Query

Active Filters

  • (-) PSI Laboratories = Electrochemistry LEC
Search Results 1 - 20 of 274

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Cation ordering and redox chemistry of layered Ni-rich Li<em><sub>x</sub></em>Ni<em><sub>1-2y</sub></em>Co<em><sub>y</sub></em>Mn<em><sub>y</sub></em>O<em&g
Flores, E., Novák, P., Aschauer, U., & Berg, E. J. (2020). Cation ordering and redox chemistry of layered Ni-rich LixNi1-2yCoyMnyO2: an operando Raman spectroscopy study. Chemistry of Materials, 32(1), 186-194. https://doi.org/10.1021/acs.chemmater.9b03202
Improved water management for PEFC with interdigitated flow fields using modified gas diffusion layers
Manzi-Orezzoli, V., Siegwart, M., Cochet, M., Schmidt, T. J., & Boillat, P. (2020). Improved water management for PEFC with interdigitated flow fields using modified gas diffusion layers. Journal of the Electrochemical Society, 167(5), 054503 (8 pp.). https://doi.org/10.1149/2.0062005JES
Design and synthesis of Ir/Ru pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic properties
Abbott, D. F., Pittkowski, R. K., Macounová, K., Nebel, R., Marelli, E., Fabbri, E., … Schmidt, T. J. (2019). Design and synthesis of Ir/Ru pyrochlore catalysts for the oxygen evolution reaction based on their bulk thermodynamic properties. ACS Applied Materials and Interfaces, 11(41), 37748-37760. https://doi.org/10.1021/acsami.9b13220
CO<sub>2</sub>-assisted regeneration of a polymer electrolyte water electrolyzer contaminated with metal ion impurities
Babic, U., Zlobinski, M., Schmidt, T. J., Boillat, P., & Gubler, L. (2019). CO2-assisted regeneration of a polymer electrolyte water electrolyzer contaminated with metal ion impurities. Journal of the Electrochemical Society, 166(10), F610-F619. https://doi.org/10.1149/2.0851910jes
Proton transport in catalyst layers of a polymer electrolyte water electrolyzer: effect of the anode catalyst loading
Babic, U., Nilsson, E., Pătru, A., Schmidt, T. J., & Gubler, L. (2019). Proton transport in catalyst layers of a polymer electrolyte water electrolyzer: effect of the anode catalyst loading. Journal of the Electrochemical Society, 166(4), F214-F220. https://doi.org/10.1149/2.0341904jes
Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials
Billaud, J., Sheptyakov, D., Sallard, S., Leanza, D., Talianker, M., Grinblat, J., … Villevieille, C. (2019). Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials. Journal of Materials Chemistry A, 7(25), 15215-15224. https://doi.org/10.1039/C9TA00399A
Operando monitoring of F<sup>–</sup>formation in lithium ion batteries
Bolli, C., Guéguen, A., Mendez, M. A., & Berg, E. J. (2019). Operando monitoring of Fformation in lithium ion batteries. Chemistry of Materials, 31(4), 1258-1267. https://doi.org/10.1021/acs.chemmater.8b03810
High-numerical-aperture macroscope optics for time-resolved experiments
Bührer, M., Stampanoni, M., Rochet, X., Büchi, F., Eller, J., & Marone, F. (2019). High-numerical-aperture macroscope optics for time-resolved experiments. Journal of Synchrotron Radiation, 26, 1161-1172. https://doi.org/10.1107/S1600577519004119
Implementation and assessment of the black body bias correction in quantitative neutron imaging
Carminati, C., Boillat, P., Schmid, F., Vontobel, P., Hovind, J., Morgano, M., … Kaestner, A. (2019). Implementation and assessment of the black body bias correction in quantitative neutron imaging. PLoS One, 14(1), e0210300 (24 pp.). https://doi.org/10.1371/journal.pone.0210300
Co/Fe oxyhydroxides supported on perovskite oxides as oxygen evolution reaction catalyst systems
Cheng, X., Kim, B. J., Fabbri, E., & Schmidt, T. J. (2019). Co/Fe oxyhydroxides supported on perovskite oxides as oxygen evolution reaction catalyst systems. ACS Applied Materials and Interfaces, 11(38), 34787-34795. https://doi.org/10.1021/acsami.9b04456
Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography
Cho, J. I. S., Neville, T. P., Trogadas, P., Meyer, Q., Wu, Y., Ziesche, R., … Coppens, M. O. (2019). Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography. Energy, 170, 14-21. https://doi.org/10.1016/j.energy.2018.12.143
Chitin and chitosan - structurally related precursors of dissimilar hard carbons for Na-ion battery
Conder, J., Vaulot, C., Marino, C., Villevieille, C., & Ghimbeu, C. M. (2019). Chitin and chitosan - structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Applied Energy Materials, 2(7), 4841-4852. https://doi.org/10.1021/acsaem.9b00545
How reliable is the Na metal as a counter electrode in Na-ion half cells?
Conder, J., & Villevieille, C. (2019). How reliable is the Na metal as a counter electrode in Na-ion half cells? Chemical Communications, 55(9), 1275-1278. https://doi.org/10.1039/c8cc07852a
Fe-based O&lt;sub&gt;2&lt;/sub&gt;-reduction catalysts synthesized using Na&lt;sub&gt;2&lt;/sub&gt;CO&lt;sub&gt;3&lt;/sub&gt;as a pore-inducing agent
Ebner, K., Herranz, J., Saveleva, V. A., Kim, B. J., Henning, S., Demicheli, M., … Schmidt, T. J. (2019). Fe-based O2-reduction catalysts synthesized using Na2CO3as a pore-inducing agent. ACS Applied Energy Materials, 2(2), 1469-1479. https://doi.org/10.1021/acsaem.8b02036
Influence of operating conditions on permeation of CO&lt;sub&gt;2&lt;/sub&gt; through the membrane in an automotive PEMFC system
Erbach, S., Pribyl, B., Klages, M., Spitthoff, L., Borah, K., Epple, S., … Schmidt, T. J. (2019). Influence of operating conditions on permeation of CO2 through the membrane in an automotive PEMFC system. International Journal of Hydrogen Energy, 44(25), 12760-12771. https://doi.org/10.1016/j.ijhydene.2018.10.033
Communication—Pt-doped thin membranes for gas crossover suppression in polymer electrolyte water electrolysis
Garbe, S., Babic, U., Nilsson, E., Schmidt, T. J., & Gubler, L. (2019). Communication—Pt-doped thin membranes for gas crossover suppression in polymer electrolyte water electrolysis. Journal of the Electrochemical Society, 166(13), F873-F875. https://doi.org/10.1149/2.0111913jes
Stable and unstable diglyme-based electrolytes for batteries with sodium or graphite as electrode
Goktas, M., Bolli, C., Buchheim, J., Berg, E. J., Novák, P., Bonilla, F., … Adelhelm, P. (2019). Stable and unstable diglyme-based electrolytes for batteries with sodium or graphite as electrode. ACS Applied Materials and Interfaces, 11(36), 32844-32855. https://doi.org/10.1021/acsami.9b06760
Membranes and separators for redox flow batteries
Gubler, L. (2019). Membranes and separators for redox flow batteries. Current Opinion in Electrochemistry, 18, 31-36. https://doi.org/10.1016/j.coelec.2019.08.007
Wetting properties of porous high temperature polymer electrolyte fuel cells materials with phosphoric acid
Halter, J., Gloor, T., Amoroso, B., Schmidt, T. J., & Büchi, F. N. (2019). Wetting properties of porous high temperature polymer electrolyte fuel cells materials with phosphoric acid. Physical Chemistry Chemical Physics, 21(24), 13126-13134. https://doi.org/10.1039/C9CP02149C
Improved photoelectrochemical water splitting of CaNbO&lt;sub&gt;2&lt;/sub&gt;N photoanodes by CoPi photodeposition and durface passivation
Haydous, F., Si, W., Guzenko, V. A., Waag, F., Pomjakushina, E., El Kazzi, M., … Lippert, T. (2019). Improved photoelectrochemical water splitting of CaNbO2N photoanodes by CoPi photodeposition and durface passivation. Journal of Physical Chemistry C, 123(2), 1059-1068. https://doi.org/10.1021/acs.jpcc.8b09629
 

Pages