Query

Active Filters

  • (-) PSI Laboratories = Electrochemistry LEC
Search Results 1 - 20 of 434

Pages

  • RSS Feed
Select Page
Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: the underlying mechanism
Beall, C. E., Fabbri, E., & Schmidt, T. J. (2021). Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: the underlying mechanism. ACS Catalysis, 11(5), 3094-3114. https://doi.org/10.1021/acscatal.0c04473
A method for spatial quantification of water in microporous layers of polymer electrolyte fuel cells by X-ray tomographic microscopy
Chen, Y. C., Berger, A., De Angelis, S., Schuler, T., Bozzetti, M., Eller, J., … Büchi, F. N. (2021). A method for spatial quantification of water in microporous layers of polymer electrolyte fuel cells by X-ray tomographic microscopy. ACS Applied Materials and Interfaces, 13(14), 16227-16237. https://doi.org/10.1021/acsami.0c22358
Gas diffusion layers with deterministic structure for high performance polymer electrolyte fuel cells
Csoklich, C., Steim, R., Marone, F., Schmidt, T. J., & Büchi, F. N. (2021). Gas diffusion layers with deterministic structure for high performance polymer electrolyte fuel cells. ACS Applied Materials and Interfaces, 13(8), 9908-9918. https://doi.org/10.1021/acsami.0c20896
In-situ observation of water evaporation in exhaust gas catalyst via sub-micron and sub-second X-ray tomography
De Angelis, S., Nguyen, H. P., Nagao, S., Kishita, K., Marone, F., & Büchi, F. N. (2021). In-situ observation of water evaporation in exhaust gas catalyst via sub-micron and sub-second X-ray tomography. Chemical Engineering Science: X, 10, 100091 (7 pp.). https://doi.org/10.1016/j.cesx.2021.100091
Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation
Desai, P., Huang, J., Hijazi, H., Zhang, L., Mariyappan, S., & Tarascon, J. M. (2021). Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation. Advanced Energy Materials. https://doi.org/10.1002/aenm.202101490
An online gas chromatography cell setup for accurate CO<sub>2</sub>-electroreduction product quantification
Diercks, J. S., Pribyl-Kranewitter, B., Herranz, J., Chauhan, P., Faisnel, A., & Schmidt, T. J. (2021). An online gas chromatography cell setup for accurate CO2-electroreduction product quantification. Journal of the Electrochemical Society, 168(6), 064504 (11 pp.). https://doi.org/10.1149/1945-7111/ac0363
Composite polybenzimidazole membrane with high capacity retention for vanadium redox flow batteries
Duburg, J. C., Azizi, K., Primdahl, S., Hjuler, H. A., Zanzola, E., Schmidt, T. J., & Gubler, L. (2021). Composite polybenzimidazole membrane with high capacity retention for vanadium redox flow batteries. Molecules, 26(6), 1679 (15 pp.). https://doi.org/10.3390/molecules26061679
<sup>57</sup>Fe-enrichment effect on the composition and performance of Fe-based O<sub>2</sub>-reduction electrocatalysts
Ebner, K., Ni, L., Saveleva, V. A., Le Monnier, B. P., Clark, A. H., Krumeich, F., … Herranz, J. (2021). 57Fe-enrichment effect on the composition and performance of Fe-based O2-reduction electrocatalysts. Physical Chemistry Chemical Physics, 23(15), 9147-9157. https://doi.org/10.1039/d1cp00707f
Electrolyzer modeling and real-time control for optimized production of hydrogen gas
Flamm, B., Peter, C., Büchi, F. N., & Lygeros, J. (2021). Electrolyzer modeling and real-time control for optimized production of hydrogen gas. Applied Energy, 281, 116031 (11 pp.). https://doi.org/10.1016/j.apenergy.2020.116031
Operando monitoring the insulator-metal transition of LiCoO<sub>2</sub>
Flores, E., Mozhzhukhina, N., Aschauer, U., & Berg, E. J. (2021). Operando monitoring the insulator-metal transition of LiCoO2. ACS Applied Materials and Interfaces, 13(19), 22540-22548. https://doi.org/10.1021/acsami.1c04383
Insight into elevated temperature and thin membrane application for high efficiency in polymer electrolyte water electrolysis
Garbe, S., Futter, J., Schmidt, T. J., & Gubler, L. (2021). Insight into elevated temperature and thin membrane application for high efficiency in polymer electrolyte water electrolysis. Electrochimica Acta, 377, 138046 (12 pp.). https://doi.org/10.1016/j.electacta.2021.138046
Understanding degradation effects of elevated temperature operating conditions in polymer electrolyte water electrolyzers
Garbe, S., Futter, J., Agarwal, A., Tarik, M., Mularczyk, A. A., Schmidt, T. J., & Gubler, L. (2021). Understanding degradation effects of elevated temperature operating conditions in polymer electrolyte water electrolyzers. Journal of the Electrochemical Society, 168(4), 044515 (13 pp.). https://doi.org/10.1149/1945-7111/abf4ae
Asymmetric Butler-Volmer kinetics of the electrochemical Ce(III)/Ce(IV) redox couple on polycrystalline Au electrodes in sulfuric acid and the dissociation field effect
Heinritz, A., Binninger, T., Patru, A., & Schmidt, T. J. (2021). Asymmetric Butler-Volmer kinetics of the electrochemical Ce(III)/Ce(IV) redox couple on polycrystalline Au electrodes in sulfuric acid and the dissociation field effect. ACS Catalysis, 11, 8140-8154. https://doi.org/10.1021/acscatal.0c04587
Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries
Höltschi, L., Borca, C. N., Huthwelker, T., Marone, F., Schlepütz, C. M., Pelé, V., … Novák, P. (2021). Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 389, 138735 (10 pp.). https://doi.org/10.1016/j.electacta.2021.138735
Effect of cobalt speciation and the graphitization of the carbon matrix on the CO<sub>2</sub> electroreduction activity of Co/N-doped carbon materials
Iwase, K., Ebner, K., Diercks, J. S., Saveleva, V. A., Ünsal, S., Krumeich, F., … Herranz, J. (2021). Effect of cobalt speciation and the graphitization of the carbon matrix on the CO2 electroreduction activity of Co/N-doped carbon materials. ACS Applied Materials and Interfaces, 13(13), 15122-15131. https://doi.org/10.1021/acsami.0c21920
Oxygen evolution reaction activity and underlying mechanism of perovskite electrocatalysts at different pH
Kim, B. J., Fabbri, E., Borlaf, M., Abbott, D. F., Castelli, I. E., Nachtegaal, M., … Schmidt, T. J. (2021). Oxygen evolution reaction activity and underlying mechanism of perovskite electrocatalysts at different pH. Materials Advances, 2(1), 345-355. https://doi.org/10.1039/D0MA00661K
Instability of PVDF binder in the LiFePO&lt;sub&gt;4&lt;/sub&gt;&lt;em&gt; versus&lt;/em&gt; Li&lt;sub&gt;4&lt;/sub&gt;Ti&lt;sub&gt;5&lt;/sub&gt;O&lt;sub&gt;12&lt;/sub&gt; Li‐Ion battery cell
Leanza, D., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Instability of PVDF binder in the LiFePO4 versus Li4Ti5O12 Li‐Ion battery cell. Helvetica Chimica Acta, 104(1), e2000183 (9 pp.). https://doi.org/10.1002/hlca.202000183
Correlation between oxygen vacancies and oxygen evolution reaction activity for a model electrode: PrBaCo<sub>2</sub>O<sub>5+δ</sub>
Marelli, E., Gazquez, J., Poghosyan, E., Müller, E., Gawryluk, D. J., Pomjakushina, E., … Fabbri, E. (2021). Correlation between oxygen vacancies and oxygen evolution reaction activity for a model electrode: PrBaCo2O5+δ. Angewandte Chemie International Edition, 60(26), 14609-14619. https://doi.org/10.1002/anie.202103151
Thermodynamics and dynamics of supercritical water pseudo-boiling
Maxim, F., Karalis, K., Boillat, P., Banuti, D. T., Marquez Damian, J. I., Niceno, B., & Ludwig, C. (2021). Thermodynamics and dynamics of supercritical water pseudo-boiling. Advanced Science, 8(3), 2002312 (10 pp.). https://doi.org/10.1002/advs.202002312
Unveiling the complex redox reactions of SnO&lt;sub&gt;2&lt;/sub&gt;in Li-Ion batteries using &lt;em&gt;operando&lt;/em&gt; X-ray photoelectron spectroscopy and &lt;em&gt;in situ&lt;/em&gt; X-ray absorption spectroscopy
Mirolo, M., Wu, X., Vaz, C. A. F., Novák, P., & El Kazzi, M. (2021). Unveiling the complex redox reactions of SnO2in Li-Ion batteries using operando X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy. ACS Applied Materials and Interfaces, 13(2), 2547-2557. https://doi.org/10.1021/acsami.0c17936
 

Pages