The lattice dynamics of TiO2 in the rutile crystal structure was studied by a combination of thermal diffuse scattering, inelastic x-ray scattering, and density functional perturbation theory. We experimentally confirm the existence of a predicted anomalous soft transverse acoustic mode with energy minimum at q=(1/21/21/4). The phonon energy landscape of this particular branch is reported and compared to the calculation. The harmonic calculation underestimates the phonon energies but despite this the shape of both the energy landscape and the scattering intensities are well reproduced. We find a significant temperature dependence in the energy of this transverse acoustic mode over an extended region in reciprocal space, which point to a strong role of anharmonicity in line with a substantially anharmonic mode potential-energy surface. The reported low-energy branch is quite different from the ferroelectric mode that softens at the Brillouin zone center and may help explain anomalous convergence behavior in calculating TiO2 surface properties and is potentially relevant for real behavior in TiO2 thin films.