Thermoelectric transport properties in magnetically ordered crystals. Corrigendum and addenda

Hans Grimmer*

Multiscale Materials Experiments, Research with Neutrons and Muons, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. *Correspondence e-mail: hans.grimmer@psi.ch

A correction and additions concerning the limiting point groups are made to the article by Grimmer [Acta Cryst. (2017), A73, 333–345].

Corrigendum: Restriction ** in Fig. 4(c) of Grimmer (2017) should be $\Sigma_{1212} = \frac{1}{4}(\Sigma_{1111} - \Sigma_{1122})$.

Addenda: If polycrystalline materials are considered instead of single crystals, it is often presumed that their symmetry can be described by a limit point group (Curie group). A recent example is given by Uchida et al. (2018). They measured the anisotropy of the quadratic magneto-Peltier effect in ferromagnetic polycrystalline nickel, presuming the material to be isotropic. It is therefore useful to consider, in addition to the crystallographic space–time point groups, the limit continuous ones. This leads to the following additions to Table 3 in Grimmer (2017):

<table>
<thead>
<tr>
<th>Category</th>
<th>Magnetic form class</th>
<th>Point groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>∞</td>
<td>$\infty, \infty/m$</td>
</tr>
<tr>
<td></td>
<td>$\infty\infty$</td>
<td>$\infty, \infty/m$</td>
</tr>
<tr>
<td></td>
<td>$\infty\infty\infty$</td>
<td>$\infty, \infty/m$</td>
</tr>
<tr>
<td>III4</td>
<td>∞^2</td>
<td>$\infty^2, \infty/m, \infty/mm$</td>
</tr>
</tbody>
</table>

Add in the first column of Fig. 1 ‘∞^1’ in the third cell from the bottom, ‘$\infty 21$’ in the second cell from the bottom and ‘$\infty\infty 1$’ in the bottom cell.

Add in the bottom cell of the first column of Fig. 2(b) ‘$\infty\infty 1$’ and ‘*’.

Add below Fig. 2(b) ‘*’ In Laue class $\infty\infty 1$ the components of the fourth-rank tensor satisfy the restriction $R_{1212} = \frac{1}{4}(R_{1111} - R_{1122})$, where R stands for ρ^i, k^i and Σ^i.

Add in the first column of Fig. 2(c) ‘$\infty 1$’ in the second cell from the bottom and ‘$\infty 21$’ in the bottom cell.

Add in the first column of Fig. 3 ‘∞’ in the third cell from the bottom, ‘$\infty 2$’ in the second cell from the bottom and ‘$\infty\infty$’ in the bottom cell.

Add in the bottom cell of the first column of Fig. 4(b) ‘$\infty\infty$’ and ‘*’.

Add below Fig. 4(b) ‘*’ In magnetic form class $\infty\infty\infty$ the components of the fourth-rank tensor satisfy the restriction $\Sigma_{1212} = \frac{1}{4}(\Sigma_{1111} - \Sigma_{1122})$.

Add in the first column of Fig. 4(c) ‘∞’ in the second cell from the bottom and ‘$\infty 2$’ in the bottom cell.

Add in the first column of Fig. 5 ‘$\infty 2$’ in the second cell from the bottom.

Add in the first column of Fig. 6(c) ‘$\infty 2$’ in the fourth cell from the bottom.

References
