Query

Active Filters

  • (-) PSI Laboratories = Electrochemistry LEC
  • (-) PSI Laboratories ≠ Ion Beam Physics LIP
Search Results 1 - 20 of 953

Pages

  • RSS Feed
Select Page
Delving into Fe-content effects on surface reconstruction of Ba<sub>0.50</sub>Sr<sub>0.50</sub>Co<sub>1−x</sub>Fe<sub>x</sub>O<sub>3−δ</sub> for the oxygen evolution reaction
Aegerter, D., Fabbri, E., Borlaf, M., Yüzbasi, N. S., Diklić, N., Clark, A. H., … Schmidt, T. J. (2024). Delving into Fe-content effects on surface reconstruction of Ba0.50Sr0.50Co1−xFexO3−δ for the oxygen evolution reaction. Journal of Materials Chemistry A, 12(9), 5156-5169. https://doi.org/10.1039/d3ta06156f
Safe and reliable laser ablation assisted disassembly methodology for cylindrical battery cells for post-mortem analysis
Aeppli, D., Gartmann, J., Schneider, R., Hack, E., Kretschmer, S., Nguyen, T. T. D., & Held, M. (2024). Safe and reliable laser ablation assisted disassembly methodology for cylindrical battery cells for post-mortem analysis. Journal of Energy Storage, 83, 110571 (12 pp.). https://doi.org/10.1016/j.est.2024.110571
Activated carbon cloth electrodes for capacitive deionization: a neutron imaging study
Butcher, T. A., Prendeville, L., Rafferty, A., Trtik, P., Boillat, P., & Coey, J. M. D. (2024). Activated carbon cloth electrodes for capacitive deionization: a neutron imaging study. Applied Physics A: Materials Science and Processing, 130(4). https://doi.org/10.1007/s00339-024-07343-8
Insights into strontium zirconate-induced interface pressures in solid oxide electrolysis cells
Crossley, K., & Montinaro, D. (2024). Insights into strontium zirconate-induced interface pressures in solid oxide electrolysis cells. Journal of Power Sources, 589, 233747 (9 pp.). https://doi.org/10.1016/j.jpowsour.2023.233747
Design of polybenzimidazolium membranes for use in vanadium redox flow batteries
Duburg, J. C., Chen, B., Holdcroft, S., Schmidt, T. J., & Gubler, L. (2024). Design of polybenzimidazolium membranes for use in vanadium redox flow batteries. Journal of Materials Chemistry A, 12(11), 6387-6398. https://doi.org/10.1039/d3ta07212f
A comprehensive analysis of the overpotential losses in polymer electrolyte fuel cells
Fikry, M., García-Padilla, Á., Herranz, J., Khavlyuk, P., Eychmüller, A., & Schmidt, T. J. (2024). A comprehensive analysis of the overpotential losses in polymer electrolyte fuel cells. ACS Catalysis, 14(3), 1903-1913. https://doi.org/10.1021/acscatal.3c04797
Up-scaled preparation of Pt-Ni aerogel catalyst layers for polymer electrolyte fuel cell cathodes
Fikry, M., Weiß, N., Bozzetti, M., Ünsal, S., Georgi, M., Khavlyuk, P., … Schmidt, T. J. (2024). Up-scaled preparation of Pt-Ni aerogel catalyst layers for polymer electrolyte fuel cell cathodes. ACS Applied Energy Materials, 7(3), 896-905. https://doi.org/10.1021/acsaem.3c01930
A simple approach to balancing conductivity and capacity fade in vanadium redox flow batteries by the tunable pretreatment of polybenzimidazole membranes
Hampson, E., Duburg, J. C., Casella, J., Schmidt, T. J., & Gubler, L. (2024). A simple approach to balancing conductivity and capacity fade in vanadium redox flow batteries by the tunable pretreatment of polybenzimidazole membranes. Chemical Engineering Journal, 485, 149930 (11 pp.). https://doi.org/10.1016/j.cej.2024.149930
A high-potential trapped state upon H2-starvation of a platinum electrode in aqueous electrolyte
Heinritz, A., Leidinger, P., Buhk, B., Herranz, J., & Schmidt, T. J. (2024). A high-potential trapped state upon H2-starvation of a platinum electrode in aqueous electrolyte. Journal of the Electrochemical Society, 171(1), 014503 (3 pp.). https://doi.org/10.1149/1945-7111/ad170c
Operando tracking the interactions between CoO<sub>x</sub> and CeO<sub>2</sub> during oxygen evolution reaction
Huang, J., Hales, N., Clark, A. H., Yüzbasi, N. S., Borca, C. N., Huthwelker, T., … Fabbri, E. (2024). Operando tracking the interactions between CoOx and CeO2 during oxygen evolution reaction. Advanced Energy Materials, 2303529 (10 pp.). https://doi.org/10.1002/aenm.202303529
Water liquid distribution in a bioinspired PEM fuel cell
Iranzo, A., Cabello González, G. M., Toharias, B., Boillat, P., & Rosa, F. (2024). Water liquid distribution in a bioinspired PEM fuel cell. International Journal of Hydrogen Energy, 50(Part C), 221-233. https://doi.org/10.1016/j.ijhydene.2023.08.103
Cobalt-free layered perovskites RBaCuFeO<sub>5+δ</sub> (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction
Marelli, E., Lyu, J., Morin, M., Leménager, M., Shang, T., Yüzbasi, N. S., … Medarde, M. (2024). Cobalt-free layered perovskites RBaCuFeO5+δ (R = 4f lanthanide) as electrocatalysts for the oxygen evolution reaction. EES Catalysis, 1(2), 335-350. https://doi.org/10.1039/D3EY00142C
Performance enhancement of a membrane electrochemical cell for CO<sub>2</sub> capture
Muroyama, A. P., Abu-Arja, D., Rogerio, B. K., Masiello, D., Winzely, M., & Gubler, L. (2024). Performance enhancement of a membrane electrochemical cell for CO2 capture. Journal of the Electrochemical Society, 171(1), 013504 (7 pp.). https://doi.org/10.1149/1945-7111/ad1acf
Advanced electrolyte formula for robust operation of vanadium redox flow batteries at elevated temperatures
Nguyen, T. D., Whitehead, A., Wai, N., Scherer, G. G., Simonov, A. N., Xu, Z. J., & MacFarlane, D. R. (2024). Advanced electrolyte formula for robust operation of vanadium redox flow batteries at elevated temperatures. Small, 2311771 (12 pp.). https://doi.org/10.1002/smll.202311771
Quantifying the kinetic parameters of fuel cell reactions
Saveleva, V. A., Herranz, J., & Schmidt, T. J. (2024). Quantifying the kinetic parameters of fuel cell reactions. In N. Alonso-Vante & V. Di Noto (Eds.), Electrocatalysis for membrane fuel cells. Methods, modeling, and applications (pp. 111-147). https://doi.org/10.1002/9783527830572.ch4
Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis
Schuler, T., Weber, C. C., Wrubel, J. A., Gubler, L., Pivovar, B., Büchi, F. N., & Bender, G. (2024). Ultrathin microporous transport layers: implications for low catalyst loadings, thin membranes, and high current density operation for proton exchange membrane electrolysis. Advanced Energy Materials, 14(7), 2302786 (12 pp.). https://doi.org/10.1002/aenm.202302786
Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis
Weber, C. C., De Angelis, S., Meinert, R., Appel, C., Holler, M., Guizar-Sicairos, M., … Büchi, F. N. (2024). Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis. EES Catalysis, 2(2), 585-602. https://doi.org/10.1039/d3ey00279a
Enabling LiNO<sub>3</sub> in carbonate electrolytes by flame-retardant electrolyte additive as a cosolvent for enhanced performance of lithium metal batteries
Winter, E., Briccola, M., Schmidt, T. J., & Trabesinger, S. (2024). Enabling LiNO3 in carbonate electrolytes by flame-retardant electrolyte additive as a cosolvent for enhanced performance of lithium metal batteries. Applied Research, 3(1), e202200096 (11 pp.). https://doi.org/10.1002/appl.202200096
Co<sub>1-<em>x</em></sub>Fe<em><sub>x</sub></em>O<em><sub>y</sub></em> oxygen evolution nanocatalysts: on the way to resolve (electro)chemically triggered surface-bulk discrepancy
Aegerter, D., Fabbri, E., Yüzbasi, N. S., Diklić, N., Clark, A. H., Nachtegaal, M., … Schmidt, T. J. (2023). Co1-xFexOy oxygen evolution nanocatalysts: on the way to resolve (electro)chemically triggered surface-bulk discrepancy. ACS Catalysis, 15899-15909. https://doi.org/10.1021/acscatal.3c04138
Quantification of PEFC catalyst layer saturation via in silico, ex situ, and in situ small-angle X-ray scattering
Aliyah, K., Prehal, C., Diercks, J. S., Diklić, N., Xu, L., Ünsal, S., … Eller, J. (2023). Quantification of PEFC catalyst layer saturation via in silico, ex situ, and in situ small-angle X-ray scattering. ACS Applied Materials and Interfaces, 15(22), 26538-26553. https://doi.org/10.1021/acsami.3c00420
 

Pages