Query

Active Filters

  • (-) PSI Laboratories = Electrochemistry LEC
Search Results 1 - 20 of 380

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Tuning the Co oxidation state in Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> by flame spray synthesis towards high oxygen evolution reaction activity
Aegerter, D., Borlaf, M., Fabbri, E., Clark, A. H., Nachtegaal, M., Graule, T., & Schmidt, T. J. (2020). Tuning the Co oxidation state in Ba0.5Sr0.5Co0.8Fe0.2O3-δ by flame spray synthesis towards high oxygen evolution reaction activity. Catalysts, 10(9), 984 (16 pp.). https://doi.org/10.3390/catal10090984
Lithium-ion batteries - current state of the art and anticipated developments
Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., Guyomard, D., Lestriez, B., Novák, P., Petranikova, M., Porcher, W., Trabesinger, S., Wohlfahrt-Mehrens, M., & Zhang, H. (2020). Lithium-ion batteries - current state of the art and anticipated developments. Journal of Power Sources, 479, 228708 (26 pp.). https://doi.org/10.1016/j.jpowsour.2020.228708
Insights into the charge storage mechanism of Li<sub>3</sub>VO<sub>4</sub> anode materials for Li-ion batteries
Asakura, R., Bolli, C., Novák, P., & Robert, R. (2020). Insights into the charge storage mechanism of Li3VO4 anode materials for Li-ion batteries. ChemElectroChem, 7(9), 2033-2041. https://doi.org/10.1002/celc.202000161
Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers
Babic, U., Tarik, M., Schmidt, T. J., & Gubler, L. (2020). Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers. Journal of Power Sources, 451, 227778 (8 pp.). https://doi.org/10.1016/j.jpowsour.2020.227778
Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes
Bargardi, F. L., Billaud, J., Villevieille, C., Bouville, F., & Studart, A. R. (2020). Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes. Scientific Reports, 10(1), 12401 (10 pp.). https://doi.org/10.1038/s41598-020-69141-5
Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications
Ben youcef, H., Henkensmeier, D., Balog, S., Scherer, G. G., & Gubler, L. (2020). Copolymer synergistic coupling for chemical stability and improved gas barrier properties of a polymer electrolyte membrane for fuel cell applications. International Journal of Hydrogen Energy, 45(11), 7059-7068. https://doi.org/10.1016/j.ijhydene.2019.12.208
Surface segregation acts as surface engineering for the oxygen evolution reaction on perovskite oxides in alkaline media
Boucly, A., Fabbri, E., Artiglia, L., Cheng, X., Pergolesi, D., Ammann, M., & Schmidt, T. J. (2020). Surface segregation acts as surface engineering for the oxygen evolution reaction on perovskite oxides in alkaline media. Chemistry of Materials, 32(12), 5256-5263. https://doi.org/10.1021/acs.chemmater.0c01396
Frame overlap Bragg edge imaging
Busi, M., Čapek, J., Polatidis, E., Hovind, J., Boillat, P., Tremsin, A. S., Kockelmann, W., & Strobl, M. (2020). Frame overlap Bragg edge imaging. Scientific Reports, 10(1), 14867 (10 pp.). https://doi.org/10.1038/s41598-020-71705-4
Bragg-edge attenuation spectra at voxel level from 4D wavelength-resolved neutron tomography
Carminati, C., Strobl, M., Minniti, T., Boillat, P., Hovind, J., Morgano, M., Holm Rod, T., Polatidis, E., Valsecchi, J., Mannes, D., Kockelmann, W., & Kaestner, A. (2020). Bragg-edge attenuation spectra at voxel level from 4D wavelength-resolved neutron tomography. Journal of Applied Crystallography, 53(1), 188-196. https://doi.org/10.1107/S1600576720000151
Effect of scattering correction in neutron imaging of hydrogenous samples using the black body approach
Carminati, C., Boillat, P., Laemmlein, S., Heckova, P., Snehota, M., Mannes, D., Hovind, J., Strobl, M., & Kaestner, A. (2020). Effect of scattering correction in neutron imaging of hydrogenous samples using the black body approach. In U. Garbe, F. Salvemini, & J. J. Bevitt (Eds.), Materials research proceedings: Vol. 15. Neutron radiography. WCNR-11 (pp. 174-179). https://doi.org/10.21741/9781644900574-27
Disclosing Pt-bimetallic alloy nanoparticle surface lattice distortion with electrochemical probes
Chattot, R., Martens, I., Scohy, M., Herranz, J., Drnec, J., Maillard, F., & Dubau, L. (2020). Disclosing Pt-bimetallic alloy nanoparticle surface lattice distortion with electrochemical probes. ACS Energy Letters, 5(1), 162-169. https://doi.org/10.1021/acsenergylett.9b02287
Enabling high power density fuel cells by evaporative cooling with advanced porous media
Cochet, M., Forner-Cuenca, A., Manzi-Orezzoli, V., Siegwart, M., Scheuble, D., & Boillat, P. (2020). Enabling high power density fuel cells by evaporative cooling with advanced porous media. Journal of the Electrochemical Society, 167(8), 084518 (8 pp.). https://doi.org/10.1149/1945-7111/ab8e82
Tracking nickel oxide reduction in solid oxide cells via ex-situ ptychographic nano-tomography
De Angelis, S., Jørgensen, P. S., Tsai, E. H. R., Holler, M., Fevola, G., & Bowen, J. R. (2020). Tracking nickel oxide reduction in solid oxide cells via ex-situ ptychographic nano-tomography. Materials Characterization, 162, 110183 (5 pp.). https://doi.org/10.1016/j.matchar.2020.110183
Operation of a bending magnet beamline in large energy bandwidth mode for non-resonant X-ray emission spectroscopy
Dikaya, O., Nachtegaal, M., Szlachetko, J., Ebner, K., Saveleva, V., Weder, N., Probst, B., Alberto, R., Serebrennikov, D., Clementyev, E., Maksimova, K., Goikhman, A., & Smolentsev, G. (2020). Operation of a bending magnet beamline in large energy bandwidth mode for non-resonant X-ray emission spectroscopy. Results in Physics, 18, 103212 (8 pp.). https://doi.org/10.1016/j.rinp.2020.103212
Coating of Li<sub>1+x</sub>[Ni<sub>0.85</sub>Co<sub>0.10</sub>Mn<sub>0.05</sub>]<sub>1-x</sub>O<sub>2</sub>Cathode Active Material with Gaseous BF<sub>3</sub>
Eisele, L., Skrotzki, J., Schneider, M., Bolli, C., Erk, C., Ludwig, T., Schaub, A., Novák, P., & Krossing, I. (2020). Coating of Li1+x[Ni0.85Co0.10Mn0.05]1-xO2Cathode Active Material with Gaseous BF3. Journal of the Electrochemical Society, 167(12), 120505 (12 pp.). https://doi.org/10.1149/1945-7111/aba8b8
Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries
Ferraresi, G., Uhlenbruck, S., Tsai, C. L., Novák, P., & Villevieille, C. (2020). Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries. Batteries and Supercaps, 3(6), 557-565. https://doi.org/10.1002/batt.201900173
Cation ordering and redox chemistry of layered Ni-rich Li<em><sub>x</sub></em>Ni<sub>1-2</sub><em><sub>y</sub></em>Co<em><sub>y</sub></em>Mn<em><sub>y</sub&
Flores, E., Novák, P., Aschauer, U., & Berg, E. J. (2020). Cation ordering and redox chemistry of layered Ni-rich LixNi1-2yCoyMnyO2: an operando Raman spectroscopy study. Chemistry of Materials, 32(1), 186-194. https://doi.org/10.1021/acs.chemmater.9b03202
Composite membranes containing a porous separator and a polybenzimidazole thin film for vanadium redox flow batteries
Gubler, L., Vonlanthen, D., Schneider, A., & Oldenburg, F. J. (2020). Composite membranes containing a porous separator and a polybenzimidazole thin film for vanadium redox flow batteries. Journal of The Electrochemical Society, 167(10), 100502 (17 pp.). https://doi.org/10.1149/1945-7111/ab945f
Elucidating the reactivity of tris(trimethylsilyl)phosphite and tris(trimethylsilyl)phosphate additives in carbonate electrolytes - a comparative online electrochemical mass spectrometry study
Guéguen, A., Bolli, C., Mendez, M. A., & Berg, E. J. (2020). Elucidating the reactivity of tris(trimethylsilyl)phosphite and tris(trimethylsilyl)phosphate additives in carbonate electrolytes - a comparative online electrochemical mass spectrometry study. ACS Applied Energy Materials, 3(1), 290-299. https://doi.org/10.1021/acsaem.9b01551
Co-electrolysis of CO<sub>2</sub> and H<sub>2</sub>O: from electrode reactions to cell-level development
Herranz, J., Pătru, A., Fabbri, E., & Schmidt, T. J. (2020). Co-electrolysis of CO2 and H2O: from electrode reactions to cell-level development. Current Opinion in Electrochemistry, 23, 89-95. https://doi.org/10.1016/j.coelec.2020.05.004
 

Pages