Query

Active Filters

  • (-) PSI Laboratories = Biomolecular Research LBR
Search Results 1 - 20 of 468

Pages

  • RSS Feed
Select Page
Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals
Blum, T. B., Housset, D., Clabbers, M. T. B., van Genderen, E., Bacia-Verloop, M., Zander, U., … Abrahams, J. P. (2021). Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals. Acta Crystallographica Section D: Structural Biology, 77, 75-85. https://doi.org/10.1107/S2059798320014540
High-Level Production of Phenylacetaldehyde using Fusion-Tagged Styrene Oxide Isomerase
Choo, J. P. S., Kammerer, R. A., Li, X., & Li, Z. (2021). High-Level Production of Phenylacetaldehyde using Fusion-Tagged Styrene Oxide Isomerase. Advanced Synthesis and Catalysis, 363(6), 1714-1721. https://doi.org/10.1002/adsc.202001500
A robust, GFP-orthogonal photoswitchable inhibitor scaffold extends optical control over the microtubule cytoskeleton
Gao, L., Meiring, J. C. M., Kraus, Y., Wranik, M., Weinert, T., Pritzl, S. D., … Thorn-Seshold, O. (2021). A robust, GFP-orthogonal photoswitchable inhibitor scaffold extends optical control over the microtubule cytoskeleton. Cell Chemical Biology, 28(2), 228-241. https://doi.org/10.1016/j.chembiol.2020.11.007
Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method
Ijavi, M., Style, R. W., Emmanouilidis, L., Kumar, A., Meier, S. M., Torzynski, A. L., … Dufresne, E. R. (2021). Surface tensiometry of phase separated protein and polymer droplets by the sessile drop method. Soft Matter, 17(6), 1655-1662. https://doi.org/10.1039/d0sm01319f
A dynein-associated photoreceptor protein prevents ciliary acclimation to blue light
Kutomi, O., Yamamoto, R., Hirose, K., Mizuno, K., Nakagiri, Y., Imai, H., … Inaba, K. (2021). A dynein-associated photoreceptor protein prevents ciliary acclimation to blue light. Science Advances, 7(9), eabf3621 (12 pp.). https://doi.org/10.1126/sciadv.abf3621
Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3
Leka, O., Wu, Y., Li, X., & Kammerer, R. A. (2021). Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3. Journal of Biological Chemistry, 296, 100684 (8 pp.). https://doi.org/10.1016/j.jbc.2021.100684
Structural insights into an atypical secretory pathway kinase crucial for <em>Toxoplasma gondii</em> invasion
Lentini, G., Ben Chaabene, R., Vadas, O., Ramakrishnan, C., Mukherjee, B., Mehta, V., … Soldati-Favre, D. (2021). Structural insights into an atypical secretory pathway kinase crucial for Toxoplasma gondii invasion. Nature Communications, 12(1), 3788 (17 pp.). https://doi.org/10.1038/s41467-021-24083-y
Versatile microporous polymer-based supports for serial macromolecular crystallography
Martiel, I., Beale, J. H., Karpik, A., Huang, C. Y., Vera, L., Olieric, N., … Padeste, C. (2021). Versatile microporous polymer-based supports for serial macromolecular crystallography. Acta Crystallographica Section D: Structural Biology, 77(9), 1153-1167. https://doi.org/10.1107/S2059798321007324
Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site
Matthew, S., Chen, Q. Y., Ratnayake, R., Fermaintt, C. S., Lucena-Agell, D., Bonato, F., … Luesch, H. (2021). Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site. Proceedings of the National Academy of Sciences of the United States of America PNAS, 118(9), e2021847118 (11 pp.). https://doi.org/10.1073/pnas.2021847118
Comprehensive analysis of binding sites in tubulin
Mühlethaler, T., Gioia, D., Prota, A. E., Sharpe, M. E., Cavalli, A., & Steinmetz, M. O. (2021). Comprehensive analysis of binding sites in tubulin. Angewandte Chemie International Edition, 60(24), 13331-13342. https://doi.org/10.1002/anie.202100273
Centriole length control
Sharma, A., Olieric, N., & Steinmetz, M. O. (2021). Centriole length control. Current Opinion in Structural Biology, 66, 89-95. https://doi.org/10.1016/j.sbi.2020.10.011
Cryo-electron microscopy imaging of Alzheimer's amyloid-beta 42 oligomer displayed on a functionally and structurally relevant scaffold
Wu, J., Blum, T. B., Farrell, D. P., DiMaio, F., Abrahams, J. P., & Luo, J. (2021). Cryo-electron microscopy imaging of Alzheimer's amyloid-beta 42 oligomer displayed on a functionally and structurally relevant scaffold. Angewandte Chemie International Edition, 60(34), 18680-18687. https://doi.org/10.1002/anie.202104497
Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in &lt;em&gt;Streptomyces&lt;/em&gt;
Xiao, X., Willemse, J., Voskamp, P., Li, X., Prota, A. E., Lamers, M., … van Wezel, G. P. (2021). Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in Streptomyces. Open Biology, 11(2), 200409 (14 pp.). https://doi.org/10.1098/rsob.200409
1,3-benzodioxole-modified noscapine analogues: synthesis, antiproliferative activity, and tubulin-bound structure
Yong, C., Devine, S. M., Abel, A. C., Tomlins, S. D., Muthiah, D., Gao, X., … Scammells, P. J. (2021). 1,3-benzodioxole-modified noscapine analogues: synthesis, antiproliferative activity, and tubulin-bound structure. ChemMedChem. https://doi.org/10.1002/cmdc.202100363
CAP1 binds and activates adenylyl cyclase in mammalian cells
Zhang, X., Pizzoni, A., Hong, K., Naim, N., Qi, C., Korkhov, V., & Altschuler, D. L. (2021). CAP1 binds and activates adenylyl cyclase in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America PNAS, 118(24), e2024576118 (10 pp.). https://doi.org/10.1073/pnas.2024576118
The mechanism of kinesin inhibition by kinesin binding protein
Atherton, J., Hummel, J. J. A., Olieric, N., Locke, J., Peña, A., Rosenfeld, S. S., … Moores, C. A. (2020). The mechanism of kinesin inhibition by kinesin binding protein. eLife, 9, e61481 (30 pp.). https://doi.org/10.7554/eLife.61481
Production and application of nanobodies for membrane protein structural biology
Brunner, J. D., & Schenck, S. (2020). Production and application of nanobodies for membrane protein structural biology. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 167-184). https://doi.org/10.1007/978-1-0716-0373-4_12
Structural basis for ion selectivity in TMEM175 K&lt;sup&gt;+&lt;/sup&gt; channels
Brunner, J. D., Jakob, R. P., Schulze, T., Neldner, Y., Moroni, A., Thiel, G., … Schenck, S. (2020). Structural basis for ion selectivity in TMEM175 K+ channels. eLife, 9, e53683 (24 pp.). https://doi.org/10.7554/eLife.53683
Cryo-EM structure of the Hedgehog release protein Dispatched
Cannac, F., Qi, C., Falschlunger, J., Hausmann, G., Basler, K., & Korkhov, V. M. (2020). Cryo-EM structure of the Hedgehog release protein Dispatched. Science Advances, 6(16), eaay7928 (8 pp.). https://doi.org/10.1126/sciadv.aay7928
Structural model for differential cap maturation at growing microtubule ends
Estévez-Gallego, J., Josa-Prado, F., Ku, S., Buey, R. M., Balaguer, F. A., Prota, A. E., … Oliva, M. A. (2020). Structural model for differential cap maturation at growing microtubule ends. eLife, 9, e50155 (26 pp.). https://doi.org/10.7554/eLife.50155
 

Pages