Pressure effects on the electronic properties of the undoped superconductor ThFeAsN

N. Barbero,1,* S. Holenstein,2,3 T. Shang,2,4 Z. Shermadini,2 F. Lochner,5,6 I. Eremin,6 C. Wang,7 G.-H. Cao,8,9 R. Khasanov,2 H.-R. Ott,1,2 J. Mesot,1,2 and T. Shiroka1,2
1Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zurich, Switzerland
2Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
3Physik-Institut der Universität Zürich, Wintherterstrasse 190, CH-8057, Zürich, Switzerland
4Institute of Condensed Matter Physics, EPFL Lausanne, CH-1015 Lausanne, Switzerland
5Max-Planck-Institut für Eisenforschung, D-40237 Düsseldorf, Germany
6Theoretische Physik III, Ruhr-Universität, D-44801 Bochum, Germany
7Department of Physics, Shandong University of Technology, Zibo 255049, China
8Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
9Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

(Received 31 January 2018; revised manuscript received 3 April 2018; published 13 April 2018)

The recently synthesized ThFeAsN iron pnictide superconductor exhibits a T_c of 30 K, the highest of the 1111-type series in the absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic investigations up to 3 GPa via magnetization, nuclear magnetic resonance, and muon-spin rotation experiments. The temperature dependence of the 75As Knight shift, the spin-lattice relaxation rates, and the magnetic penetration depth suggests a multiband s^\pm-wave gap symmetry in the dirty limit, whereas the gap-to-Δ_1/k_BT_c ratio Δ/k_BT_c hints at a strong-coupling scenario. Pressure modulates the geometrical parameters, thus reducing T_c as well as T_m, the temperature where magnetic-relaxation rates are maximized, both at the same rate of approximately -1.1 K/GPa. This decrease in T_c with pressure is consistent with band-structure calculations, which relate it to the deformation of the Fe $3d_{3z^2}$ orbitals.

DOI: 10.1103/PhysRevB.97.140506

Introduction. The doping-induced superconductivity below $T_c = 26$ K in LaFeAsO$_{1-x}$F$_x$ [1] triggered long-term research interests towards iron-based superconductors (FeSCs), further boosted by the $T_c = 55$ K of SmFeAsO$_{1-x}$ [2]. Recently, we reported on superconducting properties of ThFeAsN [3], an undoped FeSC with a remarkable T_c of 30 K. Our data indicate that Fermi-surface modifications due to structural distortions and correlation effects may be as effective as doping in suppressing the antiferromagnetic order in favor of the formation of a superconducting phase. This is in contrast with most other REFeAsO-type compounds (RE = rare earth) where the antiferromagnetic order in nominally undoped FeSC compounds, (ii) why they become superconductors, and (iii) what determines their T_c values, we investigated ThFeAsN under applied hydrostatic pressure using different local probes. Hydrostatic and/or chemical pressure modify the structure and thus tune the T_c of iron-based superconductors, such as FeSe, whose original $T_c = 8.5$ K increases to 36.7 K at 8.9 GPa [13]. In particular, hydrostatic pressure is regarded as a clean tuning parameter for studying the effects of structural distortions on the electronic properties. A dependence of T_c on the structural distortions [14] or on the anion height above the iron layers [15] h_{ps} (see Fig. 1 in Mizuguchi et al. [15]) has previously been noted. With $a = 4.037$ and $c = 8.526$ Å [16], the tetragonal ($P4/nmm$) structure of ThFeAsN implies an $h_{\text{ps}} = 1.305(4)$ Å, lower than the optimum anion height $h_{\text{ps}}^{\text{opt}} = 1.38$ Å [15]. Hence, in the case of ThFeAsN, structural deformations induced by hydrostatic pressure would invariably lower T_c [16], in contrast to the above-mentioned FeSe case. To test this hypothesis and understand how pressure affects the electronic properties of an undoped 1111 superconducting compound, we performed magnetization, nuclear magnetic resonance (NMR), and muon-spin rotation (μSR) measurements on ThFeAsN under applied pressures up to 3 GPa.

First, we confirm experimentally the expected reduction of T_c with pressure. Then, on account of the T dependence of the NMR Knight shifts, spin-lattice relaxation rates, as well as μSR relaxation rates, we argue that the energy gap Δ of superconducting ThFeAsN adopts the s^\pm symmetry, which persists up to at least 1.47 GPa. In the same pressure region, the ratio $R = \Delta/k_BT_c$ is reduced continuously from 2.16(3) at ambient pressure to 1.82(3) at 2.48(2) GPa, thus exceeding the BCS weak-coupling value of 1.76. The moderate

*ndes@phys.ethz.ch
variation of \(T_c \) with pressure is corroborated by results of band-structure calculations which imply only tiny changes in the electronic excitation spectrum around \(E_F \). The abrupt quenching of magnetic excitations, as indicated by a cusp in \(1/T \nu(T) \) at \(T_m > T_c \), persists upon increasing pressure, and \(T_m \) is reduced at the same rate as \(T_c \).

Synthesis and preliminary characterization. The polycrystalline ThFeAsN sample was synthesized via a high-temperature solid-state reaction as reported in Ref. [16]. X-ray diffraction and energy-dispersive x-ray measurements confirmed the absence of spurious phases (within \(\sim 1\% \)).

Magnetization measurements under applied pressure. The magnetization measurements were performed with a superconducting quantum interference device magnetic property management system-XL magnetometer. Preliminary measurements at ambient pressure revealed the presence of a tiny quantity of impurities (\(\sim 0.18\% \), assuming that they are of ferromagnetic nature) [3,16]. This, along with a broad drop-down in \(M(T) \) data below \(T_c \), related to defect-induced disorder, suggest that ThFeAsN in the SC phase should be described by models in the dirty limit. Hydrostatic pressures up to 3.1 GPa were achieved by means of a homemade piston-clamped high-pressure cell. The \(75\)As NMR investigations included line- and spin-lattice relaxation time (\(T_1 \)) measurements in a magnetic field of 7.06 T [20]. \(T_1 \) values measured at both peaks of the central-transition line via inversion recovery resulted identical. Pressure was monitored in situ by using the nuclear quadrupolar resonance signal of \(^{61}\)Cu in Cu2O [21].

A typical \(75\)As NMR line at 7.06 T is shown in the inset of Fig. 1(c). Due to the large quadrupole moment of \(75\)As (\(Q = 31.4 \) fm\(^2\)), we considered only the central component of the NMR spectrum, which exhibits a typical second-order powder pattern with dipolar broadening. For temperatures from 4 to 295 K and hydrostatic pressures from zero up to 1.47 GPa, the central-line transition exhibits minor changes in shape and position. The spectra were fitted using the quadrupolar exact software (QUEST) [22], assuming no planar anisotropy (\(\eta = 0 \) as from experimental observations) and obtaining typical quadrupolar frequencies \(\nu_Q \) of \(\sim 5.6 \) MHz. The full width at half maximum (not shown) is negligibly affected by temperature or pressure, thus confirming the absence [3,23] of AFM long-range order, which would otherwise result in a remarkable broadening of the spectral lines starting at the onset of the transition.

Figure 1(c) shows the Knight-shift \(K(T) = (\nu - \nu_L)/\nu_L \) values as a function of temperature. At all the applied pressures, \(K(T) \) exhibits a linearly decreasing trend below \(T_m \), compatible with an \(s^\pm \)-wave scenario [12]. In fact, \(K(T) \sim \text{Re} \chi_s(q = 0, \omega \rightarrow 0) \), i.e., in the uniform susceptibility limit (\(q = 0 \)), the interband scattering is suppressed, and the Knight-shift value includes only the independent contributions from the hole and electron bands [12,24]. In the clean limit, this implies an exponential temperature dependence for \(K(T) \) in the \(s^\pm \)-wave case. However, as confirmed by magnetization data, our sample is not free of impurities. As reported in the literature [24–27], impurity self-energies form resonance states inside the SC gap.

FIG. 1. (a) Temperature dependence of magnetization for selected applied pressures, measured at \(\mu_0 H = 2 \) mT. (b) \(75\)As NMR \(1/T_1(T) \) data at ambient and at selected hydrostatic pressures. The line represents a \(T^3 \) behavior of relaxation with the exponent decreasing down to 3.6 at 1.47 GPa. To improve the readability of the plot, we do not indicate the \(T_m \) and \(T_c \) values, but we report them in Fig. 2. (c) Temperature dependence of the \(75\)As NMR Knight shift at three selected pressures. Uncertainties are on the order of the marker size. Inset: the \(75\)As NMR signal measured at 1.47 GPa, 7.06 T, and 25 K.
Tm at 7 T, respectively. The inset shows the temperature dependence of magnetization measurements at 2 mT and from NMR measurements. This refers to the temperature where the electronic relaxation rates are maximized. Red and blue squares indicate the Tc values from magnetization measurements at 2 mT and from NMR measurements at 7 T, respectively. The inset shows the temperature dependence of 1/T1/T at ambient pressure, highlighting the maximum at Tm and a kink at Tc. Recently, a similar but broader feature in 1/T1/T of FeSe was attributed to a pseudogap behavior [18]. Note that, for ThFeAsN, Tm was measured at different pressures as shown in Fig. 1(b).

We observe that pressure reduces the distance between the peaks. This implies a slight symmetry enhancement upon increasing pressure, resulting in σV_{zz} values of -1.65×10^{23} and -1.45×10^{23} V/m² at ambient pressure and 1.47 GPa, respectively.

To study the electron-spin dynamics, the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1 was measured at different pressures as shown in Fig. 1(b). At all pressures, 1/T1(T) exhibits a maximum at Tm if plotted as 1/(T1T) (see the inset of Fig. 2). The data above Tm reveal an additional relaxation channel due to short-range AFM spin fluctuations as shown by Mössbauer [23] and ambient-pressure NMR [3] results, the latter extending to values of $T/T_m < 0.5$. Below Tm, this relaxation channel is increasingly inhibited before the onset of superconductivity at Tc, which reduces 1/(T1T) even further. Note that, as shown in Fig. 2, Tm(p) decreases monotonously by -1.0 ± 0.1 K/GPa, i.e., virtually with the same slope as $\partial T_1/\partial p$. The Tc values (the onset of SC transition) were determined from 2-mT magnetization measurements (the red squares) and from the maxima of the T derivative of the NMR spin-lattice relaxation data at 7.06 T (the blue squares) as described in the Supplemental Material [28].

In several 1111 FeSCs, the T3 dependence [29,30] of 1/T1(T) suggests a nodal gap, however, ruled out by angle-resolved photoemission spectroscopy experiments [31]. By employing T-matrix theory, the impurity-scattering effect has been included in the modeling of the 1/T1(T) dependence [32]. For $r = 0$, one obtains the exponential behavior of 1/T1(T) expected for an s± wave [33], whereas for $r = r_c$, one finds 1/T1(T) $\propto T^3$ and a suppression of the Hebel-Slichter coherence peak [34], in good agreement with experiments [29]. Our data, shown in Fig. 1(b), exhibit an even steeper T dependence of the type 1/T1(T) $\propto T^3$ as previously reported for other FeSCs [27,35]. Such a T3 behavior does not require a different gap symmetry if strong-coupling effects are taken into account as discussed in the Introduction. According to theoretical estimates, a $R \equiv \Delta/k_B T_c = 2.5$ ratio in a dirty-limit sample with $r = r_c$ gives rise to the observed T3 power-law behavior [34]. The reduction of the power-law exponent from 5 to 3.6 for pressures from zero to 1.47 GPa indicates a pressure-induced weakening of the coupling, in good agreement with our μSR results (see below). The same results also rule out a clean d-wave superconductivity scenario and are compatible with an iso-/anisotropic s- or s±-wave model for ThFeAsN [3,36].

Transverse-field-μSR measurements under high pressure. The μSR investigations were performed at the general purpose (GPS) (ambient pressure) and the general purpose decay-channel (GPD) (high-pressure) spectrometers of the Paul Scherrer Institut, Villigen. Since the high-pressure measurements require a relatively large sample mass (~2 g), a new polycrystalline sample with $T_c = 27$ K was prepared. The lower T_c is due to a different preparation protocol. The GPS measurements on the new batch confirmed the earlier findings [3] and were used as a reference to analyze the high-pressure data. The muon fraction stopping in the pressure cell ($f_{cell} = 60\%$) was determined by fitting a zero-field (ZF) spectrum with the cell relaxation rates fixed at their literature values [37] and the sample relaxation rate fixed at the GPS value, hence leaving the muon stopping fraction as the only free parameter. The absence of significant changes with temperature in the ZF relaxation rate of the sample, even at the highest pressure, rules out a possible pressure-induced magnetic order. Thus, we focused on the TF measurements in the SC region, carried out at 70 mT. The data were analyzed using

$$A(t)/A_0 = (1 - f_{cell}) \cos(\gamma_d B_{cell} t + \phi) \exp(-\lambda_{cell} t - \sigma_{cell}^2 t^2/2) + f_{cell} \cos(\gamma_d B_{cell} t + \phi) \exp(-\lambda_{cell} t - \sigma_{cell}^2 t^2/2),$$

where A_0 is the initial asymmetry, γ_d is the muon gyromagnetic ratio, B is the local field at the muon stopping site, ϕ is the...
Figure 3: Temperature dependence of λ_{ab}^2 as extracted from TF-\mu SR measurements shows a suppression of T_c with pressure but no changes in functional form. The inset: Fits of $\lambda_{ab}^2(T)$ data taken at the highest pressure by using different SC models. Note that the one-gap and the two-gap s-wave models overlap perfectly.

Figure 4: ThFeAsN band-structure calculations upon increasing pressure. Note the lack of major changes at the Fermi-energy level except for a minor change in the $3d_{z^2}$ orbitals close to the Z point.

Band-structure calculations. For the density functional theory (DFT) calculations we resorted to the Vienna \textit{ab initio} simulation package (VASP) [41–43] with the projector augmented wave [44] basis and made use of the measured ThFeAsN crystal parameters [16]. Hereby, we use VASP in the generalized-gradient approximation [45] and show in Fig. 4 the resulting band-structure evolution with pressure. One can rule out substantial pressure effects on the electronic structure—within the accuracy of band-structure calculations—including here changes in the effective mass. For the experimentally accessible pressure values, we find insignificant modifications of the electronic structure except for a minor change in the $3d_{z^2}$ orbitals close to the Z point.

This lack of substantial pressure effects raises the question of the origin of T_c suppression in this compound. We recall that the electronic properties of ThFeAsN are similar to those of LaFeAsO$_{0.8}$F$_{0.1}$ and that, as shown above, ThFeAsN can be regarded as a superconductor in the dirty limit [40]. In this case, despite a nested electronic structure, the AFM ordering of excitonic type is more sensitive to disorder than is the s^\pm-wave superconductivity [46–49]. Hence, in the nominally undoped compound, disorder tends to promote the s^\pm states over the AFM ordering. Indeed, disorder affects the magnetic order by lowering T_N, whereas, in the case of superconductivity, the inter-/intra-band scattering plays a major role, and only the interband impurity scattering lowers the T_c. This may explain why, in contrast to the cleaner LaFeAsO, ThFeAsN is a superconductor instead of an antiferromagnet, although both are nominally undoped compounds.

As reported in Ref. [50], in doped LaFeAsO hydrostatic pressure does not influence T_c, although the superfluid density is enhanced. In fact, pressure seems to slightly change the ratio of intra- to interband impurity scattering without sensibly affecting T_c. The most plausible reason for the lowering of T_c with pressure in ThFeAsN could be a subtle modification of the electronic structure (beyond density functional theory), which can account for the simultaneous suppression of the...
AFM fluctuations and of the SC. For example, smaller Fermi-surface pockets (with respect to simulations) would imply a much stronger effect of pressure on the electronic structure. Nearly all iron-based superconductors, including the LaFeAsO family, exhibit an unusual renormalization of the electronic structure, which results in much smaller Fermi-surface pockets than anticipated from DFT calculations [51]. By assuming such a renormalization, i.e., the so-called red/blueshift for the pockets, one may justify the suppression of AFM fluctuations and SC in ThFeAsN as well.

Conclusion. In ThFeAsN, the Knight-shift $K(T)$, the spin-lattice relaxation times $T_1(T)$, and the London penetration depth $\lambda(T)$ indicate that pressure reduces T_c $[\partial T_c/\partial P = -1.12(2) \text{ K/GPa}]$ and weakens the pairing interaction as measured by the ratio $\Delta/k_B T_c$. Interestingly, $T_m(p)$ too is reduced by pressure at the same rate of T_c, confirming that magnetic excitations which reflect AFM spin fluctuations, whereas competing with superconductivity, play an essential role in the pairing process. Finally, our experimental data and DFT calculations indicate an s^\pm SC order parameter independent of pressure and suggest that intrinsic disorder plays a key role in suppressing antiferromagnetism in ThFeAsN.

Acknowledgments. The authors thank H. Luetskens for useful discussions. This Rapid Communication was financially supported, in part, by the Schweizerische Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF), through the SNF Funds No. 200021-159736 and 200021-169455.

[20] 73As with spin $I = 3/2$ and Larmor frequency $\nu_L = 51.523 \text{ MHz}$ at 7.06 T was chosen because it occupies a single site and is sensitive to the structural and electronic variations in the FeAs layers under pressure. The 73As NMR spectra were obtained via fast Fourier transformation of spin-echo signals generated by $\pi/2-\pi$ rf pulses of 2 and 4 μs, respectively, with recycle delays ranging from 0.1 s at room temperature up to 6 s at 5 K and echo times of 50 μs. Given the long rf-pulse length, frequency sweeps in 40-kHz steps were used to cover the spectrum central transition (~ 1-MHz wide).

[39] The penetration depth was calculated from $\sigma_{\rm m}(T)$ and is proportional to the superfluid density.

[40] We recall that the transport and magnetic properties of ThFeAsN are similar to those of LaFeAsO$_{0.83}$F$_{0.17}$ [3], which indicates that the absence of a long-range magnetic order in the nominally undoped ThFeAsN can be due to intrinsic disorder. It is known that the long-range antiferromagnetic order in the iron-based superconductors can be even destroyed by nonmagnetic impurities, despite the electron-band structure remaining unchanged with respect to the undoped case [46,47]. The resulting phase diagram is similar to that obtained by introducing extra holes or electrons in the FeAs layers. Theoretically, this can be understood as a result of the stronger effect of nonmagnetic impurities on the AFM order than on the multiband s^\pm-wave superconductivity [48]. Although both the intra- and the interband impurity scatterings are destructive for the long-range AFM order, only the interband scattering is pair breaking for an s^\pm superconducting state.

