Query

Active Filters

  • (-) PSI Laboratories = Micro- and Nanotechnology LMN
  • (-) Funding (EC, SNSF) ≠ Laser-induced field emission from metallic nano-tips: beam characteristics and nano-optic enhancement of the laser-tip excitation
Search Results 1 - 20 of 1,252

Pages

  • RSS Feed
Select Page
X-ray grating interferometry design for the 4D GRAPH-X system
Patera, A., Arboleda, C., Ferrero, V., Fiorina, E., Jefimovs, K., Lo Giudice, A., … Cerello, P. (2022). X-ray grating interferometry design for the 4D GRAPH-X system. Journal of Physics D: Applied Physics, 55(4), 045103 (10 pp.). https://doi.org/10.1088/1361-6463/ac2fd6
Crystal structure of the pheromone E<em>r</em>-13 from the ciliate <em>Euplotes raikovi</em>, with implications for a protein-protein association model in pheromone/receptor interactions
Pedrini, B., Finke, A. D., Marsh, M., Luporini, P., Vallesi, A., & Alimenti, C. (2022). Crystal structure of the pheromone Er-13 from the ciliate Euplotes raikovi, with implications for a protein-protein association model in pheromone/receptor interactions. Journal of Structural Biology, 214(1), 107812 (10 pp.). https://doi.org/10.1016/j.jsb.2021.107812
High-efficiency diffraction gratings for EUV and soft x-rays using spin-on-carbon underlayers
Wang, X., Kazazis, D., Tseng, L. T., Robinson, A. P. G., & Ekinci, Y. (2022). High-efficiency diffraction gratings for EUV and soft x-rays using spin-on-carbon underlayers. Nanotechnology, 33(6), 065301 (10 pp.). https://doi.org/10.1088/1361-6528/ac328b
Surface topology and functionality of freeform microlens arrays
Aderneuer, T., Fernandez, O., Karpik, A., Werder, J., Marhöfer, M., Kristiansen, P. M., & Ferrini, R. (2021). Surface topology and functionality of freeform microlens arrays. Optics Express, 29(4), 5033-5042. https://doi.org/10.1364/OE.415453
Photoemission study of pristine and Ni-doped SrTiO<sub>3</sub> thin films
Alarab, F., Hricovini, K., Leikert, B., Nicolaï, L., Fanciulli, M., Heckmann, O., … Minár, J. (2021). Photoemission study of pristine and Ni-doped SrTiO3 thin films. Physical Review B, 104(16), 165129 (8 pp.). https://doi.org/10.1103/PhysRevB.104.165129
From omelet lithography to state-of-the-art performance resists: resist screening with EUV interference lithography
Allenet, T., Mortelmans, T., Vockenhuber, M., Yeh, C. K., & Ekinci, Y. (2021). From omelet lithography to state-of-the-art performance resists: resist screening with EUV interference lithography. In T. Allenet, T. Mortelmans, M. Vockenhuber, C. K. Yeh, Y. Ekinci, K. G. Ronse, … E. Hendrickx (Eds.), Proceedings of SPIE: Vol. 11854. International conference on extreme ultraviolet lithography 2021 (p. 1185417 (8 pp.). https://doi.org/10.1117/12.2600920
Progress in EUV resist screening by interference lithography for high-NA lithography
Allenet, T., Vockenhuber, M., Yeh, C. K., Kazazis, D., Santaclara, J. G., van Lent-Protasova, L., & Ekinci, Y. (2021). Progress in EUV resist screening by interference lithography for high-NA lithography. In T. Allenet, M. Vockenhuber, C. K. Yeh, D. Kazazis, J. Garcia-Santaclara, L. van Lent-Protasova, … E. Hendrickx (Eds.), Proceedings of SPIE: Vol. 11854. International conference on extreme ultraviolet lithography 2021 (p. 118540N (10 pp.). https://doi.org/10.1117/12.2600963
Progress in EUV resist screening towards the deployment of high-NA lithography
Allenet, T., Wang, X., Vockenhuber, M., Yeh, C. K., Mochi, I., Santaclara, J. G., … Ekinci, Y. (2021). Progress in EUV resist screening towards the deployment of high-NA lithography. In N. M. Felix & A. Lio (Eds.), Proceedings of SPIE: Vol. 11609. Extreme ultraviolet (EUV) lithography XII (p. 116090J (10 pp.). https://doi.org/10.1117/12.2583983
All femtosecond optical pump and x-ray probe: holey-axicon for free electron lasers
Anand, V., Maksimovic, J., Katkus, T., Ng, S. H., Ulčinas, O., Mikutis, M., … Juodkazis, S. (2021). All femtosecond optical pump and x-ray probe: holey-axicon for free electron lasers. JPhys Photonics, 3(2), 024002 (18 pp.). https://doi.org/10.1088/2515-7647/abd4ef
Steady state lasing in strained germanium microbridges as fundamental measure for the crossover to direct band gap
Armand Pilon, F. T., Niquet, Y. M., Chretien, J., Pauc, N., Reboud, V., Calvo, V., … Sigg, H. (2021). Steady state lasing in strained germanium microbridges as fundamental measure for the crossover to direct band gap. In 2021 IEEE 17th international conference on group IV photonics (GFP) (p. 176467 (2 pp.). https://doi.org/10.1109/GFP51802.2021.9673870
Facile fabrication of microporous vitreous carbon for oil/organic solvent absorption
Asgar, M. A., Kim, J., Yeom, J. W., Lee, S., Haq, M. R., & Kim, Smin. (2021). Facile fabrication of microporous vitreous carbon for oil/organic solvent absorption. Environmental Technology & Innovation, 24, 101946 (9 pp.). https://doi.org/10.1016/j.eti.2021.101946
Self-assembly and magnetic order of bi-molecular 2D spin lattices of M(II,III) phthalocyanines on Au(111)
Baljozović, M., Liu, X., Popova, O., Girovsky, J., Nowakowski, J., Rossmann, H., … Jung, T. A. (2021). Self-assembly and magnetic order of bi-molecular 2D spin lattices of M(II,III) phthalocyanines on Au(111). Magnetochemistry, 7(8), 119 (15 pp.). https://doi.org/10.3390/magnetochemistry7080119
Order from a mess: the growth of 5-armchair graphene nanoribbons
Berdonces-Layunta, A., Schulz, F., Aguilar-Galindo, F., Lawrence, J., Mohammed, M. S. G., Muntwiler, M., … de Oteyza, D. G. (2021). Order from a mess: the growth of 5-armchair graphene nanoribbons. ACS Nano, 15(10), 16552-16561. https://doi.org/10.1021/acsnano.1c06226
SLS 2.0 storage ring. Technical design report
Braun, H., Garvey, T., Jörg, M., Ashton, A., Willmott, P., Kobler, R., … Zehnder, E. (2021). SLS 2.0 storage ring. Technical design report. (PSI Bericht, Report No.: 21-02). Paul Scherrer Institut.
Buried moiré supercells through SrTiO<sub>3</sub> nanolayer relaxation
Burian, M., Pedrini, B. F., Ortiz Hernandez, N., Ueda, H., Vaz, C. A. F., Caputo, M., … Staub, U. (2021). Buried moiré supercells through SrTiO3 nanolayer relaxation. Physical Review Research, 3(1), 013225 (10 pp.). https://doi.org/10.1103/PhysRevResearch.3.013225
Spectral monitoring at SwissFEL using a high-resolution on-line hard X-ray single-shot spectrometer
David, C., Seniutinas, G., Makita, M., Rösner, B., Rehanek, J., Karvinen, P., … Juranić, P. (2021). Spectral monitoring at SwissFEL using a high-resolution on-line hard X-ray single-shot spectrometer. Journal of Synchrotron Radiation, 28, 1978-1984. https://doi.org/10.1107/S1600577521009619
Scalable hyperfine qubit state detection via electron shelving in the and manifolds in <sup>2</sup><em>D</em><sub>5/2</sub> and <sup>2</sup><em>F</em><sub>7/2</sub> manifolds in <sup>171</sup>Yb<sup>+</sup>
Edmunds, C. L., Tan, T. R., Milne, A. R., Singh, A., Biercuk, M. J., & Hempel, C. (2021). Scalable hyperfine qubit state detection via electron shelving in the and manifolds in 2D5/2 and 2F7/2 manifolds in 171Yb+. Physical Review A, 104(1), 012606 (11 pp.). https://doi.org/10.1103/PhysRevA.104.012606
Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter
Engel, R. Y., Ekimova, M., Miedema, P. S., Kleine, C., Ludwig, J., Ochmann, M., … Beye, M. (2021). Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter. Structural Dynamics, 8(1), 014303 (7 pp.). https://doi.org/10.1063/4.0000049
Assessing myocardial microstructure with biophysical models of diffusion MRI
Farzi, M., McClymont, D., Whittington, H., Zdora, M. C., Khazin, L., Lygate, C. A., … Schneider, J. E. (2021). Assessing myocardial microstructure with biophysical models of diffusion MRI. IEEE Transactions on Medical Imaging, 40(12), 3775-3786. https://doi.org/10.1109/TMI.2021.3097907
X-ray microspectroscopy and ptychography on nanoscale structures in rock varnish
Förster, J. D., Bykova, I., Macholdt, D. S., Jochum, K. P., Kappl, M., Kilcoyne, A. L. D., … Pöhlker, C. (2021). X-ray microspectroscopy and ptychography on nanoscale structures in rock varnish. Journal of Physical Chemistry C, 125(41), 22684-22697. https://doi.org/10.1021/acs.jpcc.1c03600
 

Pages