Query

Active Filters

  • (-) PSI Laboratories = Catalysis and Sustainable Chemistry LSK
Search Results 1 - 20 of 543

Pages

  • RSS Feed
Select Page
Anhydrous calcium phosphate crystals stabilize DNA for dry storage
Antkowiak, P. L., Koch, J., Rzepka, P., Nguyen, B. H., Strauss, K., Stark, W. J., & Grass, R. N. (2022). Anhydrous calcium phosphate crystals stabilize DNA for dry storage. Chemical Communications, 58(19), 3174-3177. https://doi.org/10.1039/d2cc00414c
Correlating Lewis acid activity to extra-framework aluminum species in zeolite Y introduced by ion-exchange
Batool, S. R., Sushkevich, V. L., & van Bokhoven, J. A. (2022). Correlating Lewis acid activity to extra-framework aluminum species in zeolite Y introduced by ion-exchange. Journal of Catalysis, 408, 24-35. https://doi.org/10.1016/j.jcat.2022.02.010
Drastic events and gradual change define the structure of an active copper-zinc-alumina catalyst for methanol synthesis
Beck, A., Newton, M. A., Zabilskiy, M., Rzepka, P., Willinger, M. G., & van Bokhoven, J. A. (2022). Drastic events and gradual change define the structure of an active copper-zinc-alumina catalyst for methanol synthesis. Angewandte Chemie International Edition, 61(15), e202200301 (8 pp.). https://doi.org/10.1002/anie.202200301
Drastische Ereignisse und langsame Transformation definieren die Struktur eines aktiven Kupfer‐Zink‐Aluminiumoxid‐Katalysators für die Methanol Synthese
Beck, A., Newton, M. A., Zabilskiy, M., Rzepka, P., Willinger, M. G., & van Bokhoven, J. A. (2022). Drastische Ereignisse und langsame Transformation definieren die Struktur eines aktiven Kupfer‐Zink‐Aluminiumoxid‐Katalysators für die Methanol Synthese. Angewandte Chemie, 134(15), e202200301 (9 pp.). https://doi.org/10.1002/ange.202200301
Direct evidence of cobalt oxyhydroxide formation on a La<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3</sub> perovskite water splitting catalyst
Boucly, A., Artiglia, L., Fabbri, E., Palagin, D., Aegerter, D., Pergolesi, D., … Schmidt, T. J. (2022). Direct evidence of cobalt oxyhydroxide formation on a La0.2Sr0.8CoO3 perovskite water splitting catalyst. Journal of Materials Chemistry A, 10(5), 2434-2444. https://doi.org/10.1039/D1TA04957G
Highly selective Suzuki reaction catalysed by a molecular Pd-P-MOF catalyst under mild conditions: role of ligands and palladium speciation
Cartagenova, D., Bachmann, S., Püntener, K., Scalone, M., Newton, M. A., Peixoto Esteves, F. A., … Ranocchiari, M. (2022). Highly selective Suzuki reaction catalysed by a molecular Pd-P-MOF catalyst under mild conditions: role of ligands and palladium speciation. Catalysis Science and Technology, 12(3), 954-961. https://doi.org/10.1039/D1CY01351C
Solvent-dependent textural properties of defective UiO-66 after acidic and basic treatment
Cartagenova, D., Peixoto Esteves, F. A., Fischer, N. T., van Bokhoven, J. A., & Ranocchiari, M. (2022). Solvent-dependent textural properties of defective UiO-66 after acidic and basic treatment. Inorganic Chemistry Frontiers, 9(1), 70-77. https://doi.org/10.1039/D1QI00226K
Production of jet-fuel-range olefins via catalytic conversion of pentene and hexene over mesoporous Al-SBA-15 catalyst
Dubray, F., Paunović, V., Ranocchiari, M., & van Bokhoven, J. A. (2022). Production of jet-fuel-range olefins via catalytic conversion of pentene and hexene over mesoporous Al-SBA-15 catalyst. Journal of Industrial and Engineering Chemistry, 114, 409-417. https://doi.org/10.1016/j.jiec.2022.07.030
<em>In situ/operando</em> investigation of catalytic and electrocatalytic interfaces
Favaro, M., Artiglia, L., & Mun, B. S. (2022). In situ/operando investigation of catalytic and electrocatalytic interfaces. Journal of Physics D: Applied Physics, 55(6), 060201 (5 pp.). https://doi.org/10.1088/1361-6463/ac3100
Dynamic interplay between metal nanoparticles and oxide support under redox conditions
Frey, H., Beck, A., Huang, X., van Bokhoven, J. A., & Willinger, M. G. (2022). Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science, 376(6596), 982-987. https://doi.org/10.1126/science.abm3371
Liquid-gas interface of iron aqueous solutions and Fenton reagents
Gladich, I., Chen, S., Yang, H., Boucly, A., Winter, B., van Bokhoven, J. A., … Artiglia, L. (2022). Liquid-gas interface of iron aqueous solutions and Fenton reagents. Journal of Physical Chemistry Letters, 13(13), 2994-3001. https://doi.org/10.1021/acs.jpclett.2c00380
Reply to "comment on 'liquid-gas interface of iron aqueous solutions and fenton reagents'"
Gladich, I., Chen, S., Yang, H., Boucly, A., Winter, B., Van Bokhoven, J. A., … Artiglia, L. (2022). Reply to "comment on 'liquid-gas interface of iron aqueous solutions and fenton reagents'". Journal of Physical Chemistry Letters, 13(29), 6681-6682. https://doi.org/10.1021/acs.jpclett.2c01391
Catalyst overcoating engineering towards high-performance electrocatalysis
Liu, Q., Ranocchiari, M., & van Bokhoven, J. A. (2022). Catalyst overcoating engineering towards high-performance electrocatalysis. Chemical Society Reviews, 51(1), 188-236. https://doi.org/10.1039/D1CS00270H
Hierarchical nature of hydrogen-based direct reduction of iron oxides
Ma, Y., Souza Filho, I. R., Bai, Y., Schenk, J., Patisson, F., Beck, A., … Raabe, D. (2022). Hierarchical nature of hydrogen-based direct reduction of iron oxides. Scripta Materialia, 213, 114571 (7 pp.). https://doi.org/10.1016/j.scriptamat.2022.114571
Interconversion between Lewis and Brønsted-Lowry acid sites on vanadia-based catalysts
Nuguid, R. J. G., Ortino-Ghini, L., Suskevich, V. L., Yang, J., Lietti, L., Kröcher, O., & Ferri, D. (2022). Interconversion between Lewis and Brønsted-Lowry acid sites on vanadia-based catalysts. Physical Chemistry Chemical Physics, 24(7), 4555-4561. https://doi.org/10.1039/d1cp05261f
On the absolute photoionization cross section and threshold photoelectron spectrum of two reactive ketenes in lignin valorization: fulvenone and 2-carbonyl cyclohexadienone
Pan, Z., Bodi, A., van Bokhoven, J. A., & Hemberger, P. (2022). On the absolute photoionization cross section and threshold photoelectron spectrum of two reactive ketenes in lignin valorization: fulvenone and 2-carbonyl cyclohexadienone. Physical Chemistry Chemical Physics, 24(6), 3655-3663. https://doi.org/10.1039/D1CP05206C
Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen
Paunović, V., Sushkevich, V., Rzepka, P., Artiglia, L., Hauert, R., Lee, S. S., & van Bokhoven, J. A. (2022). Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen. Journal of Catalysis, 407, 54-64. https://doi.org/10.1016/j.jcat.2022.01.018
In situ study of low-temperature dry reforming of methane over La<sub>2</sub>Ce<sub>2</sub>O<sub>7</sub> and LaNiO<sub>3</sub> mixed oxides
Ramon, A. P., Li, X., Clark, A. H., Safonova, O. V., Marcos, F. C., Assaf, E. M., … Assaf, J. M. (2022). In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Applied Catalysis B: Environmental, 315, 121528 (16 pp.). https://doi.org/10.1016/j.apcatb.2022.121528
Copper-zinc oxide interface as a methanol-selective structure in Cu-ZnO catalyst during catalytic hydrogenation of carbon dioxide to methanol
Saedy, S., Newton, M. A., Zabilskiy, M., Lee, J. H., Krumeich, F., Ranocchiari, M., & van Bokhoven, J. A. (2022). Copper-zinc oxide interface as a methanol-selective structure in Cu-ZnO catalyst during catalytic hydrogenation of carbon dioxide to methanol. Catalysis Science and Technology, 12(8), 2703-2716. https://doi.org/10.1039/d2cy00224h
Unraveling the molecular mechanism of MIL-53(Al) crystallization
Salionov, D., Semivrazhskaya, O. O., Casati, N. P. M., Ranocchiari, M., Bjelić, S., Verel, R., … Sushkevich, V. L. (2022). Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nature Communications, 13(1), 3762 (9 pp.). https://doi.org/10.1038/s41467-022-31294-4
 

Pages