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An automated cluster algorithm is described, applicable to any image where a

signal is to be analysed. The algorithm is employed in the context of surface

X-ray diffraction data and extended to automate the data reduction process,

which at present limits both the lead time to and the reliability of the retrieved

structural information. A detailed evaluation of the constraints used to

automate surface X-ray diffraction data analysis is provided. To overcome

limitations of the algorithm and the experiment itself in certain geometries, the

full field of view of area detectors is exploited to obtain orders of magnitude

improvements in data collection. The method extends the surface X-ray

diffraction technique to new systems and highlights the often archaic approach

to the analysis of data collected with a two-dimensional detector.

1. Introduction
The increased brightness of X-ray sources has led to the rapid

development of two-dimensional pixel detectors (Brönnimann

et al., 2003; Team, 2010), resulting in a significant increase in

data volume. The potential of the additional information

measured (Mariager et al., 2009; Schlepütz et al., 2011) is often

overlooked, limiting the impact of the science and the avail-

ability of beamtime to others, and at significant cost to the

facilities themselves. Here, we demonstrate an automated

approach to data extraction, coined the ‘cluster method’, and

several methods to improve data analysis related to surface

X-ray diffraction (SXRD).

SXRD has seen a renaissance in the past decade as reliable

structure factors can now be measured with a single exposure

of a two-dimensional detector (Schlepütz et al., 2005). The

ever improving sources, endstations and collection regimes,

such as trajectory scanning, generate ever increasing volumes

of data (Rivers, 2007). At present, intensities (the measured

intensity being the modulus of the structure factor squared,

I ¼ jFj2) with sufficient statistics to reconstruct the electron

density of the diffracting surface can be acquired in less than

24 h. The main bottleneck of SXRD begins at the structure-

factor-extraction stage. Present extraction methods are

entirely manual and are highly labour intensive. The subse-

quent phasing of the data is also problematic, but will not be

covered here (Bjoerck et al., 2008; Yacoby et al., 2003; Saldin

et al., 2001). It is common for the lead time from measurement

to atomic structure to be of the order of a year or more. Errors

associated with the extraction of the measured data propagate

through the analysis; therefore their minimization is critical to

its success. Automation of the extraction process brings two

distinct advantages. Firstly, as the number of measured

structure factors moves towards the tens of thousands as more

data-hungry techniques are developed (Pauli et al., 2012), the

accumulation of human error complicates or even voids the

subsequent analysis. Secondly, automation has the potential to

produce reliable structure factors in real time, improving

experiment efficiency, significantly reducing the associated

lead time to results and increasing the reliability of the

obtained data.

Several automated signal identification methods for

diffraction peaks are presented in the literature. In the

simplest case, a box is drawn around the predicted location of

the peak and some combination of the pixels on the perimeter

of the box is used to estimate the background. However, in

practice the peak shapes on the detector are rarely uniform,

and thus the box includes background pixels in the integration,

increasing statistical errors, particularly for weak reflections.

Two different approaches have resulted: firstly, a priori

information about the peak shape is calculated theoretically or

learned from other peaks (Ford, 1974; Kabsch, 1988; Ross-

mann, 1979; Roth & Lewit-Bentley, 1982; Schoenborn, 1983;

Lehmann & Larsen, 1974; Wilkinson et al., 1988), and

secondly, an objective approach is taken, where based on a

background approximation the peak is defined by an intensity

threshold (Sjölin & Wlodawer, 1981; Wlodawer & Sjölin, 1982;

Filhol et al., 1983). A move towards individual peak optimi-

zation was made with Gaussian curve fitting to pixel–intensity

histograms (Spencer & Kossiakoff, 1980) and furthered by

Bolotovsky et al. (1995), who applied a statistical approach

whereby a ‘seed’ at some pre-defined position, set by the

crystal orientation matrix, is slowly expanded until the

‘skewness’ of the background pixel–intensity distribution is

zero, i.e. a Poisson-like distribution. Since then, to our

knowledge, no further generic methods for signal identifica-

tion have been proposed in the diffraction field.

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576713030203&domain=pdf&date_stamp=2014-01-08


This article will provide an overview of the problems

associated with SXRD signal analysis, describe the ‘cluster

method’ and detail its application in an automated approach.

A further discussion will outline a method to exploit the full

two-dimensional detector image using a traditional scanning

mode.

2. Background

2.1. Crystal truncation rods

A typical SXRD measurement samples the continuous

distribution of intensity in reciprocal space found between

Bragg peaks perpendicular to the surface, the so-called crystal

truncation rods (CTRs). The shape of the signal on the

detector corresponds to a convolution of the shape of the

incident X-ray beam on the sample and the surface quality

(mosaicity, defects, miscuts etc.). By rotating the detector the

footprint’s orientation can be held constant, although its size

can vary (Schlepütz et al., 2011). This continuity between

consecutive data points, assuming a large oversampling ratio,

paves the way for an automated approach by tracking the

signal, which changes in shape in a slow and predictable way.

A typical CTR is shown in Fig. 1(a). The measured signal

consists of the structure factor associated with a crystalline

sample plus a diffuse background due to defects, thermal

diffuse scattering or sometimes spurious diffraction sources,

such as the bulk substrate, beamline components or sample

environment. At certain l positions (reciprocal lattice units,

r.l.u.) along the rod, one observes the diffuse background

associated with defects in the sample (Fig. 1b); the background

generated by the broad tails of the substrate Bragg peak

(Fig. 1c); and the very weak signal observed on the rod at the

minima between two Laue oscillations (d). An example

extraction of image (c) is shown in Fig. 1(e); the fitted back-

ground is shown in Fig. 1( f) as a blue two-dimensional surface.

In addition to a typical CTR signal we highlight the need to

treat ‘low-l’ data with a different set of parameters, as the

intersection of the Ewald sphere here with the CTR leads to

an elongation of the footprint (Vlieg, 1997), at which point the

open-slit geometry breaks down and a rocking scan

measurement approach must be employed. The term ‘low l’ is

energy and sampling-period dependent. Typically we

approach any scatter below l = 0.5 in this manner, even for

high-quality metal-oxide crystals. This approach is often time

consuming and therefore not followed. However, a simple

adjustment of the detector orientation and the extraction

method can be used to obtain reliable data, should detector

rotation be available.

2.2. Diffraction signals

Three main factors contribute to the size and shape of the

signal and the background observed on a two-dimensional

detector: the beamline, the sample and its environment.

Beamlines are highly tunable, and the footprint of the beam

on the sample can be tailored to the experiment. In the ideal

case, the diffracted signal is spread across as many pixels as

possible to improve the efficiency of measurements, decrease

the dependency on a few illuminated pixels and gain a better

understanding of anomalous signals by improving the resolu-

tion of the diffraction features.1
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Figure 1
Examples of diffraction signal observed at different regions of (a) a CTR: (b) far from a Bragg peak, (c) close to a Bragg peak, (d) very weak signal, (e)
signal region of interest (sROI, white box) and background region of interest (bROI, red box) of (c), and ( f ) surface plots of sROI and bROI. (b)–(e)
have a logarithmic scale, scaled to the maximum of the signal, to enhance the background features. The black pixels were deemed unreliable after
flatfield correction.

1 SXRD experiments are operated on both undulator and wiggler beamlines;
the optics employed after the source tune the size of the illuminating beam
which, coupled with the geometry, defines the size of the signal on the
detector.



The physical size of the portion of the sample responsible

for a diffraction peak determines its shape (reciprocal) and

distribution (strain). The quality of the surface is paramount:

mosaicity smears the signal out; defects in the substrate

contribute to the background; and miscuts of the surface with

respect to the nominal crystallographic plane lead to splitting

of the CTR signal (Munkholm & Brennan, 1999).

SXRD measurements are normally made in vacuum to

minimize radiation damage of the surface and/or interface

region. Such measurements are usually carried out under a

beryllium dome, which, although a weak scatterer, contributes

significantly to the background in the form of an overall

diffuse signal. Debye–Scherrer rings originating from the

beryllium dome or its mount intersect intermittently with

measured signals; at anti-Bragg positions they can be brighter

than the signal being sought. The increased brightness avail-

able from undulator sources reduces powder rings to textured

scatter from individual crystallites, making them harder to

subtract. A solution implemented at many synchrotrons is a

Kapton dome with a helium atmosphere, typically improving

�5% of the measured data points. The drawback of this

method is that Kossel lines (Kossel et al., 1935) are now

measurable, and these are significantly harder to fit as they

cannot be approximated by a two-dimensional line of intensity

with a Gaussian profile across its width when many Kossel

lines are present. Both options require consideration when

applying an automated approach. Fluorescence can also

contribute to the background, depending on the detector type

and any illuminated material with a line of sight to the

detector itself.

2.3. Analysing signals

The approach used to analyse data manually has been

detailed comprehensively elsewhere (Schlepütz, 2009),

including the MATLAB (MathWorks, 2012) graphical user

interface (GUI) used in the analysis, named Scananalysis. Two

regions representative of the signal and the background are

selected; a fit to the background then allows the structure

factor to be extracted. Depending on the number of structure

factors to extract this process can take several weeks and is

often completed independently multiple times to test consis-

tency. Some examples of signal that is difficult to analyse are

shown in Fig. 2. The more complicated the shape of the signal,

the more time consuming it is to extract the data, and the more

likely the user’s interpretation of the signal boundary will vary.

Each data point is assigned a measure of quality, either ‘g’ood,

‘b’ad or ‘d’ubious, a terminology which will be employed in

the automation approach to identify points ‘d’ that need to be

revised manually a posteriori. Traditional signal-to-noise ratio

methods used in standard signal analysis, such as the Rose

criterion, do not apply here, as the signal is spatially non-

uniform. Our approach instead applies known physical

constraints to identify the signal and continuity between

consecutive data points to guide the algorithm.

2.4. Rocking curves

Prior to the advent of two-dimensional detectors, structure

factors were obtained with a point detector using the rocking

curve (RC) approach. Sample rotation around the axis

perpendicular to the surface (denoted !v here; Schlepütz et al.,

research papers

J. Appl. Cryst. (2014). 47, 207–214 Steven J. Leake et al. � Cluster method for analysing SXRD 209

Figure 2
Examples of CTR signals that are problematic to extract, obtained from LaNiO3 grown on SrTiO3 substrates, and an ideal signal for comparison
(LaAlO3 film) (a): (b) split signal due to the miscut, (c) asymmetric signal (LaAlO3 film), (d) bright spots at one end of the footprint, (e) tails on the
footprint, ( f ) Bragg peak due to multiple domains of tetragonal SrTiO3 below 110 K, and (g) multiple Laue oscillations intersecting the Ewald sphere at
low l.



2011) rotates reciprocal space such that the stationary point

detector samples perpendicular to the CTR. Subsequent

background subtraction and integration provide the structure

factor.

One can think of each pixel on a two-dimensional detector

as being a point detector. Thus, alignment of the long axis of

the detector parallel to the l axis (Schlepütz et al., 2011) means

that a subsequent RC through a CTR produces a signal on the

detector which traverses the long axis of the detector as is

shown in Fig. 3(a). This is the CTR sweeping through the

Ewald sphere as reciprocal space is rotated.

Segmentation of the stack of detector images into �l
portions, i.e. along the detector’s long axis, provides multiple

extracted RCs from a single RC scan, which can be fitted,

background subtracted and integrated to obtain the structure

factors. Each �l portion is equivalent to a point detector, and

thus the area detector in a single scan measures significantly

more information than is normally used. Application of this

method allows one to measure weak and diffuse signals with

high accuracy and relatively quickly.

In principle an entire CTR could be measured using this

method with enhanced resolution, as shown in Fig. 3(b), from

seven RCs, measured at different l values. A total of 150 RCs

were extracted, and their profiles are plotted as a function of l.

In principle, if the detector rotation were not available, given

the visible overlay between consecutive rocking curves, a

three-dimensional interpolation approach could be employed

to integrate such a data set, but this is

beyond the scope of the present article.

3. Methods

3.1. Cluster method

A cluster method has been devel-

oped to extract complicated diffraction

signal shapes. On the basis of some

criterion, for example a threshold

intensity, an automatic appraisal of the

shape of the diffraction signal in the

image is made; this is then selected and

expanded using a convolution-type

operation to generate a background.

The output is a MATLAB file suitable

for loading into the existing Scanana-

lysis program used for manual extrac-

tion for checking ‘d’ or ‘b’ data points.

Scananalysis itself was upgraded to

integrate the new cluster method and is

freely available upon request. The

cluster method has also been written in

Python.

The cluster tool has two modes of

operation: connected signal is defined

as either (i) those pixels connected

along their common sides (i.e. above/

below/left/right) or (ii) all pixels sur-

rounding an individual pixel including pixels connected by

corners. Similar arguments have been used to count photons in

charge-coupled devices, employing only the first definition,

called the ‘droplet algorithm’ (Livet et al., 2000).

In order to identify all clusters above a defined threshold in

a computationally friendly manner, the two-dimensional array

is searched line by line. Once a pixel above the threshold is
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Figure 3
(a) An example of the geometry of the beginning, middle and end of a rocking curve (RC) carried
out with a two-dimensional detector by rotating !v. The signal is split along the l direction, into the
desired �l step, shown by red–green cuboids, and treated individually to produce multiple extracted
RCs from a single scan. (b) One hundred and fifty extracted RCs, produced via the method detailed
for (a) from seven RCs measured with an area detector, taken at strategic l values along a single
superstructure crystal truncation rod. Note the two axes are broken to aid visualization of overlap
between successive detector RCs.

Figure 4
(a) Two-dimensional data containing two clusters to locate. (b)–( f )
Graphical demonstration of consecutive steps the algorithm employs to
identify the cluster. Red circles have been checked and proven to be
below the threshold, green circles are checked in the current iteration,
and crosses have to be checked in the next step as a result of finding a
pixel with intensity above the threshold.



identified, all its connecting pixels that are also above the

threshold are determined, and then their adjacent pixels above

the threshold, and so on, until no new adjacent pixels above

the threshold are found. This is a single-pass operation. A

single mask of clusters results, with each cluster assigned a

number; this can be employed later to define connected

clusters, such as in the case of sample miscuts, or remove

erroneous scatter from the background results. Fig. 4 graphi-

cally demonstrates the cluster operation in its basic form on a

6� 6 pixel array.

3.2. Definition of a threshold

In order to automate the cluster approach to traverse an

entire CTR, an intensity threshold is required to identify the

signal. The large intensity variation present along a CTR

requires a dynamic threshold, with the initial value set

depending on the type of sample (i.e. terminated bulk crystal

or thin film) or the position in reciprocal space; the signal-to-

noise ratio in weak regions can be <1 but in bright regions

>104. Setting the initial guess of the threshold is sample and

experimental-setup dependent; for an intense data point, i.e.

close to a Bragg peak, 5–10% of the maximum intensity was

sufficient. It is important to note that the cluster identification

only needs to provide a rough signal shape; further convolu-

tion-type2 operations and background fitting precisely define

the structure factor.

3.3. Automation

In order to translate the cluster method and a signal

threshold into an automated procedure sufficiently robust to

overcome all the spurious signals one might encounter, several

steps need to be taken. The first question to address is, what is

the physical position of the signal on the detector? The

experimental setup places the diffraction peak at the centre of

the detector. The central pixel is thus the reference point.

However, this point of reference is not guaranteed; in order to

account for asymmetric intensity distributions of the signal

(see Fig. 2), overlapping of Debye–Scherrer rings or, on rare

occasions, the failure of a motor movement, a symmetric

region around the central pixel, called the region of interest

(ROI), is defined as that where the signal could possibly exist.

The ulterior motive for defining this ROI is the speed

improvement gained from analysing smaller images; in the

case of a Pilatus detector the field of view is so large that less

than 10% of it is required as the ROI, and often <1% corre-

sponds to both the signal and its background. One could

envisage a simple calculation of the reciprocal size of the beam

footprint on the sample surface, but this constraint was tested

and found to be often too strong as sample imperfections are

inevitable across surfaces up to 10 mm in size. The solution

was to use a larger ROI, search it for possible signal candi-

dates using the cluster method and define the cluster closest to

the central pixel as the signal.

The second question is, where is the boundary between

signal and background? The dynamic threshold finds the

signal itself within 1–2 pixels of the boundary: we define this as

the signal region of interest (sROI). The background signal

tends to extend beyond this in at least one dimension in the

detector plane (see Fig. 2), and thus a background region of

interest (bROI) is defined by a convolution of the sROI with

an (n � m) pixel array (nmROI), where n and m are integers

defined by the analyst, minus the sROI and any previously

identified clusters of spurious intensity such as intense Bragg

peak tails, for example. A convolution approach was applied

to aid asymmetric signal analysis. Here, if a more uniform

bROI, for example a square, were used, after the removal of

the sROI the distribution of pixels would be skewed across

bROI, thus artificially weighting the fit in the more populated

regions. The process is demonstrated in Fig. 5 on the image

shown in Fig. 1.

Additional gains are achieved by invoking information

learned from the previously extracted image, as CTRs are

slowly varying when oversampled by a factor of ten. This is

discussed further later. These methods increase computation

time considerably and will be discussed only within the context

of achieving reliable online structure factors at a beamline

‘live’. Two approaches will be discussed. The ‘basic’ version

works in the Scananalysis GUI but because of the visualization

is significantly slower. Thus a command-line version with the

same operation was developed for speed and to implement

more computationally complex constraints in a flexible way;

this is referred to as the ‘advanced’ approach.

research papers

J. Appl. Cryst. (2014). 47, 207–214 Steven J. Leake et al. � Cluster method for analysing SXRD 211

Figure 5
Example of the cluster procedure on the image from Fig. 1(c). (a) The signal to analyse, (b) clusters identified based on a threshold of 0.1%, (c) the
identified signal cluster, and (d) the expanded signal and chosen background (light green) overlaying the original cluster (opaque).

2 A true convolution approach was not employed in order to enhance
computation speed, although the approach is equivalent to convolving with a
two-dimensional Gaussian function.



3.4. SXRD data reduction: basic

A detailed description of the implementation of the cluster

method to an SXRD data set follows. After the steps identified

in the ‘automation’ section, the sROI is identified. The bROI

is then fitted with a function – either a constant background, a

Gaussian, a linear gradient, or a linear + Gaussian – and

subtracted from the sROI, which is subsequently integrated.

One of these methods is chosen for the entire data set. We

know that in the vicinity of the Bragg peak it is likely that we

will need ‘linear + Gaussian’ to fit the tail of the Bragg peak,

whereas at the anti-Bragg position a ‘constant’ background is

employed to prevent overfitting the noise. However, the

sample type, quality and environment lead to spurious

diffraction, and so this method will not work for all data

points. The objective approach is to treat all of the data in the

same way, and then a few data points can be reanalysed where

necessary.

Several safeguards are in place to prevent the sROI

ballooning out of control. A user-defined background is set

whereby any reflection signal below this minimum threshold,

typically 50–100 photon counts per pixel per second

depending on scattering from the sample environment, is

marked ‘d’ubious and the sROI of the previous data point

(prev_sROI) is invoked for the current point. This leads to

several regions of dubious data points which need subsequent

manual confirmation or adjustment. Along the length of the

CTR the extent of the signal on the detector varies only very

slowly; thus if the number of pixels defining the new signal is

over 150% of that of the previous signal, the threshold is

deemed too low and is adjusted to generate a cluster of

approximately the same size as the previous image. The same

notion is applied to the lower limit to prevent the cluster

shrinking to zero. Assuming a perfect sample alignment, the

central pixel should sit in the sROI. This can be relaxed to an

overlap between consecutive sROIs if required, as slight

misalignments can cause the signal to drift on the detector: for

example, as one traverses a rod the signal can migrate slowly

owing to the miscut of the surface.

The order in which the data are treated is also taken into

consideration. Typically the algorithm is most challenged at

anti-Bragg positions, where the signal is weakest. Therefore it

can be advantageous to approach the data beginning near the

Bragg peaks, where the signal is strongest, and work towards

the anti-Bragg positions armed with the information gained,

instead of iterating up the rod point by point.

In addition to the criteria mentioned previously, we auto-

matically avoid data points within 0.01l of the Bragg peaks, as

they are often swamped by the Bragg peak itself. Any data

points that do not meet the defined criteria are marked

‘d’ubious and checked manually.

3.5. SXRD data reduction: advanced

Several alternative regimes were considered and tested. A

brief overview is provided.

An automated background analysis is possible, in which one

evaluates all of the different fitting options and selects the

lowest R factor3 accordingly. An approach for ‘turning-point

identification’ was proposed for background identification for

thin-film samples, whereby we find the first turning point

(minimum between two Laue oscillations) before and after a

Bragg peak and apply ‘linear + Gaussian’ in between these

points and ‘constant’ elsewhere. Identification of the turning

point requires one to iterate through the data set once before

proceeding and is therefore slower. In addition, for thicker

samples background is present past the first turning point. An

alternative was to define the turning point by the Laue fringe

separation. As long as the film thickness is approximately

known one can estimate before the analysis which points

should receive which background calculation. In principle,

although these methods work, the trade-off between compu-

tational time and the number of additional data points treated

prevents their implementation for ‘live’ structure factors.

A second expanded background was implemented to

analyse the validity of the fitted background, which when

placed far from the signal can be used to identify the presence

of powder rings. Powder rings are identified by comparing

background fits in the two bROIs. Over the size of the signal, a

powder ring is approximated by a Gaussian profile multiplied

by a linear profile. If a two-dimensional fit with a Gaussian

profile in one dimension and a linear profile in the other was

observed in both bROIs, a powder ring is probable and thus

the data point was marked ‘d’. Powder rings also provide a

secondary check for locating signal that leaks out of the sROI

into the bROI by sampling regions far from any expected

signal. If the two fits are not consistent it is probable a signal

leak has occurred, and thus consistency between a background

fit to these regions and the bROI confirms if the signal iden-

tified is suitable.

The idea of an overall sROI was tested. All good data point

sROIs were added together and used as the estimated sROI

should one of the criteria fail. An alternative was a moving

average approach: the last five ROIs are kept, averaged and

used as the next sROI. This was both successful and destruc-

tive: in some instances we could go on to recover points

previously unassigned, and in other instances, previously

assigned data points were now erroneous.

How do we identify the powder rings? Scattering from

individual crystallites in powder rings was avoided by enfor-

cing consistent pixels between consecutive signals, such as the

central pixel on the detector, as discussed previously.

How can we identify multiple clusters/split signals? A split

signal, e.g. due to sample miscut, is characterized by multiple

footprints of the same shape. It is common to work with

miscuts of <0.1� and thus split signals are not encountered

regularly. However, for the general application of the method

one could envisage identifying matching signal shapes via a

convolution-based cross correlation.4
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3 The reduced �2 function used to fit the background is detailed by Schlepütz
(2009).
4 Given two images A and B, of dimensions n � n, a convolution-based cross
correlation is achieved using a fast Fourier transformation (FFT), whereby the
location of the maximum of FFT�1½FFTðAÞ � FFTðBÞ� defines the required
shift to best correlate the images (Press et al., 1988).



A lot of the constraints described have an effect on each

other, and it is thus difficult to separate the constraints into

truly objective steps. Hence they must be tailored to individual

samples. Inevitably there will always be a human check

required at the end of each data set to reject or confirm the

‘d’ubious points. More complex methods become useful when

data sets approach tens of thousands of structure factors.

4. Results

4.1. Automated extraction of SXRD

The differences between an automated and manual

extraction are shown in Fig. 6. The data were measured in a

beryllium dome, under modest vacuum, on a sample consisting

of an LaNiO3 thin film grown on an SrTiO3 substrate. The

majority of the data points lie within 5% of each other; the

largest deviations occur near the turning points when the

signal is weak and the associated errors are large. The total

difference between the data sets is�6%. This is significant but

within typical error bars for data sets of this type. A visual

inspection of the automated results confirms they are

reasonable. A manual extraction requires approximately

30 min, an automated extraction less than 2 min.

All data points where the error is larger than 10% are

identified as dubious (�10%) or bad (�4%) by the automated

extraction so must be dealt with manually. Thus 86% of the

data set has been dealt with successfully in this case. The

number of dubious data points drops to 5% with the use of a

Kapton dome sample environment and consequent removal of

the diffuse background and powder rings produced by the

polycrystalline beryllium.

4.2. Two-dimensional rocking curves

To provide an example (see Fig. 7) of the gains to be made,

we applied this method to 27 rocking curves taken at 0.1l steps

along a superstructure truncation rod from a graphene on

ruthenium(0001) sample (Martoccia et al., 2010). Not only is

the number of structure factors obtained increased by a factor

of ten, but the reliability is tested, as the background correc-

tion is more robust and outliers more easily identified.

A point to stress is that often those familiar with traditional

SXRD methods use area detectors as point detectors, insofar

that only the signal at the detector centre is extracted, while all

the remaining information in the detected image about

neighbouring regions of k space is thrown away (Mariager

et al., 2009; Schlepütz et al., 2011). We expect this method to

improve efficiency by over an order of magnitude, particularly

for weak and diffuse signal, such as superstructure signal due

to octahedral rotations in ultra-thin films (May et al., 2010).

The method also allows one to rapidly obtain reliable struc-

ture factors at low l, where the open slit geometry breaks

down.

5. Conclusion

We have demonstrated an efficient cluster-algorithm-based

approach to signal identification in two-dimensional diffrac-

tion data. The cluster method can be easily extended to three-

dimensional distributions, i.e. 6 and 26 voxels for the respec-

tive neighbourhood criteria. The algorithm is thus applicable

to any image processing field, for example X-ray free electron

lasers, which generate very large volumes of data, often with

many thousands of signals to analyse in an individual image

(Pedrini, 2012).

The cluster method was applied in the context of SXRD to

automate the extraction of structure factors, thus reducing

significantly this bottleneck towards a structural solution,

minimizing the impact of human error, improving the effi-

ciency of the technique by orders of magnitude and hence

making the technique more accessible. It should be noted that

the method, although not definitive, is sufficiently flexible to
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Figure 6
The corrected intensity (arbitrary units) extracted manually (blue) and
automatically (red) and their relative deviation for a (00L) CTR from an
LaNiO3 thin film grown on an SrTiO3 substrate (STO), measured under
vacuum in a beryllium dome.

Figure 7
An example of data extracted from a rocking curve scan using an area
detector as a point detector, compared with the same data but using the
area detector, for the superstructure signal from graphene on ruthenium
(Martoccia et al., 2010).



apply to many different systems, but at some level human

input is always required. The automated approach described

here is a sound objective starting point.

An experimental method was outlined to improve

measurements made in low-l geometries, improving the scope

of the technique and demonstrating the often overlooked

information gained from two-dimensional detectors.
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