Combined XAFS spectroscopy and ab initio study on the characterization of iron incorporation by montmorillonite

Annamária Kéri1,2,* Rainer Dähn1, Matthias Krack3, Sergey V. Churakov1,2

1Laboratory for Waste Management, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
2Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland
3Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
*Corresponding author. E-mail: annamaria.keri@psi.ch
Tel: +41 56 310 2368
Fax: +41 56 310 2199

Abstract

Iron occurs in clay minerals in both ferric and ferrous forms. Depending on its oxidation state and the environmental conditions, it can participate in redox reactions and influence the sorption processes at surfaces of clay minerals. Knowing the oxidation state and the preferential structural position of Fe²⁺ and Fe³⁺ is essential for the detailed understanding of the mechanism and kinetics of such processes. In this study, molecular dynamics (MD) calculations based on density functional theory (DFT+U) were applied to simulate the incorporated Fe in bulk montmorillonite and to explain the measured Fe K-edge X-ray absorption fine structure (XAFS) spectra. The analysis of the experimental data and simulation results suggested that iron in montmorillonite is preferentially incorporated as Fe³⁺ into the octahedral layer. The simulations showed that there is no preferential occupation of cis- or trans-sites by Fe²⁺ and Fe³⁺ in bulk montmorillonite. A very good agreement between the ab initio simulated and measured XAFS spectra demonstrate the robustness of the employed simulation approach.
1. Introduction

Iron is one of the most abundant redox-active element in soils and sediments\(^1\). Main phases containing ferrous and ferric iron in the sub-surface environment are oxides, hydroxides and clay minerals. Since clay minerals incorporate structural iron in both ferrous (Fe\(^{2+}\)) and ferric (Fe\(^{3+}\)) oxidation states, iron species associated with naturally occurring clay minerals are of a great relevance for bio-geochemical redox reaction, geochemical recycling of heavy metals and migration of radionuclides\(^1\)\(^-\)\(^5\). Accordingly, Fe-bearing clay minerals play a role in the main redox controlling phase in geochemical systems. They can concurrently act as electron donor for oxidative sorption of redox sensitive cations which affect e.g. the net negative charge of the mineral structure, the hydration of smectite surfaces and the cation exchange capacity of the clay mineral\(^6\)\(^-\)\(^8\). Wet chemistry measurements, batch sorption experiments and spectroscopy studies revealed that the adsorption of ferrous iron on clay minerals are strongly depended on the structural iron concentration and its redox state that has also an influence on the individual uptake characteristics of ferrous iron and other divalent ions when Fe-bearing clay minerals are present in the system\(^3\)\(^,\)\(^9\)\(^-\)\(^11\). The influence of the competitive sorption effects between Fe\(^{2+}\) and other relevant transition metals on their uptake characteristics remains an important issue\(^3\).

The structure of Fe-bearing smectites can be described as layers of pseudohexagonally ordered sheets of alumina octahedra sandwiched between two opposing tetrahedral siloxane sheets\(^12\). Fe\(^{2+}\) and Fe\(^{3+}\) mainly substitutes in the Al octahedral sheet while minor quantities of Fe\(^{3+}\) can substitute for Si in the tetrahedral sheet. One third of the octahedral sites are trans-symmetric and two thirds of the octahedral sites are cis-symmetric with respect to the orientation of the hydroxyl (OH\(^-\)) groups\(^12\)\(^,\)\(^13\). Most of the Fe-bearing clay minerals belong to 2:1 type of dioctahedral smectites in which only two thirds of the possible octahedral positions are occupied\(^12\). Ferric and ferrous iron can occupy both the cis- and trans-sites.

A discussion about how iron is distributed between the cis- and trans- octahedral sites in 2:1 dioctahedral smectites has been going on for many years. It has been demonstrated that iron distribution in the octahedral and in the tetrahedral layer strongly depends on the total Fe content\(^14\). A general conclusion by Stucki\(^15\) based on a variety of spectroscopic and structural measurements including Mössbauer and infrared spectroscopy\(^16\) is that with increasing iron-content in the octahedral layer, the more vacant trans-sites are, and conversely, iron-poor clay minerals exhibit with populated trans-sites. The structure of the dioctahedral Fe-rich end-member, nontronite is well-studied and the relative distribution in the octahedral layer of
many cations (e.g. Fe$^{3+}$, Mg$^{2+}$) is quantified5,17. It has also been demonstrated that the structurally incorporated iron takes place in the oxidative adsorption of transition metals that can be reversible or irreversible depending on the alterations in the lattice structure of the smectite8,17. Much less is known about iron distribution in low (~2-3%) Fe-bearing montmorillonites, such as Milos- and Wyoming-montmorillonite. According to Stucki15, the preferred occupational site should nearly equally be distributed among the cis- and trans-sites but the quantification is still lacking18. The oxidation and the reduction of structural octahedral iron has been shown to be reversible in a wide range of redox conditions. Recent experimental observations demonstrated that the reversible reduction and oxidation of Fe-rich and Fe-poor clays occurs at different redox potentials19,21. Whereas nearly 100% oxidation and reduction efficiency is achieved for Fe-poor montmorillonite, a noticeable amount of iron remain redox inactive19. Electrochemical and spectroscopic analysis of the reduction and the re-oxidation cycles performed with the different Fe-bearing smectites suggested that irreversible structural changes take place in the clay structure during the first reduction or oxidation cycle20. Despite the large body of existing experimental work investigating the redox properties of structurally incorporated iron in clay mineral lattices, the molecular-level description is still lacking because the quantitative characterization of Fe$^{2+}$ and Fe$^{3+}$ in different structural position of the clay minerals remains challenging. The origin of the difficulties is twofolds. (1) X-ray adsorption fine structure (XAFS) and Mössbauer-spectroscopy are the two most widely applied tools for the spectroscopic identification of structural Fe incorporation in clay minerals3,9,20,21,22. The data analysis is often based on reference spectra for Fe$^{2+}$ and Fe$^{3+}$ end-members, which, however, may represent Fe in a mixed structural state. (2) Iron can unequally be distributed between cis- and trans-octahedral sites which can barely or not at all be distinguished by these spectroscopic methods21,22. Significant advances in the theoretical description of the XAFS spectra made it possible to perform theoretical prediction of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) based on atomistic scale ab initio simulations. We have recently demonstrated that the combination of EXAFS spectroscopy and ab initio calculations allows a quantitative description of metal-uptake by clay minerals at the atomistic level23. A similar approach was applied to investigate speciation of arsenic24,25 and silver26 proving the applicability of this method. Studies performed on scandium and on UO$_2$ confirmed the successful application of the method to systems containing elements with delocalized f- and d-electrons which are known to be challenging for ab initio simulations27,28.
Whereas the modelling of the EXAFS spectra has nearly become a routine, the theoretical simulation of XANES spectra for complex systems is still rare. Recent advances of the theory and computational algorithms, made it possible to obtain accurate XANES spectrum of a given structure on the basis of the exact curve-wave theory29.

In this study, we demonstrate that it is possible to obtain a consistent quantitative interpretation of the measured EXAFS and XANES spectra using linear combination fit of spectra obtained from atomistic simulations. To this end, we obtained a set of \textit{ab initio} molecular dynamic trajectories of Fe-bearing montmorillonite with different structural location of ferrous and ferric iron. We further performed a sensitivity analysis of the theoretical model parameters for the XAFS spectra simulations to evaluate the effects of the changing in the structural environment and the Fe oxidation state on the spectra. Comparing the modelling results and the experimental observations, we gained insights into the structural environment of iron. To the best of our knowledge, this is the first complete theoretical evaluation of Fe K-edge XAFS modeling performed on a Fe-bearing clay mineral system.

2. Materials and methods

2.1. Modeling setup

In our study, we considered idealized defect free tetrahedra-octahedra-tetrahedra (TOT) frames of a 2:1 dioctahedral clay with the general formula of (4x[Al\textsubscript{8}Si\textsubscript{16}O\textsubscript{40}(OH)\textsubscript{8}]). It is often used as the simplest structural prototype for dioctahedral clays. The simulations were performed on a single clay particle without water in the interlayer. The dimensions of the orthorhombic supercell were (18.2×20.8×15.0)Å. Similar to the previous work23,30, the cell parameter in the “c” direction was fixed at 15 Å to minimize the interaction between the periodic images31,32. The incorporation of ferrous and ferric iron in the structure was considered as an exchange with the alumina in \textit{cis}- and \textit{trans}-octahedral position (Figure 1), respectively33.
Figure 1. Views of the modeled montmorillonite with substituted iron at the cis- and trans-sites of the octahedra. The structural incorporation of Fe is illustrated as pink (magenta) octahedron at the cis-site and dark purple octahedral at the trans-site. The cis- and trans-site substitution can be distinguished by the different relative position of hydroxyl (OH⁻) groups shown with red spheres. Alumina octahedra are shown in green while silica tetrahedra are orange.

2.2. Ab initio calculations

The spin polarized electronic structure calculations were performed based on the density functional theory (DFT) using the Gaussian Plane Wave (GPW) method as it is implemented in the QUICKSTEP module of the CP2K code34,35. The scalar-relativistic norm-conserving pseudopotentials of Goedecker, Teter and Hutter (GTH)36,37 were applied to avoid the explicit consideration of the core electrons (for iron [Ne] 3s2 3p6 4s2 3d6). The wave functions of valence electrons were described by a linear combination of contracted Gaussian-type orbitals using MOLOPT basis sets optimized for the corresponding GTH pseudopotentials38. An auxiliary basis set of plane waves was employed to expand the electronic density using an electronic density cutoff of 1500 Ry for the electronic density of states calculation and 400 Ry for molecular dynamics simulations. The exchange and correlation energy was calculated using the exchange-correlation functional of Perdew, Burke and Ernzerhof (PBE)39,40. The simulations were performed with a multiplicity \((2S + 1)_{Fe^{2+}} = 5\) for systems with a ferrous iron and \((2S + 1)_{Fe^{3+}} = 6\) for systems with a ferric iron, respectively.
Conventional DFT is known to underestimate the Coulomb repulsion between the localized 3d-electrons of Fe. In order to obtain a more accurate description of these states, the so-called DFT+U method was applied. In this semi empirical approach, an additional potential is applied on the selected 3d-states of Fe (for more details see Supporting Information 1).

Born-Oppenheimer molecular dynamics (MD) simulations using a Γ-point sampling were performed within the canonical ensemble (NVT) controlled by a stochastic thermostat employing an MD time step of 0.5 fs. In each time step, the energy was converged to 6.3×10^{-5} kcal/atom. In this way, four 20 ps long ab initio MD trajectories of montmorillonite with structural Fe$^{2+}$ and Fe$^{3+}$ present in trans- and cis-position were obtained which were used to calculate thermal averaged XAFS spectra of the Fe-bearing montmorillonite.

2.3. Calculations of EXAFS and XANES spectra

The EXAFS spectra were calculated based on molecular configurations derived from the ab initio simulations using the FEFF 8.40 software. For each atomic configuration, the scattering potential of the atoms were calculated self-consistently. The amplitude reduction factor (S^2_0) was set to 1.0. Multiscattering paths up to eight legs with path lengths up to 7.0 Å were taken into account. The radius of the cluster for self-consistent full multiple scattering calculations was set to 5.0 Å.

The thermal disorder was taken into account in two ways. In the first case, 320 molecular snapshots from MD trajectories at 300 K simulating temperature separated by a 50 fs time step were averaged. Here, the thermal motion of the atoms were “directly” considered. In the second “indirect” case, the static configurations derived from the initially relaxed structures were used with a Debye-Waller factor of 0.006 in the EXAFS calculations. Other parameters were set to the default values.

The calculated EXAFS spectra served as the basis for the interpretation of the experimental data. The linear combination fit to the experimental EXAFS spectra was performed according to Eq. 1 after max-min normalization to the value of the first oscillation of the calculated and the measured spectra.

$$ Q = \| k^3 \left(\sum_i (a_i^2 \chi_i(k)) - \chi^{exp}(k) \right) \|^2 + \| a_i^2 \|^2 \quad (1) $$

where $\langle \chi(k) \rangle_i$ are the calculated and $\chi^{exp}(k)$ is the experimental EXAFS spectra, a_i^2 are the fitting parameters for the four different types of montmorillonite structures. The fitting was limited to the interval of $k(\text{Å}^{-1}) \in [3.0, 9.0]$.
The theoretical prediction of XANES spectra is very challenging because of the complexity of the underlying equations which can only be solved in an approximate way. The aim of this study was (1) to demonstrate that the quantitative approach used for the interpretation of EXAFS spectra is also applicable to XANES spectra; (2) to determine the preferred oxidation state and occupational site of iron with two independent methods. The XANES spectra were calculated on the basis of two different theoretical approaches. The first set of the XANES spectra was obtained using the self-consistent real space multiple scattering (RSMS) method implemented in the FEFF 8.40 code. The second set of XANES spectra was obtained using the fully relativistic density functional theory with the local spin-density approximation (DFT-LSDA) code FDMNES. We calculated the spectra for 6.0 Å large molecular clusters derived from the ab initio geometry optimization and MD simulations. The scattering potentials of the atoms were calculated self-consistently (SCF) for each atomic configuration. For the structures obtained by geometry optimization, the XANES spectra were obtained by convolution of electronic DOS with an arctangent weighted Lorentzian as it is defined in the FDMNES software. Other parameters were set to the default values. (More detailed information about the FDMNES parameter choice can be found in the Supporting Information 2.) For the data from MD simulations, well-converged XANES spectra were obtained convolving 100 instantaneous snapshots (separated by 160 fs each).

The calculated XANES spectra also served as the basis for the interpretation of the experimental data after max-min normalization. The fit to the experimental XANES spectra was performed according to Eq. 2, which is conceptually similar to Eq. 1.

\[
Q = \left\| \sum_i (b_i^2 \mu_i(E)) - \mu^{exp}(E) \right\|^2 + \left\| b_i^2 \right\|^2
\]

where \(\mu_i(E) \) are the calculated and \(\mu^{exp}(E) \) is the experimental XANES spectra, \(b_i^2 \) are the fitting parameters for the four different type of montmorillonite structures. The fitting was limited to the interval of \(E (\text{eV}) \in [7110, 7200] \) (the Fe K-edge is 7112 eV).

The Euclidian norm was used during the fittings as defined by the scalar product. The fit was accepted when the spectra features in the XAFS signal matched and the \(Q \) values (indicators for the fit quality) were the lowest for the given \(a_i^2 \) and \(b_i^2 \) values, respectively.

2.4. XAFS experiments

Two type of low Fe-bearing montmorillonite samples were used which show similar diversity of octahedral crystal chemistry. A Milos- (Mil) and a Wyoming-montmorillonite (SWy) sample was prepared from the “as received” material without any physical or chemical
treatment by pressing a pellet. The Fe K-edge XAFS spectra were collected at the Stanford Synchrotron Radiation Lightsource (SSRL, Menlo Park, CA) at the beamline 11-2 using a Si(220) double crystal monochromator and a Canberra 100-pixel Ge solid-state monolith detector. Higher order harmonics were rejected by detuning the monochromator by 30%. The monochromator angle was calibrated at the Fe K-edge by assigning the energy of 7112 eV to the first inflection point of the K-edge absorption spectrum of Fe metal foil. XAFS data reduction was performed with the Athena/Artemis interface of the IFEFFIT software following standard procedures.

3. Results and Discussion

3.1. EXAFS spectra

The calculated Fe K-edge EXAFS spectra for montmorillonite with Fe$^{2+}$ and Fe$^{3+}$ located in the cis- and trans-occupational sites were obtained and compared with experimental spectrum. The statistical and thermal disorder was first taken into account directly as the MD trajectories modeled at 300 K temperature served as the basis for the spectroscopic calculations (Figure 2a). In the second case, when the relaxed atomic structures at 0 K were the basis for the EXAFS calculations, a global Debye-Waller factor was applied in the spectroscopic studies (Figure 2b). Although, the MD based EXAFS spectra were broadened, the spectra obtained from the relaxed geometries and the MD trajectories agree very well (Figure 2a,b).

The calculated spectra for Fe$^{2+}$ and Fe$^{3+}$ are clearly different in both cases. The first difference between the spectra with distinct iron ionic state is a slight shift in the first oscillation at $k\sim4.3/4.5$ Å$^{-1}$. A double-bounced oscillation at $k\sim6.1/6.6$ Å$^{-1}$ was present only for the structures containing ferric iron. Differences could also be seen at the third oscillation ($k\sim7.7/8.4$ Å$^{-1}$) where the shoulders were at the opposite side (left for Fe$^{2+}$ and right for Fe$^{3+}$). On the other hand, iron in the cis- or trans-coordination (light and dark lines on Figure 2a,b) turned out to have a minor effect on the obtained spectra.

The spectra of the Milos- and Wyoming-montmorillonite samples were similar, the only difference appeared at the double-bounced oscillation at $k\sim6.1/6.6$ Å$^{-1}$. The second oscillation for the SWy sample was higher.
Figure 2. Experimental EXAFS spectra (red circles for Milos- and orange triangle for SWy-montmorillonite) of montmorillonite with iron incorporation and modeled EXAFS spectra (lines) of Fe incorporated in the octahedral layer of 2:1 clay. In panels a and b, blue colors correspond to the incorporated ferrous iron (Fe$^{2+}$), while green colors represent incorporated ferric iron (Fe$^{3+}$). The lines with lighter color represent the iron at the cis-site, while dashed darker lines correspond to the trans-occupational site. In panels c–f, the lines represent the linear combination fits, the darker purple lines show “Fit 1”, while the dashed lighter pink lines correspond to the “Fit 2”. Panels c and d represent fits to the Milos- montmorillonite spectra with contributions determined in Table 1, while panels e and f show linear combination fits for SWy-montmorillonite spectra with contributions determined in Table 2. The calculated EXAFS spectra for panels a, c, and e were derived from MD simulations, while in panels b, d, and f, the relaxed structures served as a basis.
The qualitative comparison of the calculated EXAFS spectra and the experimental ones indicate that the iron is present mainly in the Fe$^{3+}$ form in both Milos- and Wyoming-montmorillonite. Several linear combination fits of the measured Milos- and Wyoming-montmorillonite spectra based on the theoretical one for the Fe$^{2+}_{\text{cis}}$, Fe$^{2+}_{\text{trans}}$, Fe$^{3+}_{\text{cis}}$ and Fe$^{3+}_{\text{trans}}$ were performed, in order to obtain a quantitative estimation of the preferential occupational sites and the iron oxidation state. The best linear combination fits ("Fit 1" in Table 1 and 2) obtained based on the MD trajectories and the relaxed structures are compared with the experimental data in Figure 2c-f. The best agreement ("Fit 1") could be obtained for weighted spectra containing of Fe$^{2+}$ (30-40%) and Fe$^{3+}$ (60-70%). Iron was found to be preferentially in ferric form in both Milos- and Wyoming-montmorillonite that agreed with the assumption of earlier studies9,53,58. The differences in the quality of the fits between the Milos- and Wyoming-montmorillonite can be explained by the different distribution of the Fe atoms in the structure. The Fe$^{3+}$ atoms are randomly distributed in Milos-montmorillonite, while Wyoming-montmorillonite displays an ordered iron distribution53. The simulations were performed at low Fe concentration without considering iron-iron clustering. The iron-iron clustering is believed to be responsible for the double-bounced oscillation at $k \sim 6.1/6.6$ Å$^{-1}$, therefore could not be reproduced with the applied structural model.

The spectra of Fe$^{2+}_{\text{cis}}$ and Fe$^{2+}_{\text{trans}}$ as well as the spectra of Fe$^{3+}_{\text{cis}}$ and Fe$^{3+}_{\text{trans}}$ show only slight differences, thus a second linear combination fit ("Fit 2") was performed on the calculated structures. In this case, the total contributions of the Fe$^{2+}$ and Fe$^{3+}$ were kept the same, but the contributions of the different occupational sites were equalized (Table 1 and 2). The comparison of the fitting quality (Table 1 and 2) in and the fitted curves (Figure 2c-f) revealed that there were only small differences between the two fits. Therefore, the preferential occupation of cis- or trans-sites by Fe$^{2+}$ and Fe$^{3+}$ in montmorillonite could not be determined by only comparing the calculated and the measured EXAFS spectra.
Table 1. Parameters (contributions and quality (Q_{Mil})) of the EXAFS and XANES linear combination fit of incorporated iron with distinct oxidation state (Fe$^{2+}$/Fe$^{3+}$) at different occupational site (cis/trans) for Milos-montmorillonite, respectively.

<table>
<thead>
<tr>
<th>Basis of the EXAFS calculation</th>
<th>Number of the fit</th>
<th>Contribution [%]</th>
<th>Q_{Mil} [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAFS</td>
<td></td>
<td>Fe$^{2+}$</td>
<td>Fe$^{3+}$</td>
</tr>
<tr>
<td>MD trajectories</td>
<td>“Fit 1”</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2b</td>
<td>“Fit 2”</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Relaxed structures</td>
<td>“Fit 1”</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2d</td>
<td>“Fit 2”</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

XANES		Fe$^{2+}$	Fe$^{3+}$			
MD trajectories	“Fit 1”	0	0	100	0	0.600
Figure 4b	“Fit 2”	0	0	50	50	0.627
Relaxed structures	“Fit 1”	0	0	100	0	0.442
Figure 4d	“Fit 2”	0	0	50	50	0.443

a“Fit 1” corresponds to the “best fit”, while “Fit 2” is the constrained “equal site distribution fit”.

bQ$_{Mil}$ is calculated using Eq. 1 for EXAFS and Eq. 2 for XANES.

Table 2. Parameters (contributions and quality (Q_{SWy})) of the EXAFS and XANES linear combination fit of incorporated iron with distinct oxidation state (Fe$^{2+}$/Fe$^{3+}$) at different occupational site (cis/trans) for SWy-montmorillonite, respectively.

<table>
<thead>
<tr>
<th>Basis of the EXAFS calculation</th>
<th>Number of the fit</th>
<th>Contribution [%]</th>
<th>Q_{SWy} [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAFS</td>
<td></td>
<td>Fe$^{2+}$</td>
<td>Fe$^{3+}$</td>
</tr>
<tr>
<td>MD trajectories</td>
<td>“Fit 1”</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2b</td>
<td>“Fit 2”</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Relaxed structures</td>
<td>“Fit 1”</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2d</td>
<td>“Fit 2”</td>
<td>21.5</td>
<td>21.5</td>
</tr>
</tbody>
</table>

XANES		Fe$^{2+}$	Fe$^{3+}$			
MD trajectories	“Fit 1”	0	0	0	100	0.582
Figure 4b	“Fit 2”	0	0	50	50	0.603
Relaxed structures	“Fit 1”	0	0	0	100	0.389
Figure 4d	“Fit 2”	0	0	50	50	0.391

a“Fit 1” corresponds to the “best fit”, while “Fit 2” is the constrained “equal site distribution fit”.

bQ$_{SWy}$ is calculated using Eq. 1 for EXAFS and Eq. 2 for XANES.
Figure 4. Experimental XANES spectra (red circles for Milos- and orange triangle for SWy-montmorillonite) of montmorillonite with iron incorporation and modeled XANES spectra (lines) of Fe incorporated in the octahedral layer of 2:1 clay. In panels a and b, blue colors correspond to the incorporated ferrous iron (Fe2+), while green colors represent incorporated ferric iron (Fe3+). The lines with lighter color represent the iron at the cis-site while dashed darker lines correspond to the trans-occupational site. In panels c–f, the lines represent the linear combination fits, the darker purple lines show Fit 1, while the dashed lighter pink lines correspond to the Fit 2. Panels c and d represent fits to the Milos-montmorillonite spectra with contributions determined in Table 1, while panels e and f show linear combination fit for SWy-montmorillonite spectra with contributions determined in Table 2. The calculated XANES spectra for panels a, c, and e were derived from MD simulations, while for panels b, d, and f, the relaxed structures served as a basis.
3.2. XANES spectra

Fe K-edge XANES spectra based on the RSMS approach for montmorillonite with Fe$^{2+}$ and Fe$^{3+}$ located in the cis- and trans-occupational sites were obtained and compared with the experimental spectrum (Figure 3). At a first glance, the simulation and the measurement results seem to agree, the characteristic shoulder at about 7140 eV of the main peak is over predicted (Figure 3). A more clear difference can be seen in the pre-edge region where the experimental spectrum shows only a smooth shoulder but the RSMS calculations predict sharp pre-edges.

![Figure 3](image)

Figure 3. Experimental XANES spectra (red circles) of montmorillonite with iron incorporation and *ab initio* XANES spectra (lines) of Fe incorporated in the octahedral layer of 2:1 clay applying FEFF 8.40 software. Blue colors correspond to the incorporated ferrous iron (Fe$^{2+}$) while green colors represent incorporated ferric iron (Fe$^{3+}$). The lighter straight lines represent the Fe at the *cis*-site while dashed darker lines correspond to the *trans*-occupational site. The XANES spectra for *a*) were derived from the relaxed structures while for *b*) the MD simulations served as a basis.

The contradictions in the XANES spectra obtained with FEFF 8.40 software suggest that another, more sophisticated theoretical method should be applied. Therefore, we also calculated the XANES spectra based on the fully relativistic DFT-LSDA method for the four different structures with relaxed geometries using the FDMNES software49. The calculated spectra agreed well with both the measured XANES of the Milos- and the SWy-montmorillonite samples, however, the spectra obtained for Fe$^{2+}$ and Fe$^{3+}$ are clearly different (Figure 4a,b). The shape of the first edge of the XANES spectra for Fe$^{2+}$ and Fe$^{3+}$ are very
similar, only a small energy shift (1-2 eV) can be recognized. The height of the characteristic shoulder at about 7135 eV demonstrates more clearly the difference between Fe\(^{2+}\) and Fe\(^{3+}\) (Figure 4a,b). This shoulder is also clearly seen in the experimentally measured spectra and its height is closer to the one of Fe\(^{3+}\) (Figure 4a,b). The structural coordination environment (cis- and trans-site) of the Fe octahedron seems to have little effect on the calculated spectra that agrees well with the previous EXAFS studies.

The oxidation state and the preferential occupational site of the substituted iron atoms were determined using the linear combination fit defined as in Eq. 2. The data can be fitted best as a linear combination (“Fit 1”) of \(Fe^{2+}_{\text{cis}}, Fe^{2+}_{\text{trans}}, Fe^{3+}_{\text{cis}}\) and \(Fe^{3+}_{\text{trans}}\) (Table 1 and 2). The corresponding compounds of the fits agreed best within the margin of errors. The exclusive contribution of the calculated \(Fe^{3+}_{\text{cis}}\) spectrum in the linear combination fit to measured Milos-montmorillonite spectrum ensured that ferric iron is preferred in the bulk incorporation. As the XANES spectra of the SWy-montmorillonite is very similar to the Milos-montmorillonite (with a nearly identical shoulder at the right side of the first peak), the exclusive ferric iron contribution is expected. The differences can be seen in the post-edge region cannot be reproduced assuming random distribution of the iron atoms in the sample.

A “Fit 2” was also performed similarly to the EXAFS case when the total contributions of the Fe\(^{2+}\) and Fe\(^{3+}\) were kept the same but the contributions of the different occupational sites were equalized (Table 1 and 2) to test the contribution of the different occupational site. The comparison of the fitting quality (Table 1 and 2) and the fitted curves (Figure 4c-f) revealed that there were only small differences between the two fits. Therefore, the preferential occupation of cis- or trans-sites by Fe\(^{2+}\) and Fe\(^{3+}\) in montmorillonite could not be inferred from the XAFS spectra alone.

3.3. Structural position of Fe in bulk montmorillonite

The structural parameters of the relaxed structures from geometry optimization were compared with the measurement results to obtain information about the differences between the different structures (Table 3). The average Fe\(^{2+}\) – O distances of \(2.13 \pm 0.03\) Å are longer than the Fe\(^{3+}\) – O distances of \(2.03 \pm 0.03\) Å. The calculated distances are nearly identical for the cis- and trans-sites. The Fe – Al and Fe – Si distances are identical for Fe\(^{2+}\) and Fe\(^{3+}\) (Table 3). Therefore, the Fe-O shell provides only a hint about the oxidation state, whereas any conclusions about the cis- or trans-occupation based on the structural data are highly speculative.
Table 3. Structural parameters and energy difference of bulk montmorillonite with iron incorporation derived from the \textit{ab initio} calculations and EXAFS measurements

<table>
<thead>
<tr>
<th>Structural parameters</th>
<th>Fe$^{2+}$</th>
<th>Fe$^{3+}$</th>
<th>EXAFS (Milos)</th>
<th>Measurement (Milos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cis</td>
<td>Trans</td>
<td>Cis</td>
<td>Trans</td>
</tr>
<tr>
<td>Fe−O$_{\text{All}}$</td>
<td>6.0 ± 0.1</td>
<td>6.0 ± 0.1</td>
<td>6.0 ± 0.1</td>
<td>6.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>R [Å]</td>
<td></td>
<td></td>
<td>2.14 ± 0.03</td>
</tr>
<tr>
<td>Fe−O$_{\text{H}}$</td>
<td>2.0 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>R [Å]</td>
<td></td>
<td></td>
<td>2.08 ± 0.04</td>
</tr>
<tr>
<td>Fe−O$_{\text{C}}$</td>
<td>4.0 ± 0.1</td>
<td>4.0 ± 0.1</td>
<td>4.0 ± 0.1</td>
<td>4.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>R [Å]</td>
<td></td>
<td></td>
<td>2.14 ± 0.03</td>
</tr>
<tr>
<td>Fe−Al</td>
<td>3.0 ± 0.1</td>
<td>3.0 ± 0.1</td>
<td>3.0 ± 0.1</td>
<td>3.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>R [Å]</td>
<td></td>
<td></td>
<td>3.04 ± 0.03</td>
</tr>
<tr>
<td>Fe−Si</td>
<td>4.0 ± 0.1</td>
<td>4.0 ± 0.1</td>
<td>4.0 ± 0.1</td>
<td>4.0 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>R [Å]</td>
<td></td>
<td></td>
<td>3.25 ± 0.03</td>
</tr>
</tbody>
</table>

Energy difference [kcal/mol] 0.0 ± 0.5 0.0 ± 0.5 — —

aO$_{\text{All}}$ corresponds to the all oxygen atoms in the first shell

bO$_{\text{H}}$ corresponds to the oxygen atoms of OH$^-$ groups in the first shell

cO corresponds to the oxygen atoms (not member of OH$^-$ groups) in the first shell

The occupancy of the \textit{cis}- and \textit{trans}-sites can be evaluated based on the relative energies of Fe substitution in the \textit{cis}- and \textit{trans}-octahedra. The calculations predict that for low Fe content investigated in this study, the relative energies of iron (both Fe$^{2+}$ and Fe$^{3+}$) in \textit{cis}- and \textit{trans}-sites are equal within the uncertainties of the calculations (Table 3). This means that iron is randomly distributed between the \textit{cis}- and \textit{trans}-sites. The observation is consistent with the very similar structural parameters obtained in the XAFS simulations.

A previous \textit{ab initio} study showed the differences between ferrous and ferric iron bearing smectites investigating their structural properties (local structure of iron, hydroxyl orientations, vibration dynamics of H and Si)59. Our calculated structural parameters showed good agreement with the results of this study59: the average Fe – O bond lengths (2.11 Å and 2.02 Å) agreed within the uncertainty and Fe substitutions did not affect the coordination structures of the Al – O and Si – O polyhedral in neither studies59.
4. Implication of the theoretical study in the interpretation of XAFS

This study demonstrates that the full XAFS spectra of natural montmorillonites can be obtained as a linear combination fit of theoretical ab initio XAFS spectra calculated based on ab initio MD trajectories for pure phases without any empirical adjustments of structural parameters such as bond distances or coordination. Performed linear combination analysis yields valuable information on the mechanism of structural incorporation of Fe in natural clay minerals. The comparison of two different theoretical approaches for XAS calculations (RSMS and DFT-LSDA) demonstrates that XANES calculations for elements with 3d-electrons largely depends on the used theory. The differences between predictions of the two methods are significant and influence the accuracy of the quantitative data analysis. The results of the linear combination fit of XANES spectra obtained based on the DFT-LSDA approach showed best agreement with the corresponding analysis of the EXAFS spectra. The quantitative analysis of both EXAFS and XANES spectra suggest that iron is predominantly present in bulk montmorillonite in Fe$^{3+}$ oxidation state. The experimental spectra could be fitted equally well by assuming arbitrary contribution of Fe in cis- and trans-sites or imposing equal occupation of these sites. The energy calculations suggested that at low concentrations Fe$^{2+}$ and Fe$^{3+}$ are equally distributed between cis- or trans-sites.

An important step towards is the better understanding of the iron uptake mechanism in the determination of relevant edge surfaces of montmorillonite. Such information will be essential for understanding the mechanism of the probable oxidative uptake of iron (Fe$^{2+}_{aq}$ -> Fe$^{3+}_{surf}$) by clay minerals9. In the best case, the comparison of the ab initio based XAFS calculations and the measurements will result in the determination of the oxidation state of Fe in the bulk and at the surface. The results may give insight on whether the Fe$^{2+}$ -> Fe$^{3+}$ redox reaction occurs between the Fe atoms adsorbed on the surface and incorporated structurally into the bulk.

5. Acknowledgements

The research leading to these results has received funding from the Swiss National Foundation (SNF) through project number SNF-200021_156412 (2015-2018). The authors also acknowledge the financial support from Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA). The help of the staff of the beamline 11-2 at the SSRL is gratefully acknowledged. Use of the Stanford Synchrotron Radiation Lightsource, SLAC...
National Accelerator Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. The work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID “s620”. The use of computer resources of the Merlin 4 Cluster, Paul Scherrer Institute is also gratefully acknowledged. The authors are grateful to Dr. Enzo Curti for the critical discussion of the XANES results.

References

