| A coiled-coil-based design strategy for the thermostabilization of G-protein-coupled receptors
Amer, M., Leka, O., Jasko, P., Frey, D., Li, X., & Kammerer, R. A. (2023). A coiled-coil-based design strategy for the thermostabilization of G-protein-coupled receptors. Scientific Reports, 13(1), 10159 (11 pp.). https://doi.org/10.1038/s41598-023-36855-1 |
| Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel
Barret, D. C. A., Schuster, D., Rodrigues, M. J., Leitner, A., Picotti, P., Schertler, G. F. X., … Marino, J. (2023). Structural basis of calmodulin modulation of the rod cyclic nucleotide-gated channel. Proceedings of the National Academy of Sciences of the United States of America PNAS, 120(15), e2300309120 (10 pp.). https://doi.org/10.1073/pnas.2300309120 |
| Biochemical, structural and dynamical characterizations of the lactate dehydrogenase from <em>Selenomonas ruminantium</em> provide information about an intermediate evolutionary step prior to complete allosteric regulation acquisition in the super family
Bertrand, Q., Coquille, S., Iorio, A., Sterpone, F., & Madern, D. (2023). Biochemical, structural and dynamical characterizations of the lactate dehydrogenase from Selenomonas ruminantium provide information about an intermediate evolutionary step prior to complete allosteric regulation acquisition in the super family of lactate and malate dehydrogenases. Journal of Structural Biology, 215(4), 108039 (13 pp.). https://doi.org/10.1016/j.jsb.2023.108039 |
| Maytansinol functionalization: towards useful probes for studying microtubule dynamics
Boiarska, Z., Pérez-Peña, H., Abel, A. C., Marzullo, P., Álvarez-Bernad, B., Bonato, F., … Passarella, D. (2023). Maytansinol functionalization: towards useful probes for studying microtubule dynamics. Chemistry: A European Journal, 29(5), e202203431 (12 pp.). https://doi.org/10.1002/chem.202203431 |
| Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs
Carrillo, M., Mason, T. J., Karpik, A., Martiel, I., Kepa, M. W., McAuley, K. E., … Padeste, C. (2023). Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs. IUCrJ, 10(6) (16 pp.). https://doi.org/10.1107/S2052252523007595 |
| Low-pass spectral analysis of time-resolved serial femtosecond crystallography data
Casadei, C. M., Hosseinizadeh, A., Bliven, S., Weinert, T., Standfuss, J., Fung, R., … Santra, R. (2023). Low-pass spectral analysis of time-resolved serial femtosecond crystallography data. Structural Dynamics, 10(3), 034101 (18 pp.). https://doi.org/10.1063/4.0000178 |
| The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips
Chen, X., Portran, D., Widmer, L. A., Stangier, M. M., Czub, M. P., Liakopoulos, D., … Barral, Y. (2023). The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips. Journal of Cell Biology, 222(7), e202110126 (18 pp.). https://doi.org/10.1083/jcb.202110126 |
| Chemical modulation of microtubule structure through the laulimalide/peloruside site
Estévez-Gallego, J., Álvarez-Bernad, B., Pera, B., Wullschleger, C., Raes, O., Menche, D., … Oliva, M. Á. (2023). Chemical modulation of microtubule structure through the laulimalide/peloruside site. Structure, 31(1), 88-99.e5. https://doi.org/10.1016/j.str.2022.11.006 |
| Editorial: Frontiers in malaria research
Gill, R., Hora, R., Alam, M. M., Bansal, A., Bhatt, T. K., & Sharma, A. (2023). Editorial: Frontiers in malaria research. Frontiers in Microbiology, 14, 1191773 (4 pp.). https://doi.org/10.3389/fmicb.2023.1191773 |
| Ultrafast structural changes direct the first molecular events of vision
Gruhl, T., Weinert, T., Rodrigues, M. J., Milne, C. J., Ortolani, G., Nass, K., … Panneels, V. (2023). Ultrafast structural changes direct the first molecular events of vision. Nature, 615, 939-944. https://doi.org/10.1038/s41586-023-05863-6 |
| Approaches for evolutionary, biochemical, and structural analysis of bacterial steroid 5a-reductases
Han, Y., Zhuang, Q., & Ren, R. (2023). Approaches for evolutionary, biochemical, and structural analysis of bacterial steroid 5a-reductases. Methods in enzymology. . https://doi.org/10.1016/bs.mie.2023.04.006 |
| Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source
Leonarski, F., Nan, J., Matej, Z., Bertrand, Q., Furrer, A., Gorgisyan, I., … Dworkowski, F. (2023). Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCrJ, 10(6) (9 pp.). https://doi.org/10.1107/S2052252523008618 |
| Multivalency ensures persistence of a +TIP body at specialized microtubule ends
Meier, S. M., Farcas, A. M., Kumar, A., Ijavi, M., Bill, R. T., Stelling, J., … Barral, Y. (2023). Multivalency ensures persistence of a +TIP body at specialized microtubule ends. Nature Cell Biology, 25, 56-67. https://doi.org/10.1038/s41556-022-01035-2 |
| Structural insight into the stabilization of microtubules by taxanes
Prota, A. E., Lucena-Agell, D., Ma, Y., Estevez-Gallego, J., Li, S., Bargsten, K., … Díaz, J. F. (2023). Structural insight into the stabilization of microtubules by taxanes. eLife, 12, e84791 (35 pp.). https://doi.org/10.7554/elife.84791 |
| Computational approaches to the rational design of tubulin-targeting agents
Pérez-Peña, H., Abel, A. C., Shevelev, M., Prota, A. E., Pieraccini, S., & Horvath, D. (2023). Computational approaches to the rational design of tubulin-targeting agents. Biomolecules, 13(2), 285 (35 pp.). https://doi.org/10.3390/biom13020285 |
| Structure of the connexin-43 gap junction channel in a putative closed state
Qi, C., Gutierrez, S. A., Lavriha, P., Othman, A., Lopez-Pigozzi, D., Bayraktar, E., … Korkhov, V. M. (2023). Structure of the connexin-43 gap junction channel in a putative closed state. eLife, 12, RP87616 (27 pp.). https://doi.org/10.7554/eLife.87616 |
| Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels
Qi, C., Lavriha, P., Bayraktar, E., Vaithia, A., Schuster, D., Pannella, M., … Korkhov, V. M. (2023). Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels. Science Advances, 9(35), eadh4890 (14 pp.). https://doi.org/10.1126/sciadv.adh4890 |
| VASH1–SVBP and VASH2–SVBP generate different detyrosination profiles on microtubules
Ramirez-Rios, S., Choi, S. R., Sanyal, C., Blum, T. B., Bosc, C., Krichen, F., … Moutin, M. J. (2023). VASH1–SVBP and VASH2–SVBP generate different detyrosination profiles on microtubules. Journal of Cell Biology, 222(2), e202205096 (30 pp.). https://doi.org/10.1083/jcb.202205096 |
| Deciphering evolutionary trajectories of lactate dehydrogenases provides new insights into allostery
Robin, A. Y., Brochier-Armanet, C., Bertrand, Q., Barette, C., Girard, E., & Madern, D. (2023). Deciphering evolutionary trajectories of lactate dehydrogenases provides new insights into allostery. Molecular Biology and Evolution, 40(10), msad223 (22 pp.). https://doi.org/10.1093/molbev/msad223 |
| Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect
Rodrigues, M. J., Casadei, C. M., Weinert, T., Panneels, V., & Schertler, G. F. X. (2023). Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallographica Section D: Structural Biology, 79(3), D79 (10 pp.). https://doi.org/10.1107/S2059798323000931 |