Query

Active Filters

  • (-) PSI Laboratories = Biomolecular Research LBR
Search Results 1 - 20 of 418

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Production and application of nanobodies for membrane protein structural biology
Brunner, J. D., & Schenck, S. (2020). Production and application of nanobodies for membrane protein structural biology. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4
Structural model for differential cap maturation at growing microtubule ends
Estévez-Gallego, J., Josa-Prado, F., Ku, S., Buey, R. M., Balaguer, F. A., Prota, A. E., … Oliva, M. A. (2020). Structural model for differential cap maturation at growing microtubule ends. eLife, 9, e50155 (26 pp.). https://doi.org/10.7554/eLife.50155
Affinity purification of membrane proteins
Graeber, E., & Korkhov, V. M. (2020). Affinity purification of membrane proteins. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_9
Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C
Li, X., Brunner, C., Wu, Y., Leka, O., Schneider, G., & Kammerer, R. A. (2020). Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 175, 36-43. https://doi.org/10.1016/j.toxicon.2019.11.010
GPCR solubilization and quality control
Miljus, T., Sykes, D. A., Harwood, C. R., Vuckovic, Z., & Veprintsev, D. B. (2020). GPCR solubilization and quality control. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_8
Grayscale e-beam lithography: effects of a delayed development for well-controlled 3D patterning
Mortelmans, T., Kazazis, D., Guzenko, V. A., Padeste, C., Braun, T., Li, X., & Ekinci, Y. (2020). Grayscale e-beam lithography: effects of a delayed development for well-controlled 3D patterning. Microelectronic Engineering, 225, 111272 (5 pp.). https://doi.org/10.1016/j.mee.2020.111272
Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules
Rodríguez-García, R., Volkov, V. A., Chen, C. Y., Katrukha, E. A., Olieric, N., Aher, A., … Akhmanova, A. (2020). Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules. Current Biology. https://doi.org/10.1016/j.cub.2020.01.036
Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example
Weinert, T., & Panneels, V. (2020). Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_21
Early prediction of long-term tactile object recognition performance after sensorimotor stroke
Abela, E., Missimer, J. H., Pastore-Wapp, M., Krammer, W., Wiest, R., & Weder, B. J. (2019). Early prediction of long-term tactile object recognition performance after sensorimotor stroke. Cortex, 115, 264-279. https://doi.org/10.1016/j.cortex.2019.01.018
Microtubule minus-end regulation at a glance
Akhmanova, A., & Steinmetz, M. O. (2019). Microtubule minus-end regulation at a glance. Journal of Cell Science, 132(11), jcs227850 (7 pp.). https://doi.org/10.1242/jcs.227850
Structural determinants of microtubule minus end preference in CAMSAP CKK domains
Atherton, J., Luo, Y., Xiang, S., Yang, C., Rai, A., Jiang, K., … Moores, C. A. (2019). Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 10(1), 5236 (16 pp.). https://doi.org/10.1038/s41467-019-13247-6
Long-wavelength native-SAD phasing: opportunities and challenges
Basu, S., Olieric, V., Leonarski, F., Matsugaki, N., Kawano, Y., Takashi, T., … Wang, M. (2019). Long-wavelength native-SAD phasing: opportunities and challenges. IUCrJ, 6(3), 1-14. https://doi.org/10.1107/S2052252519002756
Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm
Bliven, S. E., Lafita, A., Rose, P. W., Capitani, G., Prlić, A., & Bourne, P. E. (2019). Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm. PLoS Computational Biology, 15(4), e1006842 (18 pp.). https://doi.org/10.1371/journal.pcbi.1006842
Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents
Brindisi, M., Ulivieri, C., Alfano, G., Gemma, S., de Asís Balaguer, F., Khan, T., … Brogi, S. (2019). Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 162, 290-320. https://doi.org/10.1016/j.ejmech.2018.11.004
Preparation of proteoliposomes with purified TMEM16 protein for accurate measures of lipid scramblase activity
Brunner, J. D., & Schenck, S. (2019). Preparation of proteoliposomes with purified TMEM16 protein for accurate measures of lipid scramblase activity. In G. Drin (Ed.), Methods in molecular biology: Vol. 1949. Intracellular lipid transport. https://doi.org/10.1007/978-1-4939-9136-5_14
Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Nass, K., Barty, A., Hunter, M. S., Padeste, C., Tsai, C. J., … Pedrini, B. (2019). Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 6, 34-45. https://doi.org/10.1107/S2052252518014641
Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins
Chalupska, D., Różycki, B., Humpolickova, J., Faltova, L., Klima, M., & Boura, E. (2019). Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Scientific Reports, 9(1), 567 (11 pp.). https://doi.org/10.1038/s41598-018-37158-6
Remote control of microtubule plus-end dynamics and function from the minus-end
Chen, X., Widmer, L. A., Stangier, M. M., Steinmetz, M. O., Stelling, J., & Barral, Y. (2019). Remote control of microtubule plus-end dynamics and function from the minus-end. eLife, 8, e48627 (32 pp.). https://doi.org/10.7554/eLife.48627
Structural basis of colchicine-site targeting acylhydrazones active against multidrug-resistant acute lymphoblastic leukemia
Cury, N. M., Mühlethaler, T., Laranjeira, A. B. A., Canevarolo, R. R., Zenatti, P. P., Lucena-Agell, D., … Yunes, J. A. (2019). Structural basis of colchicine-site targeting acylhydrazones active against multidrug-resistant acute lymphoblastic leukemia. iScience, 21, 95-109. https://doi.org/10.1016/j.isci.2019.10.003
Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure.
Dohle, W., Prota, A. E., Menchon, G., Hamel, E., Steinmetz, M. O., & Potter, B. V. L. (2019). Tetrahydroisoquinoline sulfamates as potent microtubule disruptors: synthesis, antiproliferative and antitubulin activity of dichlorobenzyl-based derivatives, and a Tubulin cocrystal structure. ACS Omega, 4, 755-764. https://doi.org/10.1021/acsomega.8b02879
 

Pages