Query

Active Filters

  • (-) PSI Laboratories = Environmental Chemistry LUC
Search Results 1 - 20 of 186

Pages

  • RSS Feed
Select Page
Ice nucleation imaged with X-ray spectro-microscopy
Alpert, P. A., Boucly, A., Yang, S., Yang, H., Kilchhofer, K., Luo, Z., … Watts, B. (2022). Ice nucleation imaged with X-ray spectro-microscopy. Environmental Science: Atmospheres, 2(3), 335-351. https://doi.org/10.1039/D1EA00077B
Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile
Barandun, M., Bravo, C., Grobety, B., Jenk, T., Fang, L., Naegeli, K., … Schwikowski, M. (2022). Anthropogenic influence on surface changes at the Olivares glaciers; Central Chile. Science of the Total Environment, 833, 155068 (18 pp.). https://doi.org/10.1016/j.scitotenv.2022.155068
Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores
Beschnitt, A., Schwikowski, M., & Hoffmann, T. (2022). Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores. Journal of Chromatography A, 1661, 462706 (12 pp.). https://doi.org/10.1016/j.chroma.2021.462706
Direct evidence of cobalt oxyhydroxide formation on a La<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3</sub> perovskite water splitting catalyst
Boucly, A., Artiglia, L., Fabbri, E., Palagin, D., Aegerter, D., Pergolesi, D., … Schmidt, T. J. (2022). Direct evidence of cobalt oxyhydroxide formation on a La0.2Sr0.8CoO3 perovskite water splitting catalyst. Journal of Materials Chemistry A, 10(5), 2434-2444. https://doi.org/10.1039/D1TA04957G
Amplification of light within aerosol particles accelerates in-particle photochemistry
Corral Arroyo, P., David, G., Alpert, P. A., Parmentier, E. A., Ammann, M., & Signorell, R. (2022). Amplification of light within aerosol particles accelerates in-particle photochemistry. Science, 376(6590), 293-296. https://doi.org/10.1126/science.abm7915
Liquid-gas interface of iron aqueous solutions and Fenton reagents
Gladich, I., Chen, S., Yang, H., Boucly, A., Winter, B., van Bokhoven, J. A., … Artiglia, L. (2022). Liquid-gas interface of iron aqueous solutions and Fenton reagents. Journal of Physical Chemistry Letters, 13(13), 2994-3001. https://doi.org/10.1021/acs.jpclett.2c00380
Reply to "comment on 'liquid-gas interface of iron aqueous solutions and fenton reagents'"
Gladich, I., Chen, S., Yang, H., Boucly, A., Winter, B., Van Bokhoven, J. A., … Artiglia, L. (2022). Reply to "comment on 'liquid-gas interface of iron aqueous solutions and fenton reagents'". Journal of Physical Chemistry Letters, 13(29), 6681-6682. https://doi.org/10.1021/acs.jpclett.2c01391
同步辐射技术在大气科学领域的研究进展. Progress of synchrotron-based research on atmospheric science
Kong, X., Dou, J., Chen, S., Wang, B., & Wu, Z. (2022). 同步辐射技术在大气科学领域的研究进展. Progress of synchrotron-based research on atmospheric science. Progress in Chemistry, 34(4), 963-972. https://doi.org/10.7536/PC210438
Urban inland wintertime N<sub>2</sub>O<sub>5</sub> and ClNO<sub>2</sub> influenced by snow-covered ground, air turbulence, and precipitation
Kulju, K. D., McNamara, S. M., Chen, Q., Kenagy, H. S., Edebeli, J., Fuentes, J. D., … Pratt, K. A. (2022). Urban inland wintertime N2O5 and ClNO2 influenced by snow-covered ground, air turbulence, and precipitation. Atmospheric Chemistry and Physics, 22(4), 2553-2568. https://doi.org/10.5194/acp-22-2553-2022
Phase behavior of internal mixtures of hydrocarbon-like primary organic aerosol and secondary aerosol based on their differences in oxygen-to-carbon ratios
Mahrt, F., Huang, Y., Zaks, J., Devi, A., Peng, L., Ohno, P. E., … Bertram, A. K. (2022). Phase behavior of internal mixtures of hydrocarbon-like primary organic aerosol and secondary aerosol based on their differences in oxygen-to-carbon ratios. Environmental Science and Technology, 56(7), 3960-3973. https://doi.org/10.1021/acs.est.1c07691
Mt. Everest’s highest glacier is a sentinel for accelerating ice loss
Potocki, M., Mayewski, P. A., Matthews, T., Perry, L. B., Schwikowski, M., Tait, A. M., … Birkel, S. (2022). Mt. Everest’s highest glacier is a sentinel for accelerating ice loss. npj Climate and Atmospheric Science, 5, 7 (8 pp.). https://doi.org/10.1038/s41612-022-00230-0
Hole dynamics in photoexcited hematite studied with femtosecond oxygen K-edge X-ray absorption spectroscopy
Uemura, Y., Ismail, A. S. M., Park, S. H., Kwon, S., Kim, M., Elnaggar, H., … de Groot, F. M. F. (2022). Hole dynamics in photoexcited hematite studied with femtosecond oxygen K-edge X-ray absorption spectroscopy. Journal of Physical Chemistry Letters, 13(19), 4207-4214. https://doi.org/10.1021/acs.jpclett.2c00295
Possible effects of ozone chemistry on the phase behavior of skin oil and cooking oil films and particles indoors
Xu, S., Mahrt, F., Gregson, F. K. A., & Bertram, A. K. (2022). Possible effects of ozone chemistry on the phase behavior of skin oil and cooking oil films and particles indoors. ACS Earth and Space Chemistry, 6(7), 1836-1845. https://doi.org/10.1021/acsearthspacechem.2c00092
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Zhang, W., Hou, S., Wu, S. Y., Pang, H., Sneed, S. B., Korotkikh, E. V., … Schwikowski, M. (2022). A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 16(5), 1997-2008. https://doi.org/10.5194/tc-16-1997-2022
Photolytic radical persistence due to anoxia in viscous aerosol particles
Alpert, P. A., Dou, J., Corral Arroyo, P., Schneider, F., Xto, J., Luo, B., … Ammann, M. (2021). Photolytic radical persistence due to anoxia in viscous aerosol particles. Nature Communications, 12(1), 1769 (8 pp.). https://doi.org/10.1038/s41467-021-21913-x
Opinion: the germicidal effect of ambient air (open-air factor) revisited
Anthony Cox, R., Ammann, M., Crowley, J. N., Griffiths, P. T., Herrmann, H., Hoffmann, E. H., … Wallington, T. J. (2021). Opinion: the germicidal effect of ambient air (open-air factor) revisited. Atmospheric Chemistry and Physics, 21(17), 13011-13018. https://doi.org/10.5194/acp-21-13011-2021
Hot spots of glacier mass balance variability in Central Asia
Barandun, M., Pohl, E., Naegeli, K., McNabb, R., Huss, M., Berthier, E., … Hoelzle, M. (2021). Hot spots of glacier mass balance variability in Central Asia. Geophysical Research Letters, 48(11), e2020GL092084 (14 pp.). https://doi.org/10.1029/2020GL092084
Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Bartels-Rausch, T., Kong, X., Orlando, F., Artiglia, L., Waldner, A., Huthwelker, T., & Ammann, M. (2021). Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy. Cryosphere, 15(4), 2001-2020. https://doi.org/10.5194/tc-15-2001-2021
Alpine glacier reveals ecosystem impacts of Europe's prosperity and peril over the last millennium
Brugger, S. O., Schwikowski, M., Gobet, E., Schwörer, C., Rohr, C., Sigl, M., … Tinner, W. (2021). Alpine glacier reveals ecosystem impacts of Europe's prosperity and peril over the last millennium. Geophysical Research Letters, 48(20), e2021GL095039 (12 pp.). https://doi.org/10.1029/2021GL095039
First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard)
Burgay, F., Barbaro, E., Cappelletti, D., Turetta, C., Gallet, J. C., Isaksson, E., … Spolaor, A. (2021). First discrete iron(II) records from Dome C (Antarctica) and the Holtedahlfonna glacier (Svalbard). Chemosphere, 267, 129335 (13 pp.). https://doi.org/10.1016/j.chemosphere.2020.129335
 

Pages