Query

Active Filters

  • (-) PSI Laboratories = Biomolecular Research LBR
Search Results 1 - 20 of 429

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Production and application of nanobodies for membrane protein structural biology
Brunner, J. D., & Schenck, S. (2020). Production and application of nanobodies for membrane protein structural biology. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_12
Structural basis for ion selectivity in TMEM175 K<sup>+</sup> channels
Brunner, J. D., Jakob, R. P., Schulze, T., Neldner, Y., Moroni, A., Thiel, G., … Schenck, S. (2020). Structural basis for ion selectivity in TMEM175 K+ channels. eLife, 9, e53683 (24 pp.). https://doi.org/10.7554/eLife.53683
Cryo-EM structure of the Hedgehog release protein Dispatched
Cannac, F., Qi, C., Falschlunger, J., Hausmann, G., Basler, K., & Korkhov, V. M. (2020). Cryo-EM structure of the Hedgehog release protein Dispatched. Science Advances, 6(16), eaay7928 (8 pp.). https://doi.org/10.1126/sciadv.aay7928
Structural model for differential cap maturation at growing microtubule ends
Estévez-Gallego, J., Josa-Prado, F., Ku, S., Buey, R. M., Balaguer, F. A., Prota, A. E., … Oliva, M. A. (2020). Structural model for differential cap maturation at growing microtubule ends. eLife, 9, e50155 (26 pp.). https://doi.org/10.7554/eLife.50155
Affinity purification of membrane proteins
Graeber, E., & Korkhov, V. M. (2020). Affinity purification of membrane proteins. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_9
Structure and function of adenylyl cyclases, key enzymes in cellular signaling
Khannpnavar, B., Mehta, V., Qi, C., & Korkhov, V. (2020). Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Current Opinion in Structural Biology, 63, 34-41. https://doi.org/10.1016/j.sbi.2020.03.003
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C
Li, X., Brunner, C., Wu, Y., Leka, O., Schneider, G., & Kammerer, R. A. (2020). Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 175, 36-43. https://doi.org/10.1016/j.toxicon.2019.11.010
Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range
Makarov, S., Pikuz, S., Ryazantsev, S., Pikuz, T., Buzmakov, A., Rose, M., … Vartanyants, I. A. (2020). Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range. Journal of Synchrotron Radiation, 27, 625-632. https://doi.org/10.1107/S1600577520002192
GPCR solubilization and quality control
Miljus, T., Sykes, D. A., Harwood, C. R., Vuckovic, Z., & Veprintsev, D. B. (2020). GPCR solubilization and quality control. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_8
Grayscale e-beam lithography: effects of a delayed development for well-controlled 3D patterning
Mortelmans, T., Kazazis, D., Guzenko, V. A., Padeste, C., Braun, T., Li, X., & Ekinci, Y. (2020). Grayscale e-beam lithography: effects of a delayed development for well-controlled 3D patterning. Microelectronic Engineering, 225, 111272 (5 pp.). https://doi.org/10.1016/j.mee.2020.111272
Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules
Rodríguez-García, R., Volkov, V. A., Chen, C. Y., Katrukha, E. A., Olieric, N., Aher, A., … Akhmanova, A. (2020). Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules. Current Biology, 30(6), 972-987. https://doi.org/10.1016/j.cub.2020.01.036
Femtosecond-to-millisecond structural changes in a light-driven sodium pump
Skopintsev, P., Ehrenberg, D., Weinert, T., James, D., Kar, R. K., Johnson, P. J. M., … Standfuss, J. (2020). Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature. https://doi.org/10.1038/s41586-020-2307-8
Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays
Smolentsev, G., Milne, C. J., Guda, A., Haldrup, K., Szlachetko, J., Azzaroli, N., … Vogt, M. (2020). Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nature Communications, 11, 2131 (9 pp.). https://doi.org/10.1038/s41467-020-15998-z
Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example
Weinert, T., & Panneels, V. (2020). Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_21
A tool for visualizing protein motions in time-resolved crystallography
Wickstrand, C., Katona, G., Nakane, T., Nogly, P., Standfuss, J., Nango, E., & Neutze, R. (2020). A tool for visualizing protein motions in time-resolved crystallography. Structural Dynamics, 7, 024701 (12 pp.). https://doi.org/10.1063/1.5126921
XFEL and NMR structures of <em>Francisella </em>lipoprotein reveal conformational space of drug target against tularemia
Zook, J., Shekhar, M., Hansen, D., Conrad, C., Grant, T., Gupta, C., … Fromme, P. (2020). XFEL and NMR structures of Francisella lipoprotein reveal conformational space of drug target against tularemia. Structure, 28(5), 540-547.e3. https://doi.org/10.1016/j.str.2020.02.005
Early prediction of long-term tactile object recognition performance after sensorimotor stroke
Abela, E., Missimer, J. H., Pastore-Wapp, M., Krammer, W., Wiest, R., & Weder, B. J. (2019). Early prediction of long-term tactile object recognition performance after sensorimotor stroke. Cortex, 115, 264-279. https://doi.org/10.1016/j.cortex.2019.01.018
Microtubule minus-end regulation at a glance
Akhmanova, A., & Steinmetz, M. O. (2019). Microtubule minus-end regulation at a glance. Journal of Cell Science, 132(11), jcs227850 (7 pp.). https://doi.org/10.1242/jcs.227850
Structural determinants of microtubule minus end preference in CAMSAP CKK domains
Atherton, J., Luo, Y., Xiang, S., Yang, C., Rai, A., Jiang, K., … Moores, C. A. (2019). Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 10(1), 5236 (16 pp.). https://doi.org/10.1038/s41467-019-13247-6
Long-wavelength native-SAD phasing: opportunities and challenges
Basu, S., Olieric, V., Leonarski, F., Matsugaki, N., Kawano, Y., Takashi, T., … Wang, M. (2019). Long-wavelength native-SAD phasing: opportunities and challenges. IUCrJ, 6(3), 1-14. https://doi.org/10.1107/S2052252519002756
 

Pages