Query

Active Filters

  • (-) PSI Laboratories = Biomolecular Research LBR
Search Results 1 - 20 of 434

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Production and application of nanobodies for membrane protein structural biology
Brunner, J. D., & Schenck, S. (2020). Production and application of nanobodies for membrane protein structural biology. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 167-184). https://doi.org/10.1007/978-1-0716-0373-4_12
Structural basis for ion selectivity in TMEM175 K<sup>+</sup> channels
Brunner, J. D., Jakob, R. P., Schulze, T., Neldner, Y., Moroni, A., Thiel, G., Maier, T., & Schenck, S. (2020). Structural basis for ion selectivity in TMEM175 K+ channels. eLife, 9, e53683 (24 pp.). https://doi.org/10.7554/eLife.53683
Cryo-EM structure of the Hedgehog release protein Dispatched
Cannac, F., Qi, C., Falschlunger, J., Hausmann, G., Basler, K., & Korkhov, V. M. (2020). Cryo-EM structure of the Hedgehog release protein Dispatched. Science Advances, 6(16), eaay7928 (8 pp.). https://doi.org/10.1126/sciadv.aay7928
Structural model for differential cap maturation at growing microtubule ends
Estévez-Gallego, J., Josa-Prado, F., Ku, S., Buey, R. M., Balaguer, F. A., Prota, A. E., Lucena-Agell, D., Kamma-Lorger, C., Yagi, T., Iwamoto, H., Duchesne, L., Barasoain, I., Steinmetz, M. O., Chrétien, D., Kamimura, S., Díaz, J. F., & Oliva, M. A. (2020). Structural model for differential cap maturation at growing microtubule ends. eLife, 9, e50155 (26 pp.). https://doi.org/10.7554/eLife.50155
Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of <em>Dictyostelium discoideum</em>
Fiedler, T., Fabrice, T. N., Studer, V., Vinet, A., Faltova, L., Kammerer, R. A., Steinmetz, M. O., Sharpe, T., & Pieters, J. (2020). Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Letters, 594(13), 2116-2127. https://doi.org/10.1002/1873-3468.13787
Affinity purification of membrane proteins
Graeber, E., & Korkhov, V. M. (2020). Affinity purification of membrane proteins. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 129-137). https://doi.org/10.1007/978-1-0716-0373-4_9
Structural refinement of the tubulin ligand (+)-discodermolide to attenuate chemotherapy-mediated senescence
Guo, B., Rodriguez-Gabin, A., Prota, A. E., Mühlethaler, T., Zhang, N., Ye, K., Steinmetz, M. O., Horwitz, S. B., Smith, A. B., & McDaid, H. M. (2020). Structural refinement of the tubulin ligand (+)-discodermolide to attenuate chemotherapy-mediated senescence. Molecular Pharmacology, 98(2), 156-167. https://doi.org/10.1124/mol.119.117457
Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent
Jost, M., Chen, Y., Gilbert, L. A., Horlbeck, M. A., Krenning, L., Menchon, G., Rai, A., Cho, M. Y., Stern, J. J., Prota, A. E., Kampmann, M., Akhmanova, A., Steinmetz, M. O., Tanenbaum, M. E., & Weissman, J. S. (2020). Pharmaceutical-grade rigosertib is a microtubule-destabilizing agent. Molecular Cell, 79(1), 191-198.e3. https://doi.org/10.1016/j.molcel.2020.06.008
Structure and function of adenylyl cyclases, key enzymes in cellular signaling
Khannpnavar, B., Mehta, V., Qi, C., & Korkhov, V. (2020). Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Current Opinion in Structural Biology, 63, 34-41. https://doi.org/10.1016/j.sbi.2020.03.003
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C
Li, X., Brunner, C., Wu, Y., Leka, O., Schneider, G., & Kammerer, R. A. (2020). Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 175, 36-43. https://doi.org/10.1016/j.toxicon.2019.11.010
Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range
Makarov, S., Pikuz, S., Ryazantsev, S., Pikuz, T., Buzmakov, A., Rose, M., Lazarev, S., Senkbeil, T., von Gundlach, A., Stuhr, S., Rumancev, C., Dzhigaev, D., Skopintsev, P., Zaluzhnyy, I., Viefhaus, J., Rosenhahn, A., Kodama, R., & Vartanyants, I. A. (2020). Soft X-ray diffraction patterns measured by a LiF detector with sub-micrometre resolution and an ultimate dynamic range. Journal of Synchrotron Radiation, 27, 625-632. https://doi.org/10.1107/S1600577520002192
GPCR solubilization and quality control
Miljus, T., Sykes, D. A., Harwood, C. R., Vuckovic, Z., & Veprintsev, D. B. (2020). GPCR solubilization and quality control. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 105-127). https://doi.org/10.1007/978-1-0716-0373-4_8
Grayscale e-beam lithography: effects of a delayed development for well-controlled 3D patterning
Mortelmans, T., Kazazis, D., Guzenko, V. A., Padeste, C., Braun, T., Li, X., & Ekinci, Y. (2020). Grayscale e-beam lithography: effects of a delayed development for well-controlled 3D patterning. Microelectronic Engineering, 225, 111272 (5 pp.). https://doi.org/10.1016/j.mee.2020.111272
Structural basis of noscapine activation for tubulin binding
Oliva, M. A., Prota, A. E., Rodríguez-Salarichs, J., Bennani, Y. L., Jiménez-Barbero, J., Bargsten, K., Canales, Á., Steinmetz, M. O., & Díaz, J. F. (2020). Structural basis of noscapine activation for tubulin binding. Journal of Medicinal Chemistry, 63(15), 8495-8501. https://doi.org/10.1021/acs.jmedchem.0c00855
The structure and symmetry of the radial spoke protein complex in <em>Chlamydomonas </em>flagella
Poghosyan, E., Iacovache, I., Faltova, L., Leitner, A., Yang, P., Diener, D. R., Aebersold, R., Zuber, B., & Ishikawa, T. (2020). The structure and symmetry of the radial spoke protein complex in Chlamydomonas flagella. Journal of Cell Science, 133(16), jcs245233. https://doi.org/10.1242/jcs.245233
Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules
Rodríguez-García, R., Volkov, V. A., Chen, C. Y., Katrukha, E. A., Olieric, N., Aher, A., Grigoriev, I., Preciado López, M., Steinmetz, M. O., Kapitein, L. C., Koenderink, G., Dogterom, M., & Akhmanova, A. (2020). Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules. Current Biology, 30(6), 972-987. https://doi.org/10.1016/j.cub.2020.01.036
Femtosecond-to-millisecond structural changes in a light-driven sodium pump
Skopintsev, P., Ehrenberg, D., Weinert, T., James, D., Kar, R. K., Johnson, P. J. M., Ozerov, D., Furrer, A., Martiel, I., Dworkowski, F., Nass, K., Knopp, G., Cirelli, C., Arrell, C., Gashi, D., Mous, S., Wranik, M., Gruhl, T., Kekilli, D., … Standfuss, J. (2020). Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature. https://doi.org/10.1038/s41586-020-2307-8
Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays
Smolentsev, G., Milne, C. J., Guda, A., Haldrup, K., Szlachetko, J., Azzaroli, N., Cirelli, C., Knopp, G., Bohinc, R., Menzi, S., Pamfilidis, G., Gashi, D., Beck, M., Mozzanica, A., James, D., Bacellar, C., Mancini, G. F., Tereshchenko, A., Shapovalov, V., … Vogt, M. (2020). Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nature Communications, 11, 2131 (9 pp.). https://doi.org/10.1038/s41467-020-15998-z
Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example
Weinert, T., & Panneels, V. (2020). Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 321-338). https://doi.org/10.1007/978-1-0716-0373-4_21
A tool for visualizing protein motions in time-resolved crystallography
Wickstrand, C., Katona, G., Nakane, T., Nogly, P., Standfuss, J., Nango, E., & Neutze, R. (2020). A tool for visualizing protein motions in time-resolved crystallography. Structural Dynamics, 7, 024701 (12 pp.). https://doi.org/10.1063/1.5126921
 

Pages