Superconducting parameters of BaPt$_{4-x}$Au$_x$Ge$_{12}$ filled skutterudite

A. Maisuradze, 1,2, a R. Gumeniuk, 3 W. Schnelle, 3 M. Nicklas, 3 C. Baines, 1 R. Khasanov, 1 A. Amato, 1 and A. Leithe-Jasper 3

1Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
2Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
3Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

(Received 23 August 2012; revised manuscript received 4 November 2012; published 15 November 2012)

We report on a study of the superconducting properties for a series of polycrystalline BaPt$_{4-x}$Au$_x$Ge$_{12}$ filled skutterudite compounds for $x = 0, 0.5, 0.75$, and 1. Muon spin rotation (μSR) spectroscopy as well as magnetization, specific-heat, and electrical resistivity measurements were performed. The magnetic penetration depth λ, the coherence length ξ, and the Ginzburg-Landau parameter κ are evaluated. The temperature dependence of the superfluid density is well described by an s-wave superconducting gap and this classical scenario is supported by the field-independent λ. The gap-to-κ ratio $\Delta_0/\kappa_B T_c$ increases with the Au content from 1.70 for $x = 0$ to 2.1(1) for $x = 1$. By combining μSR, magnetization, and specific-heat data, we find that BaPt$_{4-x}$Au$_x$Ge$_{12}$ compounds are in between the dirty and clean limits with mean free paths of the carriers $l \sim \xi$. Interestingly, resistivity data for BaPt$_{4}$Ge$_{12}$ indicate a much higher upper critical field, which is probably due to defects or impurities close to the surface of the crystallites.

DOI: 10.1103/PhysRevB.86.174513

PACS number(s): 76.75.+i, 74.70.Dd, 74.25.Ha

I. INTRODUCTION

Filled skutterudite compounds MT_xX_{12} with a framework formed from T (Fe, Ru, Os) and X (P, As, Sb) atoms and “filled” with M atoms (rare-earth, alkaline-earth, or alkali metals) came in focus of recent research activities due to a number of unconventional phenomena. 1–7 In their cubic crystal structure, the filler cations M reside in icosahedral cages formed by tilted TX_6 octahedra. The pronounced vibrational amplitudes of the M atoms have been linked to dynamic scattering mechanisms for heat-carrying acoustic phonons resulting in a reduced lattice thermal conductivity, a prerequisite for thermoelectric applications. 8–11 Several filled skutterudites display superconductivity and as well show a broad variety of other interesting phenomena. 9–13

Recently, a new family of filled skutterudites based on a different framework of platinum and germanium with the chemical formula MPt_xGe_{12} has been discovered. 14,15 Several of these compounds are superconducting (SC). The compositions with M = Sr and Ba (Refs. 14 and 15) have SC transition temperatures T_c around 5 K and the later reported ThPt$_4$Ge$_{12}$ is SC below 4.62 K. 16,17 Due to a peak in the electronic density of states (DOS) at the Fermi energy (E_F), LaPt$_4$Ge$_{12}$ has a significantly higher T_c of 8.3 K. 15 Interestingly, PrPt$_4$Ge$_{12}$, with trivalent Pr in a nonmagnetic crystal field ground state, is also SC with an only slightly lower T_c of 7.9 K. Its SC properties 18,19 show some similarities with the heavy-fermion superconductivity of PrOs$_3$Sb$_{12}$ 20,21 Most remarkably, an unconventional SC order parameter with point nodes and a rather similar gap-to-T_c ratio has been observed. Moreover, signatures of time-reversal symmetry breaking were found in PrPt$_4$Ge$_{12}$ 19 by zero-field μSR.

For LaPt$_4$Ge$_{12}$, SrPt$_4$Ge$_{12}$, and BaPt$_4$Ge$_{12}$, NMR and nuclear quadrupole resonance (NQR) studies suggested an s-wave BCS SC state with $\Delta_0/k_B T_c \approx 1.60$. 22–24 Theoretical and experimental studies of the electronic structure of this class of skutterudites consistently show rather deep-lying Pt 5d states which only partially form covalent bands with Ge 4p electrons. 25 In turn, the electronic states at E_F that are relevant for the SC behavior, can be firmly assigned to originate predominantly from Ge 4p electrons. 27 Different from MPt_xGe_{12} (M = La, Pr) a pronounced peak in the DOS at the Fermi level (E_F), LaPt$_4$Ge$_{12}$ was found to be SC below 4.62 K. 16,17

II. EXPERIMENTAL DETAILS

A. Sample preparation

For $x = 0, 0.5, 0.75$, and 1, bulk samples were grown by the Bridgman method, starting from weighed amounts of high-purity M (99.999%), Pt (99.99%), Ge (99.99%), and Sb (99.99%). The growth crucibles were made of fused silica. The pressure for $x = 0$ was maintained at 200 bars, whereas for $x = 0.5, 0.75$, and 1 it was 50 bars. The furnace temperature was kept constant at 1000 °C during growth and lowered to 900 °C for 1 h at the end of the process. The furnace was then slowly cooled to room temperature (RT) at a rate of 1 °C/min. The obtained samples were cut and ground to obtain small single-crystalline fragments. The X-ray diffraction patterns (XRD) of the grown samples are in agreement with the MT_xX_{12} skutterudite structure. The lattice parameters were determined from the XRD pattern (Bruker D8 Advance diffractometer) using the M-correction method. The XRD patterns were then indexed to the space group $I4/mmm$ with parameter $a = b = c$ and $\alpha = \beta = \gamma = 90°$. The lattice parameters of the synthesized materials are given in Table 1.
The paper is organized as follows: in Sec. II we give some experimental details, Sec. III describes the method of analysis of our μSR data, and then we present and discuss the results from the μSR as well as from the macroscopic methods. Our conclusions are given in Sec. IV. In Appendices A and B we describe the details of our calculations and give the relevant GL definitions.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of BaPt$_{3-x}$Au$_x$Ge$_{12}$ with bulk T_c values of 4.9(1), 5.3(1), 6.25(5), and 6.95(5) K for $x = 0$, 0.5, 0.75, and 1, respectively, were prepared as described in Refs. 15 and 28. The SC transition temperatures T_c were determined from the onset of the Meissner flux expulsion (field cooling; tangent to the steepest slope and extrapolation to $\chi = 0$) in magnetic susceptibility data measured in a nominal field of 2 mT (MPMS-XL7, Quantum Design). The TF μSR experiments were performed at the πM3 and μE1 beamlines at the Paul Scherrer Institute (Villigen Switzerland) at the GPS, the LTF, and the GPD spectrometers. Each sample used for the μSR study has an ellipsoidal shape of a droplet with dimensions $\simeq 7 \times 7 \times 4$ mm3, and therefore, field inhomogeneities due to demagnetization are negligible. The samples were field cooled from above T_c down to 1.6 K in a field of 50 mT and measured as a function of temperature (on the GPS spectrometer). Additional measurements were performed down to $T \simeq 0.29$ K (GPD spectrometer; 3He cryostat) and $T \simeq 0.03$ K (LTF spectrometer; 3He/4He dilution cryostat) in an applied field of 50 mT. Measurements in a series of fields ranging from 10 to 640 mT at 1.7 K were also performed. Typical counting statistics were $\approx 6 \times 10^6$ positron events per each data point.

Isothermal magnetization loops at 1.85 K were also recorded on the above mentioned magnetometer. In order to reduce demagnetization effects for these measurements, splinters of the samples were glued to a quartz capillary with their longest dimensions parallel to the field direction. Specific-heat capacity as well as electrical resistance measurements (ac, 93 Hz, current density $j = 0.0072$ A mm$^{-2}$) at T_c and up to 320 K were performed in magnetic fields up to 2.0 T in a cryostat (c) and field-cooled from above T_c, respectively. The relaxation rate $\sigma_N < 0.06 \mu$s$^{-1}$ is mostly due to the nuclear magnetism of Ba, Pt, Au, and Ge isotopes, which causes a weak depolarization of the muon-spin ensemble. Below T_c, all samples exhibit relaxing μSR asymmetry spectra due to the spatial variation of the internal field in the vortex-lattice state induced by the SC condensate. The FT of this signal directly shows the field distribution probed by the muon spins.

Figure 2 exhibits the FT spectra in BaPt$_{3.5}$Au$_{0.5}$Ge$_{12}$ in a broad range of fields. The asymmetric character of the
vortex-lattice field distributions—reflecting the signatures of singularities at the minimum, saddle, and core fields—is clearly visible. Consequently, we analyzed the μSR spectra for all BaPt$_{1-x}$Au$_x$Ge$_{12}$ samples using the exact solution of the GL equations with the method suggested by Brandt (see Appendix A).30,31 The spatial magnetic field distribution $B(r) = B(t, \lambda, \xi, B)$ within the unit cell of the flux-line lattice (FLL) was obtained by minimization of Eq. (A1). From the obtained $B(r)$ the probability field distribution for the ideal (defect-free) FLL $P_{\text{id}}(B)$ is calculated as follows:

$$P_{\text{id}}(B') = \int \delta(B' - B(r)) dr.$$ (1)

By assuming the internal field distribution $P_{\text{id}}(B)$ given by Eq. (1) and accounting for the FLL disorder by multiplying $P_{\text{id}}(B)$ to a Gaussian function,32 one obtains the theoretical polarization function $P(t)$ given by

$$P(t) = A \exp \left[-\frac{1}{2} (\sigma^2 + \sigma_N^2) t^2\right] \int P_{\text{id}}(B) \cos(\gamma_B Bt + \phi) dB$$

$$+ A_{\text{bg}} \exp \left[-\frac{1}{2} \sigma_{\text{bg}}^2 t^2\right] \cos(\gamma_B B_{\text{bg}} t + \phi),$$ (2)

which was used to fit the μSR time spectra. Here, $\gamma_B = 2\pi \times 135.53$ MHz/T is the muon gyromagnetic ratio, A is the asymmetry of the sample signal, ϕ is the phase of the muon-spin ensemble, σ_ξ is a parameter related to FLL disorder,33 and σ_N is the additional muon depolarization due to the nuclear magnetism of various ions in the samples. The parameters $A_{\text{bg}}, \sigma_{\text{bg}},$ and B_{bg} correspond to asymmetry, relaxation, and field of the background signal, respectively. The asymmetries A and A_{bg} are found to be temperature independent and $A + A_{\text{bg}} = 0.20$ (for the GPS and LTF spectrometers) and $A + A_{\text{bg}} = 0.27$ (for the GPD spectrometer). The background asymmetry $A_{\text{bg}} \approx 0.004$ is negligible for the measurements in the temperature range above 1.7 K (on the GPS spectrometer), while it is substantial in the measurements in the low-temperature range ($A_{\text{bg}} \approx 0.07$ on the LTF spectrometer and $A_{\text{bg}} \approx 0.20$ on the GPD spectrometer). The magnitude of $\sigma_N \approx 0.05(1) \mus^{-1}$ in BaPt$_{1-x}$Au$_x$Ge$_{12}$ was determined from data above T_C. Zero-field μSR measurements in BaPt$_4$Ge$_{12}$ and LaPt$_4$Ge$_{12}$ (Ref. 19) show that the ZF relaxation rate is small and temperature independent, confirming the absence of magnetism. Thus, σ_N is negligibly small in comparison to the muon depolarization caused by the nanoscale field inhomogeneities of the FLL. The background relaxation is also small ($\sigma_{\text{bg}} \approx 0.30$ or 0.0007 μs$^{-1}$), since it corresponds to the signals originating from the copper or silver sample holder and from the walls of the cryostat.

The whole temperature dependence was fitted globally with Eq. (2) with the common parameters A, A_{bg}, B_{bg}, σ_{bg}, and σ_ξ. In addition, the GL parameter $\kappa = \lambda/\xi$ was taken as temperature independent [i.e., the temperature-dependent parameters $\xi = \lambda/\kappa$ and $B_{\xi} = \Phi_0/(2\pi \xi^2)$ are related to $\kappa(T)$]. The only temperature-dependent parameters are λ and B. The parameter σ_ξ can be left free; however, relating $\sigma_\xi = a/\lambda^2$ with the single global parameter a reduces the total number of parameters, thus reducing the error bars for λ. Such a relation corresponds to a rigid FLL.33 For a more detailed description of the fitting procedure we refer to Ref. 34.

The mean value of the superfluid density is related to the magnetic penetration depth as follows (see Appendix A): $\rho_s \propto (1-b)/\lambda^2 \propto \rho_s$, measured at $B_{\text{app}} = 0.05$ T in BaPt$_{1-x}$Au$_x$Ge$_{12}$ for $x = 0, 0.5, 0.75,$ and 1. All compounds exhibit exponential saturation of ρ_s in the low-temperature limit, documenting a fully developed gap on the Fermi surface. Solid symbols correspond to measurements above 1.6 K (on the GPS spectrometer), while the empty symbols correspond to those measured in the low-temperature limit (on the GPD at $x = 0.5, 0.75,$ and 1 and on the LTF at $x = 0$ spectrometers). The solid lines are fits to Eq. (5). (b) Temperature dependence of $\langle B \rangle$ for the samples measured on the GPS spectrometer. Field inhomogeneity due to demagnetization effects is only a small fraction of $\langle B \rangle - B_{\text{app}}$.

The low-temperature limits of the magnetic penetration depth and the upper critical field obtained for BaPt$_4$Ge$_{12}$ are $\lambda = 204(4)$ nm and $B_{\text{c2}} = 0.46(3)$ T (at $T = 1.7$ K), respectively. These values substantially differ from those reported in Ref. 14, $\lambda = 320$ nm and $B_{\text{c2}} = 1.8$ T, obtained by magnetization and specific-heat measurements, respectively. This discrepancy is explained by substantial scattering of Cooper pairs on nonmagnetic impurities with the mean free...
Eqs. (3) and (4) as described in the text. Indeed, the coherence length \(\xi \) and the magnetic penetration depth are related to those of the clean limit \((l \to \infty) \) as follows:\(^{35}\)

\[
\xi = \xi_{cl}l + \xi_{cl}, \quad \lambda = \frac{\lambda_{cl}}{\sqrt{1 + \xi_{cl}/l}}. \tag{3}
\]

Fitting this equation to the values of \(\xi_{1} \) and \(\xi_{2} \) reported in Ref. 14 and obtained here, respectively, with the additional condition \(l_{1}/l_{2} = \rho_{0}/\rho_{0}^{*} = 3.75 \) (here \(\rho_{0}^{*} \) are corresponding residual resistivities) we obtain for \(l_{1} = 23 \) nm, \(l_{2} = 86 \) nm, and \(\xi_{cl} = 35 \) nm (see Fig. 4). Note, here we used the GL relation \(B_{c2} = \Phi_{0}/2\pi \xi l_{1}^{2} \) to obtain \(\xi_{l} \) (\(l = 1, 2 \)). These values of mean free paths \((l_{1} \) and \(l_{2} \)) explain well also different reports for magnetic penetration depths \(\lambda_{1} = 320 \) nm and \(\lambda_{2} = 204 \) nm (see Fig. 4). Consequently, the compound BaPt4Ge12 is in between the clean and dirty-limit superconductors. The residual resistivities of the compounds with \(x = 0.5, 0.75, \) and 1 are larger than for \(x = 0 \). Therefore, they are also dirtier than the BaPt4Ge12 compound without Au substitution.

For the analysis of the superfluid density we adopt the BCS \(s \)-wave model with arbitrary impurity scattering rate \(1/\tau \).\(^{36}\)

\[
\frac{1}{\lambda^{2}} = \frac{1}{\Lambda_{0}} \pi k_{B}T \sum_{n = -\infty}^{\infty} \frac{1}{Z_{n}} \frac{\Delta^{2}(T)}{\left[\epsilon_{n}^{2} + \Delta^{2}(T) \right]^{3/2}}, \tag{5}
\]

with

\[
Z_{n} = 1 + \frac{\hbar}{\pi \epsilon_{n}^{2}} \frac{1}{\sqrt{\epsilon_{n}^{2} + \Delta^{2}(T)}}. \tag{6}
\]

Here, the classical BCS temperature dependence of the gap was used, \(\Delta(t) = \Delta(0)b(t) \) with \(b(t) = \text{tanh}[1.82(1.018(t - 1))^{0.51}] \) (with \(t = T/T_{c} \)).\(^{35}\) \(k_{B} \) and \(\hbar \) are Boltzmann and reduced Planck constants, respectively, \(\epsilon_{n} = \pi T (2n + 1) \) are Matsubara frequencies, while \(Z_{n} \) are renormalization factors for \(\epsilon_{n} \) and the superconducting gap \(\Delta \). In the extreme cases of the clean \((\tau \to \infty) \) and dirty \((\tau \to 0) \) limits this equation converges to the classical clean and dirty superconductor curves (see Appendix B).\(^{35}\) For the Fermi velocity \(v_{F} = 52,000 \) m s\(^{-1}\) and mean free path \(l = 86 \) nm of BaPt4Ge12, we obtain the scattering time \(\tau = 1.6 \times 10^{-12} \) s.

The fits of Eq. (5) to \(1/\lambda^{2} \) are shown in Fig. 3(a) by solid lines. The fit results for \(\Delta_{0}, T_{c}, \) and the low-temperature limits of \(1/\lambda^{2}(0) \) are summarized in Table I. As can be seen in Appendix B, there is a correlation between the parameters \(\tau \) and \(\Delta_{0} \) in Eq. (5). Therefore, for BaPt4Ge12 \((x = 0) \) we used \(\tau = 1.6 \times 10^{-12} \) s as an estimate. For the compounds with \(x = 0.5, 0.75, \) and 1 we used the upper limit of \(\tau_{\text{max}} = 1.6 \times 10^{-12} \) s, since they are dirtier than the BaPt4Ge12 compound. The fit of the data was performed for \(\tau = \tau_{\text{max}} \) and \(\tau \to 0 \) (dirty limit, when \(\tau \ll \xi_{cl}/v_{F} \)). Thus, we obtain the upper and lower limits of \(\Delta_{0}^{\text{max}} \) and \(\Delta_{0}^{\text{min}} \), respectively. The values of the gap reported in Table I are \(\Delta_{0} = 0.5(\Delta_{0}^{\text{max}} + \Delta_{0}^{\text{min}}) \) with errors including the uncertainty in \(\tau \) and the (much smaller) statistical error.

With increasing Au substitution the \(T_{c} \) increases; however, the gap-to-\(T_{c} \) ratio \(\Delta_{0}/k_{B}T_{c} \) increases more suddenly and remains essentially unchanged for the Au substitutions \(x = 0.5, 0.75, \) and 1. The \(T_{c} \) of phonon-mediated superconductivity may be described within the McMillan formula.\(^{35}\) The Debye temperature is practically the same for our four compounds.\(^{28}\) Thus, the only factor determining the increase of \(T_{c} \) is the electronic DOS at the Fermi level, which significantly increases with Au substitution beyond \(x = 0.4 \) (cf. Fig. 1 in Ref. 28).

Another interesting feature is the dependence of the superfluid density upon Au substitution. With increasing \(x \), \(\rho_{s}(0) \) first decreases, goes through a minimum, and then increases with further increasing \(x \). Such a behavior is rather unusual and contrasts with previous observations of a power-law-like relation between \(T_{c} \) and the superfluid density in cuprate high-\(T_{c} \) superconductors,\(^{37}\) NbB\(_{3}\),\(^{38}\) MgB\(_{2}\),\(^{39}\) or predicted theoretically.\(^{40,41}\) However, in the present case such a behavior can be understood. The superfluid density and the magnetic penetration depth \(\lambda \) are dependent on the scattering rate of the Cooper pairs \(\tau \) (or the mean free path \(l \)) [see Eq. (4)]. Therefore, the minimum in \(\rho_{s}(0) \) is probably due to the dependence of \(\tau \) on the Au content \(x \).

Further information about the order parameter can be obtained from the field dependence of the superfluid density.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\Delta_{0}) (meV)</th>
<th>(T_{c}) (K)</th>
<th>(\lambda^{-2}(0)) ((\mu m^{-2}))</th>
<th>(\Delta_{0}/k_{B}T_{c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.65(1)</td>
<td>4.45(3)</td>
<td>22.0(1)</td>
<td>1.70(3)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.88(4)</td>
<td>4.93(1)</td>
<td>17.15(7)</td>
<td>2.07(8)</td>
</tr>
<tr>
<td>0.75</td>
<td>1.13(5)</td>
<td>6.10(4)</td>
<td>16.84(9)</td>
<td>2.15(6)</td>
</tr>
<tr>
<td>1</td>
<td>1.20(5)</td>
<td>6.86(5)</td>
<td>22.63(3)</td>
<td>2.02(9)</td>
</tr>
</tbody>
</table>

TABLE I. Summary of fit results with Eq. (5) for \(T_{c} \) and \(\Delta_{0} \) in BaPt\(_{4-x}\)Au\(_{x}\)Ge\(_{12}\), where \(x = 0, 0.5, 0.75, \) and 1. In addition, the low-temperature limit of \(1/\lambda^{2} \) and the gap-to-\(T_{c} \) ratio are given.
As it is known for superconductors with nodes in the gap, a significant field dependence of \(\lambda \) is observed,\(^{32}\) while for the large number of classical BCS superconductors \(\lambda \) is field independent.\(^{43}\) A fit of the \(\mu SR \)-time spectra at different fields and for \(T = 1.7 \) K using Eq. (2) results in field-independent values of \(\lambda, \)\(^{44}\) For the fit the field-independent value of \(\xi \) obtained from the GL relation \(B_{c2} = \Phi_0/(2\pi\xi^2) \) was used. Therefore, we next fitted the whole field dependence of the spectra globally with common parameters \(\lambda \) and \(\xi \). Note that the values of the GL parameter \(\kappa = \lambda/\xi \) used in the fit of the temperature dependence were obtained from the fit of the corresponding field scan. In Fig. 2 we show the FT \(\mu SR \) spectra for the BaPt\(_3\)AuGe\(_{12}\) compound at \(T = 1.7 \) K for the broad range of reduced fields \(B = B/B_{c2} = 0.06, 0.12, 0.24, 0.36, 0.54, \) and 0.76. The fit results in field-independent values of the magnetic penetration depth \(\lambda = 239(4) \) nm\) and of the coherence length \(\xi = 18.8(5) \) nm\). This value of \(\xi \) is in good agreement with that obtained by the GL relation from the corresponding \(B_{c2} \) \((B_{c2} = \Phi_0/(2\pi\xi^2)) \). The fit results for \(\lambda, \xi, \) and \(\kappa \) in BaPt\(_3\)AuGe\(_{12}\) for \(x = 0, 0.5, 0.75, \) and 1 are summarized in Table II. The upper critical field for \(x = 1 \) is in fair agreement with the value given in our previous work,\(^{28}\) but for BaPt\(_3\)Ge\(_{12}\) the \(B_{c2}(0) \) is much lower than previously reported.\(^{14,28}\) This drastic discrepancy is investigated and discussed in the following section.

B. Macroscopic measurement data

Previously, for BaPt\(_3\)Ge\(_{12}\) an upper critical field \(B_{c2}(0) \) of about 2.0 T was reported by our group, mainly based on \(T_c(B_{app}) \) data from resistivity measurements in fixed applied fields \(B_{app}. \)^{28}\) This value was confirmed by similar data of Bauer \textit{et al.}^{14} \([B_{c2}(0) = 1.8 \) T\] from both resistivity and specific-heat data in field.\(^{14}\) However, the \(T_c \) reported for BaPt\(_3\)Ge\(_{12}\) in Ref. 14 is 5.35 K (from both resistivity and specific heat), which is inconsistent with the magnetic onset \(T_c \approx 4.9 \) K of our present and \(T_c \approx 5.0 \) K of our previous \(x = 0 \) samples. The origin of the drastically different upper critical field values as well as of the unusually large variation of \(T_c \) for BaPt\(_3\)Ge\(_{12}\) samples remained unclear. For this reason we (re-)investigated the present BaPt\(_3\)Ge\(_{12}\) \((x = 0) \) sample as well as the \(x = 0 \) and \(x = 1 \) samples from our previous study\(^{28}\) by macroscopic probes (magnetization, specific heat, electrical resistivity).

An isothermal magnetization loop at \(T = 1.85 \) K for the BaPt\(_3\)Ge\(_{12}\) sample used for the \(\mu SR \) measurements is given in Fig. 5. It shows the typical picture of a type II superconductor with medium large GL parameter \(\kappa \). A weak second peak effect in \(M(B_{app}) \) is observed around 0.35 T, indicating relatively weak flux-line pinning in a pure sample.\(^{45}\) Above this field the hysteresis drastically diminishes (this field is often taken as upper critical field \(B_{c2} \))\(^{46}\) and becomes reversible above \(B_{app} = 500(30) \) mT. The reversible SC magnetization decreases to a value of less than 1/1000 of the maximum magnetization signal (the noise level of the measurement) at \(B_{app} = 540(50) \) mT, which we adopt as the upper critical field \(B_{c2}(1.85 \) K). Considering the only slightly different temperatures, this value is compatible with \(B_{c2}(0) \) from our \(\mu SR \) investigation (see Table II). The lower critical field can be estimated from the first deviation of \(M(B_{app}) \) from linearity [Fig. 5(b)]. Adopting a 0.5% criterion for a significant deviation, we find \(B_{c1} \approx 6.0(1.0) \) mT, again for \(T = 1.85 \) K. This experimental value for \(B_{c1} \) is, however, only a lower limit due to the strong influence of the demagnetization effect for a nearly perfect diamagnet. From the \(B_{c2} \) value determined from magnetization and \(\kappa = 8.0 \) from Table II, we obtain with the relation \(B_{c2} = \sqrt{2\kappa}B_{c1} \) a thermodynamic critical field \(B_{c1} \approx 48 \) mT, which is clearly larger than the value calculated from the free enthalpy difference from specific heat (\(\approx 40 \) mT for \(T = 1.85 \) K). Using \(B_{c1} \approx (\ln \kappa + 0.5)B_{c1}/2\kappa \) (valid for small \(\kappa \)),\(^{36}\) we find \(B_{c1} \approx 7.7 \) mT, in fair agreement with the estimate from the magnetization curve. Only slightly different values for the critical fields were obtained from similar magnetization data (not shown) taken on the BaPt\(_3\)Ge\(_{12}\) sample used in Ref. 28 \([B_{c1} = 4.2(1.0) \) mT and \(B_{c2} = 590(50) \) mT, both at \(T = 1.85 \) K].

The magnetization curve for the BaPt\(_3\)AuGe\(_{12}\) sample \((x = 1) \) of the present study is given in Fig. 6. There is no visible second peak effect and, thus, the upper critical field can be determined accurately from the sharp kinks in \(M(B_{app}) \) \([B_{c2} = 1820(20) \) mT; see 100-fold magnification of the data in Fig. 6]. The estimated \(B_{c1} \approx 11.5(1.0) \) mT \((T = 1.85 \) K; criterion

TABLE II. Magnetic penetration depth \((\lambda) \) and coherence length \((\xi) \) obtained from the global fit of the data in the field range of 0.05–0.64 T at 1.7 K. In addition, the values for \(B_{c2} \) at \(T = 1.7 \) K, Ginzburg-Landau parameter \(\kappa = \lambda/\xi \), and residual resistivity \(\rho_0 \) are listed.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\lambda) (nm)</th>
<th>(\xi) (nm)</th>
<th>(\kappa)</th>
<th>(B_{c2}) (1.7 K) (T)</th>
<th>(\rho_0) ((\mu \Omega) cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>204(4)</td>
<td>25.5(15)</td>
<td>8.0(5)</td>
<td>0.46(3)</td>
<td>15.1</td>
</tr>
<tr>
<td>0.5</td>
<td>239(4)</td>
<td>18.8(9)</td>
<td>12.7(7)</td>
<td>0.84(4)</td>
<td>33.6</td>
</tr>
<tr>
<td>0.75</td>
<td>240(4)</td>
<td>15.0(9)</td>
<td>16.0(9)</td>
<td>1.68(5)</td>
<td>36.8</td>
</tr>
<tr>
<td>1</td>
<td>210(4)</td>
<td>13.4(8)</td>
<td>15.7(9)</td>
<td>1.93(5)</td>
<td>31.5</td>
</tr>
</tbody>
</table>

FIG. 5. (Color online) Magnetization loop of BaPt\(_3\)Ge\(_{12}\) at \(T = 1.85 \) K up to \(B_{app} = \pm 2.0 \) T. The initial curve is marked by (light-red) full circles, and the other segments by (dark-red) open circles. Inset (a) Zero-field-cooled (Meissner effect) and field-cooled (shielding) susceptibility in a nominal field of 2 mT. Inset (b) Low-field magnetization showing the deviation from the initial linear behavior (straight line) at \(B_{c1}. \)
0.5% deviation). While the B_{c2} value is only slightly lower compared to the one in Table II, the GL parameter $\kappa \approx 13.1$ is clearly lower than the value determined by μSR spectroscopy. The $B_{c1,th}$ calculated using κ from Table II and B_{c2} from the magnetization curve is ≈ 99 mT, which is again clearly larger than the value derived from the specific heat data (≈ 79 mT at 1.85 K).

In Fig. 7 the difference of the specific heat $\Delta c_p(T) = c_p(B_{app}) - c_p(B > B_{c2})$ is plotted for the present BaPt$_4$Ge$_{12}$ sample. For fields ≥ 600 mT no SC signal is observed above our lowest temperature of 1.8 K. The midpoints of the second-order-type transitions $T_m(B_{app})$ were evaluated. The quadratic extrapolation of these data for $B_{c2}(T)$ to zero temperature results in $B_{c2}(0) = 470(50)$ mT, in excellent agreement with the values from μSR and magnetization. For the sample used in Ref. 28 we extrapolate $B_{c2}(0) = 540(50)$ mT. Specific-heat data in field for the other compositions are given in Ref. 28.

The electrical resistivity of the present $x = 0$ sample at 300 K is ≈ 90 $\mu\Omega$ m with a residual resistance ratio 6.1 [Fig. 8(b)]. Such low residual resistivity ratio (RRR) values are not typical for polycrystalline samples of other MPt$_3$Ge$_{12}$ compounds [cf. RRR $= 33$ or 42 (Ref. 15), RRR ≈ 100 (Ref. 16), or RRR ≥ 100 (Ref. 46)]. Obviously, the crystalline quality of polycrystalline BaPt$_3$Ge$_{12}$ samples is worse compared to that of other members of the family of filled Pt-Ge skutterudites. RRR ≈ 6, however, indicates that a BaPt$_4$Ge$_{12}$ sample with a clearly lower defect concentration than in Refs. 14 or 47 has been achieved. For the present sample the SC transition in $\rho(T, B_{app})$ decreases continuous with increasing field, except for very low fields [Fig. 8(a)]. The onset, mid, and zero-resistance temperatures are plotted against B_{app} in Fig. 8(c). Surprisingly, the transition in $\rho(T)$ is still complete for a field of 1.0 T and the onset is even visible at 1.9 K in 1.8 T. Such high upper critical fields are in agreement with the conclusions in Ref. 14, but in strong contrast to the consistently much lower B_{c2} values obtained from the bulk probes μSR, magnetization, and specific heat.

A quadratic extrapolation of $T_c(0)$ to zero temperature results in $B_{c2}(0) = 1460$ mT [dashed line in Fig. 8(c)]. In addition, a clear anomaly is seen for the lowest fields, where the resistive T_c is almost 0.5 K higher than expected from the extrapolation curve. Actually, the extrapolated resistive $T_c(0) \approx 4.74$ K agrees well with that from the bulk measurements. For the sample of BaPt$_3$AuGe$_{12}$ no significant discrepancy between bulk and resistive value for B_{c2} is found (see Ref. 28).

What is the origin of this discrepancy in the B_{c2} and $T_c(0)$ values from bulk properties and resistivity in BaPt$_4$Ge$_{12}$? In the low-field susceptibility ($B_{app} = 2$ mT, μSR sample) a bulk T_c onset of 4.87 K is observed (determined by the tangent to the steepest slope of the field-cooling Meissner...
transition). However, above \(\approx 5.0 \) K there is still a very weak diamagnetic signal, which vanishes exponentially with increasing temperature. The signal is only a little weaker in field cooling than measured after zero-field cooling (zfc), but the maximum of this zfc signal is about three orders of magnitude lower than the zfc signal at 4.0 K (or 1.5 orders of magnitude weaker than the bulk Meissner effect).

This weak diamagnetism, the concomitant zero electrical resistance, and the too large \(B_{c2} \) value from resistivity data may root in two phenomena: (i) the presence of a minor SC impurity phase which forms a percolating SC network with an \(\approx 0.5 \) K higher \(T_c(0) \) and much higher \(B_{c2} \) than the main phase, or (ii) strong classical surface superconductivity of the main phase with a critical field \(B_{c1}(0) \gg B_{c2}(0) \). The second possibility seems to be unlikely due to the fact that \(T_{c,\text{surface}}(0) \neq T_c(0) \) and that the required surface critical field \(B_{c2,\text{surface}} \) would well need to exceed the Saint-James–de Gennes limit of \(\approx 1.7 B_{c2} \).

For BaPt\(_4\)Ge\(_{12}\) no homogeneity range is observed since the lattice parameter of the filled-skutterudite phase in a sample with composition Ba\(_9\)Pt\(_4\)Ge\(_{12}\) is 8.6837(3) Å, which is practically the same as for BaPt\(_4\)Ge\(_{12}\). Extended energy-dispersive x-ray spectroscopy analyses on metallographic polished surfaces of the present BaPt\(_4\)Ge\(_{12}\) sample result in a composition Ba\(_9\)Pt\(_4\)(Ge\(_{11\text{.9(1)}}\))\(_1\), which agrees very well with the nominal one. Interestingly, there is a significant difference of the lattice parameter of all our BaPt\(_4\)Ge\(_{12}\) samples [present sample \(a = 8.6838(5) \) Å with that reported by Bauer et al. \(a = 8.6928(3) \) Å], which we currently cannot explain.

The currently studied large BaPt\(_4\)Ge\(_{12}\) sample also contains, besides the BaPt\(_4\)Ge\(_{12}\) main phase, some BaPt\(_4\)Ge\(_{3}\) [no superconductivity observed above 1.8 K (Refs. 49 and 50)]. The content of this phase is estimated from Rietveld refinements to be \(\approx 4\% \). Five weak lines in the x-ray diffraction pattern belong to PtGe\(_2\). These lines are too weak to refine a phase content, therefore we estimate a PtGe\(_2\) phase fraction of below 2%. PtGe\(_2\) is reported to be a superconductor with \(T_c = 0.4 \) K. The presence of these minority phases in the BaPt\(_4\)Ge\(_{12}\) sample thus also cannot explain the observation of a higher upper critical field value in resistivity data.

The resistive percolation (a SC path) at a higher temperature than the bulk \(T_c \) hints at a modification of the surface layers of the grains of the majority skutterudite phase, probably due to crystallographic defects or strain. These effects will result in a larger scattering rate and a shorter mean free path of the charge carriers, thus making the superconductor dirtier, subsequently enlarging the effective penetration depth well above the bulk value.

Since the present samples are polycrystalline pieces, an estimate of the mean free path from the residual resistivity values by the standard formula is problematic and gives at best a lower limit for \(l \). Moreover, skutterudites are not simple metals which can be treated in a one-band model. Our estimate of the minimal mean free path in BaPt\(_{x-1}\)Au\(_x\)Ge\(_{12}\) using a free-electron model results in \(l_{\text{min}} \approx 25, 14, 14, \) and 19 nm for \(x = 0, 0.5, 0.75, \) and 1, respectively. In view of these values of \(l_{\text{min}} \), the superconductivity in the bulk of the crystallites is neither in the clean nor in the dirty limit. On the surface, however, the superconductivity seems to be in the dirty limit, leading to much shorter coherence lengths than in the bulk. Hence, crystalline defects or impurities on the grain surfaces probably lead to the higher upper critical field value in resistivity data. An open question is the clearly higher \(T_c \) of these grain surfaces. The \(T_c \) of a superconductor with defects is—in most cases—lower than the \(T_c \) of the pure material, however, it is also known that strain, especially on surfaces, can drastically enhance the \(T_c \). While the growth of single crystals of sufficient size of BaPt\(_4\)Ge\(_{12}\) was not successful until now, investigations on such crystals would be highly desirable.

IV. Conclusion

We performed an investigation using transverse-field \(\mu \)SR spectroscopy for a series of polycrystalline BaPt\(_{x-1}\)Au\(_x\)Ge\(_{12}\) superconductors with \(x = 0, 0.5, 0.75, \) and 1. Highly asymmetric \(\mu \)SR time spectra were analyzed within the framework of the GL theory by precise minimization of the GL free energy. Zero-temperature magnetic penetration depths \(\Delta(0) \) and GL parameters \(\kappa = \lambda/\xi \) were evaluated (see Table II). The temperature dependence of the superfluid density \(\rho_s \) in all the compounds saturates exponentially in the low-temperature limit, which documents the absence of nodes in the superconducting gap function. This finding is in agreement with the results of a previous NMR study. Our analysis shows that \(\rho_s \) is well described within the classical s-wave BCS model with gap-to-\(T_c \) ratios \(\Delta(0)/k_B T_c \) of 1.70, 2.07, 2.15, and 2.02 for \(x = 0, 0.5, 0.75, \) and 1, respectively. These ratios are in fair agreement with the reduced specific-heat jump \(\delta c_p/\gamma N T_c \) from our previous study. The observation of field-independent \(\lambda \) values further supports the classical s-wave pairing scenario for these compounds. Thus, the present experimental results from bulk probes point to the classical s-wave phonon-mediated superconductivity for all compounds in the series BaPt\(_{x-1}\)Au\(_x\)Ge\(_{12}\) up to \(x = 1 \). The upper critical field data from the \(\mu \)SR study are in good agreement with bulk-sensitive thermodynamic measurements of the upper critical fields of BaPt\(_4\)Ge\(_{12}\) and BaPt\(_4\)AuGe\(_{12}\). The origin of much higher upper critical fields observed in electrical resistivity measurements for the present BaPt\(_4\)Ge\(_{12}\) sample (as in previous reports) is due to a larger carrier scattering rate at the surface of the crystallites.

ACKNOWLEDGMENTS

We would like to acknowledge fruitful discussions concerning GL theory with the late E. H. Brandt. This work was partly performed at the Swiss Muon Source (S\(\mu \)S), Paul Scherrer Institut (PSI, Switzerland). The work was supported by the NCCR program “Materials with Novel Electronic Properties” (MaNEP) sponsored by the Swiss National Science Foundation. We acknowledge helpful discussions with H. Rosner and thank Yu. Grin for continuous support of our work.

APPENDIX A: DETAILS OF CALCULATIONS AND GL DEFINITIONS

Below we describe some details of our calculations and introduce the basic definitions of the GL theory used in this
analysis. As shown by Abrikosov, a type II superconductor forms a periodic vortex or FLL in a range of magnetic fields \((B)\).\(^{54}\) Here, \(B_{c1} < B < B_{c2}\), where \(B_{c1}\) and \(B_{c2}\) are the lower and upper critical fields, respectively. The GL theory used by Abrikosov proved to be one of the most useful approaches for the evaluation of the field distribution in a type II superconductor (although it is strictly valid only close to \(T_c\)) and forms the basis for the analysis of TF \(\mu\)SR data.

For the limiting cases of \(\kappa \to \infty\) (\(\kappa = \lambda/\xi\) is the GL parameter) and \(B_{c1} < B \ll B_{c2}\) simplified, second moment analysis methods were developed.\(^{30,55}\) In the general case of arbitrary \(\kappa\) and \(B\), the solution is more complicated and various approximations have been suggested.\(^{32,56-60}\) A feasible approach for the evaluation of the field distribution is the free energy \([\text{Eq.}(A1)]\) for the given \(\lambda^2/\lambda_0^2\) and finite at \(B = 0\), the superfluid density reduces with increasing field and vanishes at \(T = T_{c0}\). Therefore, with increasing field for \(b \geq 0.05\) (e.g., for a non-high-\(T_c\) superconductor; see Fig. 9) the correction factor \((1 - b)\) to the superfluid density becomes significant. The mean value of the superfluid density reduces with increasing field as follows:\(^{30,31}\)

\[
\rho_s = \langle |\psi|^2 \rangle \simeq (1 - b)\rho_0^2. \tag{A3}
\]

For small values of \(b \to 0\) and high \(\kappa\), as in most of the high-\(T_c\) superconductors, we have \(\rho_s \propto \lambda^{-2}\). In the present analysis the free energy [\text{Eq.} (A1)] for the given \(\lambda\), \(\xi\), and \(\langle B \rangle\) was minimized using the method suggested by Brandt.\(^{31}\) This results in a solution for spatial variation of the field \(\mathbf{B}(\mathbf{r})\) and the order parameter \(\psi(\mathbf{r})\).

APPENDIX B: SOME DETAILS ON EQ. (5)

We use Eq. (5) suggested in Ref. 36 for the case of arbitrary scattering rate \(1/\tau\) (mean free path \(l = v_F\tau\)). For the classical BCS gap-to-\(T_c\) ratio \(\Delta_0/k_B T_c = 1.76\) the temperature dependence of the normalized superfluid density \(\lambda_0^2/\lambda^2(t)\) obtained with Eq. (5) in clean \((\tau \gg \xi_{el}/v_F)\) and dirty \((\tau \ll \xi_{el}/v_F)\) limits is given in Fig. 10. The results are in good agreement with curves given in Ref. 35. Note, the shape of \(\lambda_0^2/\lambda^2(t)\) depends on the scattering rate only for \(\tau \sim \xi_{el}/v_F\). For the current precision of measurement the parameters \(\Delta_0\) and \(\tau\) are correlated. The dirty-limit curve with \(\Delta_0/k_B T_c = 1.76\) can be well fitted with the clean-limit model with \(\Delta_0/k_B T_c = 2.0\) (see Fig. 10).

\[
\lambda^2(t) = \lambda^2(0) \exp(-\frac{\lambda^2}{\lambda_0^2}) \tag{B1}
\]

\[
\rho_s = \langle |\psi|^2 \rangle \simeq (1 - b)\rho_0^2. \tag{B2}
\]

\[
\lambda^2(t) = \lambda^2(0) \exp(-\frac{\lambda^2}{\lambda_0^2}) \tag{B3}
\]
SUPERCONDUCTING PARAMETERS OF BaPt$_4$, Au . . .

PHYSICAL REVIEW B 86, 174513 (2012)

1. Alexander Maisuradze (alexander.maisuradze@psi.ch)

29. Small and unphysical reduction (≈5% in the field range of 50–640 mT) of λ with increasing field was obtained for the value of ξ determined from the corresponding B_2 (using the GL relation $B_2 \equiv \Phi_0/2\pi\xi^2$). Such deviation rather points to a slight systematic deviation of vortex lattice field distribution from that of the ideal GL vortex lattice.

For the charge carrier concentration we assume $n = 4$ electron holes per cell ($Z = 2$) for BaPt$_4$Ge$_{12}$ and a decrease of n to only 2 when one Pt atom is substituted by Au.