments. Examples are areas with 295 

marine aerosols, when NaCl partially or fully reacts with NOx/HNO3 to form NaNO3. Such 296 

particles are mostly in the super micron mode and are sampled very inefficiently by the 297 

AMS/ACSM.53 However, the presence of NaNO3 as well as inorganic dust containing nitrate and 298 

sulfate salts may become more critical when a PM2.5 inlet lens54 is used in combination with the 299 

AMS. NaNO3 or similar salts may also be used when studying effects of mixing organic and 300 

inorganic aerosol mass, and could lead to biases as well in laboratory studies, especially if 301 

relatively low OA concentrations were used. Ash components from solid fuel combustion may 302 

include KNO3 or potassium sulfate (K2SO4).55, 56  303 

Finally, CO+ (m/z 28) cannot be detected directly under typical operating conditions due to 304 

interference from the N2
+ signal. Therefore, as long as the CO+ signal is estimated from CO2

+, as 305 

in the standard data analysis routine, additional non-particle-bound CO+ does not cause an 306 

additional interference in the mass spectra and derived parameters. In laboratory experiments 307 

conducted in a different atmosphere (e.g. argon) that allows estimating e.g. CO+ from the raw 308 

mass spectrum, however, a potential influence on other signals needs to be accounted for. 309 

Implications. NH4NO3 and other nitrate salts, as well as (NH4)2SO4, can lead to formation of CO 310 

and CO2 on the Aerodyne AMS/ACSM vaporizers, as they thermally decompose to reactive 311 

species that can induce release of (otherwise refractory) carbonaceous material already present in 312 

the instrument. The observed interference introduces biases in OA mass and chemical 313 

composition measurements, particularly regarding the aerosol oxygen content (f44, O:C).  314 

The bias is a function of the interference k and the particle composition (inorganic fraction and 315 

oxidation state). Based on the magnitude k of the interference estimated from our tests on 8 316 

instruments (6 HR, 1 CTOF and 1 ACSM), which yielded a median of +3.4% across all tests, we 317 

estimate that the bias will be small (less than a few percent) for most ambient data. This is 318 

supported by the fact that NH4NO3 fractions are typically low compared to OA, and (NH4)2SO4 319 
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(globally equal to OA) is less efficient in CO2 formation. However, the bias can become 320 

significant in particular environments (chamber experiments with inorganic seed aerosols or 321 

gasoline vehicle exhaust ageing), periods of high inorganic mass fractions (e.g. European winter), 322 

specific ambient research questions (e.g. investigating temporal or spatial different aerosol 323 

compositions), or for instruments with poor vaporizer conditions. For example a k above our 324 

determined median 3.4% at NO3/OA=1, or a k of 10.2% at NO3/OA = 0.1-0.2 cause biases that 325 

exceed limits to impact f44-f43-derived SV- and LV-OOA splits15, 48, or the uncertainties for O:C, 326 

H:C and OA mass estimations. 14,49 Therefore, the interference need to be calibrated for in the 327 

analyses and interpretation of the data.  328 

We suggest including the introduced bias in the error estimation, after careful determination of 329 

the relationship k for the relevant salts. For sampling conditions with large bias, data should be 330 

corrected by subtracting the interference signal. An example on how to do this by linking k to the 331 

inorganic signal using the AMS/ACSM standard data analysis procedures and fragmentation table 332 

is provided in SI.  333 

As k is not constant across different instruments and will also vary over measurement time for a 334 

given instrument depending on the level of exposure to aerosol and its composition, careful and 335 

frequent determination of the relationship k between the CO2
+ and anion signal are crucial. This 336 

should be done with aerosol generated under clean conditions and with typical instrument settings 337 

used for data collection. The standard calibrations regularly performed for the determination of 338 

NO3 ionization efficiency and NH4 and SO4 relative ionization efficiency offer such an 339 

opportunity. 340 

Previous interpretations of OA oxygen content and related chemical and physical aerosol 341 

properties that were made based on (i) simple comparison of f44- f43 or (ii) AMS/ACSM derived 342 

O:C and H:C, as well the (iii) interpretation of the AMS/ACSM m/z 44 signal as organic acid 343 

derived, need to be discussed with precaution by taking into account the possible impact of the 344 

interference. Calibration mass spectra from each experiment can be used to retrospectively 345 

diagnose k for a given instrument and time period. 346 
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Figures 575 

 576 

Figure 1. Observation of non-particle-bound CO2
+ and CO+ from NH4NO3 sampling.  (a) HR-577 

ToF-AMS mass spectrum of high purity NH4NO3 particles formed in a smog chamber from HNO3 578 
and NH3 using standard fragmentation assumptions 12 ,  13  (HR3-Expt5):  m/z  15 (NH+),  16 (NH2

+),  17 579 
(NH3

+),  30 (NO+),  46 (NO2
+) and 63 (HNO3

+) are the main ions observed from NH4NO3 580 
decomposition and fragmentation. Standard fragmentation assumptions are applied, i .e.  N+ (m/z  14) 581 
is assigned based on NO+ and NO2

+. CO2
+ is  observed at nominal m/z  44; organic m/z  18 (H2O+) 582 

and 28 (CO+) are assigned based on CO2
+.12 ,  13  C+ (m/z  12) is  a measured EI fragment of CO2

+. (b) 583 
CO2

+ (nitrate eq. mass,  RIE=1) and Org44 as well  as the derived organic mass (standard 584 
fragmentation assumptions: Org28=Org44*1, Org18=Org44*0.225, Org17=Org44*0.05625 and 585 
Org16=Org44*0.009, gas phase CO2 correction applied, RIE=1.4) scale proportionally with the NO3 586 
signal (RIE=1). Orthogonal distance linear fi ts  are applied. (c) CO2

+ signal as seen when particle 587 
beam is “open”, “closed” and the calculated “open-closed” difference peak. Data were collected in 588 
synthetic air  (N2/O2, free of gas phase CO2) on instrument HR3. (d) CO+ signal during NH4NO3 589 
measurements performed in argon on instrument HR1. The N2 signal arises from residual gas phase 590 
N2 in the instrument background.  591 

 592 
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 593 

 594 

Figure 2. Variability in k.  (a)  The relationship k  of CO2
+ or m/z  44 and NO3 signal (Hz or nitrate 595 

eq. mass, RIE=1) from NH4NO3 on 6 HR-ToF-AMS (HR1-6),  1 C-ToF-AMS and 1 Q-ACSM. The 596 
respective statistical parameters (median (i .e.  50 th percentile,  P50),  10th,  25th,  75th,  and 90th 597 
percentile and average are given in the legend. The experiment date (YYYY/MM) is indicated on 598 
the axis labels.  Experiment details and orthogonal distance linear fi ts  are presented in Table S1 599 
and Fig. S1. (b)  Enhancement of k of CO2

+ at  m/z  44 vs the respective anion, i .e.  NO3 signal 600 
according to the summed signal of all  ions attributed to NO3 for all  nitrate salts ,  SO4 signal 601 
according to the summed signal of all  ions attributed to SO4 for (NH4)2SO4

12 ,  13  (RIE(SO4)=1, 602 
RIE(NO3)=1),  relative to k  from NH4NO3 (experiments performed on HR1-3 and ACSM).  603 
Measurements were typically performed in CO2-free synthetic air  (N2/O2).  All  salts  are tested at a 604 
vaporizer temperature of 600 °C, which is the typical sett ing during standard operation. Note, that 605 
KNO3, NaNO3 and Ca(NO3)2 do not fully vaporize at  600°C (see discussion in SI).  606 

 607 

  608 
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 609 

Figure 3. Effect of particle diameter and mixing state.  (a)  CO2
+

 signal induced at different 610 
NH4NO3 particle diameter (HR1-Expt A, dm=400 nm vs 100 nm, HR3-Expt A, dm=400 vs 200 nm, 611 
HR3-Expt B, dm=400 vs 600 nm) (b)  CO2

+ signal from pure NH4NO3 particles (average 612 
k=0.023±0.005) from nebulized salt  solutions (HR3-Expt1,2,3) and generated in-situ in a SC from 613 
gas phase precursors (HR3-Expt4 and 5) vs internally mixed particles of α-pinene (AP) SOA and 614 
NH4NO3 (average k=0.024±0.007) (mixing state is  given in SI) formed in a SC; estimated CO2

+ 615 
enhancements based on changed CE are discussed in SI for mixed particles).  Note that the intercept 616 
in Fig. 3b represents the particulate CO2

+ contained in AP SOA (at NH4NO3=0). The reader is  also 617 
referred to Fig. 4 for a typical SC experiment yielding the data in Fig. 3b. All  data are presented as 618 
nitrate eq. mass,  i .e.  RIE=1.  619 
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 622 

Figure 4. α-pinene SOA at different ratios with NH4NO3 (a) Reference experiment HR3-ExptAP-623 
2 w/o NH4NO3.  (b) Smog chamber experiment HR3-ExptAP-AN-5 (k=0.025) (RIE=1.4 for OA 624 
signals Org (organic),  Org44  (organic mass at  m/z  44, i .e.  CO2

+),  Org43 (organic mass at  m/z  43, i .e.  625 
C2H3O+) and RIE=1.1 for NO3).  Instrument sett ings and experiment conditions (AP and oxidant 626 
concentrations) are given in Table S1. (c-d) Average mass spectrum with NH4NO3 at t=6h 627 

compared to a reference AP SOA experiment w/o NH4NO3 (HR3-ExptAP-2).  (e) f44-f43 triangle 628 
plots15 for AP SOA experiments with NH4NO3 at  NO3/OA ratios of 1.7,  3.3 and 6.7 compared to 629 
reference AP SOA experiments w/o NH4NO3 (HR3-ExptAP-2).  630 

 631 
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Figure 5. Bias 632 
estimation for the NH4NO3 induced interference on the (a) Oxygen-to-Carbon (O:C) and (b) 633 
Hydrogen-to-Carbon ratio (H:C), (c) fraction of organic m/z  44 to the total organic mass (f44) ,  634 
and (d) OA mass. Percentiles (P10-90)  for k  are based on Fig. 2a. The bias estimation assumes 635 
three scenarios for the true particle composition: ( i)  O:C=0.30, ( i i)  O:C=0.50, ( i i i)  O:C=0.70, with 636 
H:C 1.5, and f44 and OM/OC based on Canagaratna et  al .14 ( f44=0.051, 0.098, 0.144; OM/OC=1.56, 637 
1.82, 2.07).  Standard fragmentation assumptions12 ,  13  and RIE=1.4 for OA mass and 1.1 for NO3 638 
mass are applied when accounting for interferences on m/z  18 (H2O+) and 28 (CO+) as well  as m/z  639 
17 (OH+) and m/z  16 (O+).  Isotopes are not taken into account.  The mixing ratio of NO3 from 640 
NH4NO3 to OA is 0.1-1 for ambient data including winter t imes 3 ,  4 0 - 4 4  and 1-10 for e.g.  studies 641 
investigating gasoline exhaust ageing 4 6 ,  4 7  .  642 
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