Query

Active Filters

  • (-) PSI Laboratories = Materials Simulations LMS
Search Results 1 - 20 of 76

Pages

  • RSS Feed
Select Page
Explicit demonstration of the equivalence between DFT+<em>U</em> and the Hartree-Fock limit of DFT+ DMFT
Carta, A., Timrov, I., Mlkvik, P., Hampel, A., & Ederer, C. (2025). Explicit demonstration of the equivalence between DFT+U and the Hartree-Fock limit of DFT+ DMFT. Physical Review Research, 7(1), 013289 (15 pp.). https://doi.org/10.1103/PhysRevResearch.7.013289
First-principles electron-phonon interactions and polarons in the parent cuprate La<sub>2</sub>CuO<sub>4</sub>
Chang, B. K., Timrov, I., Park, J., Zhou, J. J., Marzari, N., & Bernardi, M. (2025). First-principles electron-phonon interactions and polarons in the parent cuprate La2CuO4. Physical Review Research, 7(1), L012073 (7 pp.). https://doi.org/10.1103/PhysRevResearch.7.L012073
Analytic model reveals local molecular polarizability changes induced by collective strong coupling in optical cavities
Horak, J., Sidler, D., Schnappinger, T., Huang, W. M., Ruggenthaler, M., & Rubio, A. (2025). Analytic model reveals local molecular polarizability changes induced by collective strong coupling in optical cavities. Physical Review Research, 7(1), 013242 (15 pp.). https://doi.org/10.1103/PhysRevResearch.7.013242
Incorporation mechanism of Tc(IV) in magnetite revealed by EXAFS measurements and ab initio simulations
Katheras, A. S., Krack, M., Zimmermann, T., Scheinost, A. C., & Churakov, S. V. (2025). Incorporation mechanism of Tc(IV) in magnetite revealed by EXAFS measurements and ab initio simulations. Journal of Physical Chemistry C, 129(12), 5921-5930. https://doi.org/10.1021/acs.jpcc.5c00357
Spin excitations of high spin iron(II) in metal–organic chains on metal and superconductor
Liu, J. C., Li, C., Chahib, O., Wang, X., Rothenbühler, S., Häner, R., … Pawlak, R. (2025). Spin excitations of high spin iron(II) in metal–organic chains on metal and superconductor. Advanced Science, 12(7), 2412351 (7 pp.). https://doi.org/10.1002/advs.202412351
Automated computational workflows for muon spin spectroscopy
Onuorah, I. J., Bonacci, M., Isah, M. M., Mazzani, M., De Renzi, R., Pizzi, G., & Bonfà, P. (2025). Automated computational workflows for muon spin spectroscopy. Digital Discovery, 4(2), 523-538. https://doi.org/10.1039/d4dd00314d
A photodetector based on the non-centrosymmetric 2D pseudo-binary chalcogenide MnIn<sub>2</sub>Se<sub>4</sub>
Serra, M., Antonatos, N., Lajaunie, L., Albero, J., Garcia, H., Weng, M., … Sofer, Z. (2025). A photodetector based on the non-centrosymmetric 2D pseudo-binary chalcogenide MnIn2Se4. Journal of Materials Chemistry C, 13(10), 5356-5369. https://doi.org/10.1039/d4tc04380d
Machine learning Hubbard parameters with equivariant neural networks
Uhrin, M., Zadoks, A., Binci, L., Marzari, N., & Timrov, I. (2025). Machine learning Hubbard parameters with equivariant neural networks. npj Computational Materials, 11(1), 19 (10 pp.). https://doi.org/10.1038/s41524-024-01501-5
Manipulating the symmetry of photon-dressed electronic states
Bao, C., Schüler, M., Xiao, T., Wang, F., Zhong, H., Lin, T., … Zhou, S. (2024). Manipulating the symmetry of photon-dressed electronic states. Nature Communications, 15(1), 10535 (10 pp.). https://doi.org/10.1038/s41467-024-54760-7
Automated all-functionals infrared and Raman spectra
Bastonero, L., & Marzari, N. (2024). Automated all-functionals infrared and Raman spectra. npj Computational Materials, 10(1), 55 (12 pp.). https://doi.org/10.1038/s41524-024-01236-3
Berry curvature signatures in chiroptical excitonic transitions
Beaulieu, S., Dong, S., Christiansson, V., Werner, P., Pincelli, T., Ziegler, J. D., … Schüler, M. (2024). Berry curvature signatures in chiroptical excitonic transitions. Science Advances, 10(26), eadk3897 (9 pp.). https://doi.org/10.1126/sciadv.adk3897
Roadmap on methods and software for electronic structure based simulations in chemistry and materials
Blum, V., Asahi, R., Autschbach, J., Bannwarth, C., Bihlmayer, G., Blügel, S., … Windus, T. (2024). Roadmap on methods and software for electronic structure based simulations in chemistry and materials. Electronic Structure, 6(4), 042501 (60 pp.). https://doi.org/10.1088/2516-1075/ad48ec
Magnetostriction-driven muon localization in an antiferromagnetic oxide
Bonfà, P., Onuorah, I. J., Lang, F., Timrov, I., Monacelli, L., Wang, C., … De Renzi, R. (2024). Magnetostriction-driven muon localization in an antiferromagnetic oxide. Physical Review Letters, 132(4), 046701 (7 pp.). https://doi.org/10.1103/PhysRevLett.132.046701
How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
Bosoni, E., Beal, L., Bercx, M., Blaha, P., Blügel, S., Bröder, J., … Pizzi, G. (2024). How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nature Reviews Physics, 6, 45-58. https://doi.org/10.1038/s42254-023-00655-3
Tilted-plane structure of the energy of finite quantum systems
Burgess, A. C., Linscott, E., & O'Regan, D. D. (2024). Tilted-plane structure of the energy of finite quantum systems. Physical Review Letters, 133(2), 026404 (6 pp.). https://doi.org/10.1103/PhysRevLett.133.026404
The relevance of degenerate states in chiral polaritonics
Bustamante, C. M., Sidler, D., Ruggenthaler, M., & Rubio, Á. (2024). The relevance of degenerate states in chiral polaritonics. Journal of Chemical Physics, 161(24), 244101 (9 pp.). https://doi.org/10.1063/5.0235935
Energies and spectra of solids from the algorithmic inversion of dynamical Hubbard functionals
Chiarotti, T., Ferretti, A., & Marzari, N. (2024). Energies and spectra of solids from the algorithmic inversion of dynamical Hubbard functionals. Physical Review Research, 6(3), L032023 (7 pp.). https://doi.org/10.1103/PhysRevResearch.6.L032023
Searching for the thinnest metallic wire
Cignarella, C., Campi, D., & Marzari, N. (2024). Searching for the thinnest metallic wire. ACS Nano, 18(25), 16101-16112. https://doi.org/10.1021/acsnano.3c12802
Jupyter widgets and extensions for education and research in computational physics and chemistry
Du, D., Baird, T. J., Eimre, K., Bonella, S., & Pizzi, G. (2024). Jupyter widgets and extensions for education and research in computational physics and chemistry. Computer Physics Communications, 305, 109353 (11 pp.). https://doi.org/10.1016/j.cpc.2024.109353
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange
Evans, M. L., Bergsma, J., Merkys, A., Andersen, C. W., Andersson, O. B., Beltrán, D., … Armiento, R. (2024). Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange. Digital Discovery, 3(8), 1509-1533. https://doi.org/10.1039/d4dd00039k
 

Pages