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Magnetic entropy landscape and Grüneisen parameter of a quantum spin ladder
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We present measurements of the magnetic entropy landscape and Grüneisen parameter of the Cu2+ complex
(C5H12N)2CuCl4 in a magnetic field. Our thermodynamic measurements are in very good agreement with a
theoretical description by a S = 1/2 Heisenberg ladder model. Due to its excellent experimental access, the
compound crosses two quantum critical points in the applied range of the magnetic field, first from a gapped
unpolarized state to a critical phase and then to a gapped fully polarized state. This behavior is reflected directly
in the magnetic entropy map. Due to the remarkable properties of the magnetic Grüneisen parameter, we are
able to discuss the validity of critical behavior with respect to temperature and magnetic field for this model
quasi-one-dimensional system.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are of central impor-
tance in condensed-matter physics [1]. Although limited to the
experimentally inaccessible temperature of 0 K, quantum criti-
cal points (QCPs) influence large areas of the low-temperature
phase diagram [2–5]. Thermodynamic and magnetic properties
are very well suited to reveal the temperature and magnetic
field range, for which critical behavior applies.

In this paper we present measurements of both the magnetic
entropy and Grüneisen parameter of the magnetic insulator
(C5H12N)2CuCl4 [6]. Previously such measurements were
conducted for metallic quantum critical systems, such as the
heavy fermion compound YbRh2Si2 [3,4] and the strongly
correlated electron system Sr3Ru2O7 [5]. As predicted by
theory, a map of the entropy landscape can identify different
quantum phases [5] and the occurring extrema quantum critical
points [7]. The Grüneisen parameter signals a critical point by
its divergence. Furthermore, the temperature or the magnetic
field dependence of the Grüneisen parameter gives a very direct
way to extract the critical exponents of QCPs. In contrast to the
previously mentioned materials, magnetic insulators have the
advantage that the Hamiltonian and all of its parameters can
be determined. Hence a fully quantitative comparison between
experiment and theory is possible.

Of special interest are one-dimensional systems, due to
their remarkable physics and properties [8]. A particularly
interesting case is the two-leg antiferromagnetic S = 1/2
Heisenberg ladder. An external magnetic field drives the
spin ladder through two QPTs. Upon increasing field, the
magnetic system changes from a gapped quantum disordered
spin liquid (QD) with magnon excitations, to a gapless spin
Luttinger liquid (LL) with spinon excitations, to a fully

polarized state, that is once more gapped [9,11,12]. This
behavior has been observed, for instance, for the spin ladder
compound (C5H12N)2CuBr4 [9–11,13–16]. Unfortunately the
exchange couplings of (C5H12N)2CuBr4 make it difficult
to access experimentally the upper QCP, and no data of
entropy or Grüneisen parameter is available. However, the
investigation of the two different QCPs by magnetic entropy
and Grüneisen parameter would be very interesting in or-
der to compare the properties and symmetries of the two
QCPs. Fortunately the chemical flexibility of metal-complex
magnetic insulators allows chemical control of the exchange
parameters. In the present case, replacing Br with Cl reduces
the values of the exchange parameters and thereby the critical
magnetic fields [6,17], which makes both QCPs accessible in
experiments.

II. EXPERIMENTAL RESULTS AND
THEORETICAL MODELING

A. Experimental setup

In order to obtain the magnetic entropy and Grüneisen
parameter we performed measurements of the magnetization,
the heat capacity, and the magnetocaloric effect (MCE).
These measurements were carried out at the Laboratory for
Magnetic Measurements at the Helmholtz Center Berlin. For
magnetization measurements down to 100 mK a Faraday
force magnetometer with gradient coil was used [18], with
magnetic fields varying between 0 and 6 T. Heat capacity and
MCE were measured between 300 mK and 3 K, in magnetic
fields up to 12 T, using the same single-crystal sample of
mass 3.71 mg. The MCE was measured quasi-isothermally,
meaning the amount of heat δQ that is generated or absorbed
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FIG. 1. (Color online) Magnetization (a), heat capacity (b), and
magnetocaloric effect measurements (c) of (C5H12N)2CuCl4 (points)
with comparison to calculations (blue line, exact diagonalization 10
rungs; dashed green line, XXZ model). C and O mark the closing and
reopening of the spin gap, and LL marks the spin Luttinger liquid.
Quantitative entropy data are obtained from the MCE (gray points in
lower panel); see text.

by the sample for a changing field dB was measured. For
all measurements, the magnetic field was aligned parallel to
the crystallographic a axis, parallel to the ladder direction.
The samples were high-quality single crystals, grown at the
University of Bern by slow evaporation of an oversaturated
solution [19].

B. Magnetization, heat capacity, and magnetocaloric effect

In Fig. 1 we present the experimental data. Figure 1(a)
shows an exemplary magnetization measurement at T =
175 mK and the derivative of magnetization with respect to
the magnetic field dM/dB. Qualitatively, those measurements
confirm the expected ladder behavior [13]: there is no
magnetization below the lower critical field Bc1 = 1.73(6)T,
due to the spin gap. The increase of magnetization above
Bc1 follows a square-root behavior, until an inflection point
is reached at half magnetization. Above the upper critical field

Bc2 = 4.38(8) T the spins are fully polarized and saturation is
reached.

Figure 1(b) shows the magnetic contribution of heat
capacity at constant temperature. Further temperature scans
between 0.3 and 30 K and up to full magnetic saturation at
12 T were used for an accurate determination of the lattice heat
capacity [9,17], which was subtracted for the plot. The data
were further divided by temperature and show two peaks, that
mark the closing and reopening of the spin gap. Extrapolations
of these peaks to 0 K yield Bc1 and Bc2, in good agreement
with magnetization results. Between those peaks is a region
with high magnetic heat capacity, which has its origin in
the continuous spinon excitations of a spin Luttinger liquid.
Above a temperature of 1 K, which is comparable in energy
to the spin-exchange couplings, this pronounced structure
disappears.

Figure 1(c) shows quantitative MCE measurements. The
MCE is linked to the magnetization M via the Maxwell re-
lation (1/T)/(δQ/dB) = −(∂M/∂T )|B . Accordingly the zero
transitions of the MCE indicate local extrema in magnetization.
These extrema can be used as an indicator for the crossover
into the Luttinger liquid regime [9].

C. Hamiltonian, exchange couplings, and theoretical modeling

As mentioned above, magnetic insulators allow not only a
qualitative but also a fully quantitative analysis. The magnetic
[13] and thermodynamic [9] properties of the isostructural
compound (C5H12N)2CuBr4 could be very well described by
a minimal spin ladder Hamiltonian:

H = Jrung

∑

l

Sl,1 · Sl,2 + Jleg

∑

l,k

Sl,k · Sl+1,k. (1)

If we apply the same to (C5H12N)2CuCl4, we can determine
the exchange couplings Jrung/kB = 3.42(7) K and Jleg/kB =
1.34(6) K from the values of the critical magnetic fields
[12,20]. Thus we are able to calculate the magnetic and
thermodynamic properties by exact diagonalization (ED),
the density-matrix renormalization-group (DMRG) method
[21–23], and also by mapping of the spin ladder Hamiltonian
to the XXZ model. Due to the strong rung coupling, this latter
mapping only considers the lowest two rung states and omits
the two upper triplet states on a rung. The properties of the XXZ
model are obtained within a mean-field theory, which has been
shown to be very accurate for these thermodynamic quantities
[24,25]. The very good agreement between the theoretical
results for the spin ladder model and the experiment is evident
in Fig. 1. We note that the asymmetry of the experimental
data with respect to half magnetization is covered by the full
ED calculations, which include all possible high-energy states.
This is in contrast to the XXZ model, which is symmetric with
respect to half magnetization and therefore also symmetric
at the two QCPs. We find our ED calculations in very good
agreement with further DMRG calculations, which are not
shown in Fig. 1 in order to not overload the figure.
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FIG. 2. (Color online) Quantitative entropy landscape S/T of
(C5H12N)2CuCl4. The typical elements of the spin ladder phase
diagram are observed: two QCPs, quantum disordered spin liquid
(QD) for B < Bc1, spin Luttinger liquid (LL) for Bc1 < B < Bc2, and
full magnetic polarization (FP) for Bc2 < B. For lower temperatures
a Bose-Einstein condensate (BEC) is expected to set in due to the
weak coupling between the spin ladders. QC denotes the quantum
critical regime.

III. DISCUSSION

A. Magnetic entropy

For further analysis we now calculate the magnetic entropy
from the experimental data. The magnetic entropy S is linked
to the MCE via

1

T

δQ

dB
= − dS

dB
= −∂M

∂T
|B. (2)

Accordingly S can be calculated by magnetic field integration
of the MCE data. The fact that entropy is zero at high fields and
low temperatures, where all spins are fully polarized, enables
the determination of the necessary integration constant. The
result at T = 320 mK—gray points in Fig. 1(c)—shows a
clear increase of entropy in the critical region due to the
continuum of low-lying excitations. Also a good agreement
between experiment and ED calculation is observed. Small
deviations and slightly negative values near zero field can
be attributed to the integration procedure, which causes even
slight drifts in the MCE to add up. Figure 2 shows quantitative
magnetic entropy data for the whole temperature and magnetic
field range. The contour plot resembles the phase diagram of
a spin ladder, where the Luttinger liquid regime is visible
as an area with high S/T , while the quantum disordered
spin liquid and the magnetically fully polarized regime show
vanishing S/T . From Figs. 1(c) and 2 it also becomes
clear that entropy accumulates on approaching the QCPs,
i.e., two maxima develop, as was theoretically predicted [7].
Figure 2 also shows magnetization data (peaks in dM/dB),
that mark the crossover into the Luttinger liquid down to
100 mK. We discuss our entropy data in the context of
quantum phase transitions: The concept of QPTs distinguishes
two cases, depending on whether long-range order can exist
at finite temperature or not. For the first case, a “real”
phase transition occurs at finite temperatures upon variation

of the control parameter, for example, the magnetic field.
Here the QCP can be viewed as the endpoint of this line of
finite-temperature transitions [2]. For this case the entropy
landscape was experimentally determined by Rost et al. [5].
They studied the metallic oxide Sr3Ru2O7, a paramagnet that
undergoes a metamagnetic transition near an applied field of
8 T. If no long-range order is possible at finite temperatures,
the QCP indicates the crossover from a region in the phase
diagram where quantum fluctuations dominate to a region
where thermal order parameter fluctuations dominate [2]. This
is realized in one-dimensional magnetic insulators with a spin
gap like (C5H12N)2CuCl4. For this material we are able to
identify all phases and show quantitative experimental entropy
data, that are in good agreement with theoretical calculations. It
is unique so far, because other materials, like (C5H12N)2CuBr4,
saturating at 14 T, lack the high-field MCE and heat capacity
data [9], which are necessary to study the physics at and beyond
Bc2.

B. Magnetic Grüneisen parameter

We now turn to the magnetic Grüneisen parameter �mag,
which links the derivative of magnetization with respect to
temperature ∂M/∂T to the magnetic heat capacity cmag:

�mag = −∂M/∂T

cmag
= 1

T

∂T

∂B
|S. (3)

The divergence of �mag at a QCP is a very sensitive tool to study
quantum phase transitions. This is in contrast to heat capacity
and ∂M/∂T , which are suited identifiers of phase transitions at
finite temperature but approach zero for T → 0. Furthermore,
a sign change of the Grüneisen parameter occurs close to a
QCP [26]. Such behavior was experimentally observed for
some materials [4,27,28]. Another remarkable feature of �mag

is that it contains information free of any material-specific
parameters, yet it is very challenging to measure, since all data
need to be on firm quantitative ground.

Evaluating our heat capacity and MCE data according to
Eqs. (2) and (3), we obtain experimental data of �mag for the
whole magnetic field range and across the two quantum critical
regimes, as presented in Fig. 3. For decreasing temperature,
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FIG. 3. (Color online) Magnetic Grüneisen parameter �mag of
(C5H12N)2CuCl4 (experimental data) with comparison to calcula-
tions: blue line, exact diagonalization 10 rungs; dashed green line,
XXZ model. Gray vertical lines mark the critical fields.
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FIG. 4. (Color online) Temperature dependence of �mag at the
critical magnetic fields, obtained by experiment (points) as well as
DMRG (solid lines) and XX chain model (dashed line) calculations
for (C5H12N)2CuBr4 (left) and (C5H12N)2CuCl4 (right). Plotted
normalized to the rung coupling Jrung of the two materials [9,17,19].

we observe the predicted sign change and an increase of �mag

close to the QCPs.
The temperature dependence of �mag allows the analysis

of the critical behavior for the two QPTs (Fig. 4). Data
are available for (C5H12N)2CuCl4 for both QCPs and for
(C5H12N)2CuBr4 for the lower critical field [9]. Since both
compounds possess different energy scales, we are able to
cover a wide range in energy (temperature). Figure 4 shows the
experimental data with respect to Jrung in a double-logarithmic
scale in order to demonstrate the occurring power-law
behavior. We complement our experimental data by DMRG
calculations as well as an analytical approach: For strongly
dimerized systems the S = 1/2 ladder can be mapped to the
XXZ chain [12,29]. Close to the critical fields there are few
excitations or holes, which can be considered noninteracting.
This free fermion approximation allows one to map the XXZ
chain further to the XX chain [8]. The advantage of this
mapping is that the XX chain is exactly solvable. Thus, the
Grüneisen parameter can be calculated exactly and a scaling
�mag ∝ T −1 can be extracted at low temperatures. At the
critical field, the XX model is valid for a number of different
quasi-one-dimensional (1D) geometries, such as ladders and
alternating chains.

In particular, at the different QCPs, the universal scaling
�mag ∝ T −1 (dotted line) is consistent with our experimental
and theoretical results at low temperature for both compounds
and both QCPs, independent of material-specific parame-
ters. For the compound (C5H12N)2CuBr4 the experimen-
tally explored temperatures lie fully in the scaling regime
(log(kBT /Jrung) < −1.0). In contrast, the (C5H12N)2CuCl4
approaches at the lowest measured temperatures the scaling.
The very good collapse of the results in Fig. 4 obtained for
the two compounds and different theoretical models at low
temperatures proves the universal behavior.

Extracting precise critical exponents by directly fitting a
power law of the form aT −α to the experimental data is
notoriously difficult because of the limited number of data
points and the typically unknown extent of the scaling regime.
In real materials, the latter may be influenced, e.g., by small
additional terms in the Hamiltonian like interladder coupling,

as discussed below. Here we profit directly from the guidance
provided by the theoretical results in order to determine the
scaling regime and to be able to make a meaningful fit. Fitting
only the experimental values obtained for the Br compound
we obtain the exponent α = 0.9(1), which is close to the
theoretical prediction of α = 1. Analogously, we determine
the exponent for the Cl compound. We use the experimental
data at the upper critical field, since here the effects of thermal
excitations are smaller. The extracted value is α ≈ 0.9(2). A
combined fit of both of these data sets results in the exponent
α = 1.0(1). The good agreement of the DMRG results with
all the experimental points gives us the confidence that the
theoretical asymptotic exponent 1 is also the asymptotics of
the experimental results.

At higher energies (temperatures) the microscopic structure
of the material becomes important and deviations from the
scaling occur. We observe clearly different behavior for the
two QCPs, as seen in the (C5H12N)2CuCl4 data. This is due to
the energies of the higher triplet excitations which shift with
the magnetic field. However, even in this regime, where the
details of the microscopic model matter, we find a very good
quantitative agreement between experiment and the DMRG
calculations for the ladder system (solid lines) within the
experimental error bars.

For very low temperatures below 0.03Jrung/kB , the exper-
imental data start to deviate from the XX model calculations.
We attribute this to the interladder coupling, which will
eventually result in a long-range ordered phase between Bc1

and Bc2 and the occurrence of Bose-Einstein condensation
[10,16,30,31]. This means that the one-dimensional character
is cut off by the proximity of the three-dimensional long-range
order and the XX model is no longer valid for this particular
compound.

We further find that the critical behavior is very sensitive to
changes of the magnetic field. The error bars in Fig. 4 indicate
the variation of �mag within the uncertainties of the values
of Bc1 and Bc2. At low energies, we note that deviations of
the magnetic field toward the Luttinger liquid have a much
stronger effect on �mag (the downward pointing error bar
in Fig. 4) than deviations toward the quantum disordered
regime (the upward pointing error bar that is smaller than
point size). The very sensitive dependence on the slight
changes of the magnetic field was witnessed for the theoretical
calculations too.

IV. SUMMARY

In summary, we presented magnetic and thermodynamic
measurements as well as calculations for the two-leg antiferro-
magnetic S = 1/2 Heisenberg ladder (C5H12N)2CuCl4, which
features two quantum phase transitions at Bc1 = 1.73(6) T
and Bc2 = 4.38(8) T. Using these measurements we are able
to give a fully qualitative and quantitative description of
magnetic entropy and magnetic Grüneisen parameter in the
vicinity of QPTs. We find universal scaling behavior at the two
QCPs, are able to extract the critical exponents, and determine
the critical regime in temperature and magnetic field. The
model character of (C5H12N)2CuCl4 allows future studies to
gain insight into the thermodynamics of more complicated
(disordered) systems. Our study of (C5H12N)2CuCl4 paves
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the way for future measurements on samples with different
chlorine to bromine ratios to investigate the effects of bond
disorder and Bose glasses in 1D antiferromagnets.
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and K. Krämer, Phys. Rev. Lett. 100, 067208 (2008).
[15] P. Bouillot et al., Phys. Rev. B 83, 054407 (2011).
[16] S. Mukhopadhyay et al., Phys. Rev. Lett. 109, 177206

(2012).

[17] S. Ward, P. Bouillot, H. Ryll, K. Kiefer, K. W. Krämer,
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