Query

Active Filters

  • (-) PSI Laboratories = Muon Spin Spectroscopy LMU
Search Results 1 - 20 of 907

Pages

  • RSS Feed
Select Page
Characterization of the interfacial defect layer in chalcopyrite solar cells by depth‐resolved muon spin spectroscopy
Alberto, H. V., Vilão, R. C., Ribeiro, E. F. M., Gil, J. M., Curado, M. A., Teixeira, J. P., … Weidinger, A. (2022). Characterization of the interfacial defect layer in chalcopyrite solar cells by depth‐resolved muon spin spectroscopy. Advanced Materials Interfaces, 9(19), 2200374 (9 pp.). https://doi.org/10.1002/admi.202200374
First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice
Bahrami, F., Hu, X., Du, Y., Lebedev, O. I., Wang, C., Luetkens, H., … Tafti, F. (2022). First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice. Science Advances, 8(12), eabl5671 (7 pp.). https://doi.org/10.1126/sciadv.abl5671
Crystal field effects in the zig-zag chain compound SrTm<sub>2</sub>O<sub>4</sub>
Bhat Kademane, A., Quintero-Castro, D. L., Siemensmeyer, K., Salazar-Mejia, C., Gorbunov, D., Stewart, J. R., … Li, H. (2022). Crystal field effects in the zig-zag chain compound SrTm2O4. Journal of Magnetism and Magnetic Materials, 551, 169020 (7 pp.). https://doi.org/10.1016/j.jmmm.2022.169020
Characterization of a continuous muon source for the non-destructive and depth-selective elemental composition analysis by Muon Induced X- and gamma-rays
Biswas, S., Gerchow, L., Luetkens, H., Prokscha, T., Antognini, A., Berger, N., … Amato, A. (2022). Characterization of a continuous muon source for the non-destructive and depth-selective elemental composition analysis by Muon Induced X- and gamma-rays. Applied Sciences, 12(5), 2541 (14 pp.). https://doi.org/10.3390/app12052541
Time reversal invariant single-gap superconductivity with upper critical field larger than the Pauli limit in NbIr<sub>2</sub>B<sub>2</sub>
Das, D., Górnicka, K., Guguchia, Z., Jaroszynski, J., Cava, R. J., Xie, W., … Klimczuk, T. (2022). Time reversal invariant single-gap superconductivity with upper critical field larger than the Pauli limit in NbIr2B2. Physical Review B, 106(9), 094507 (7 pp.). https://doi.org/10.1103/PhysRevB.106.094507
Anomalous Ferromagnetic Behavior in Orthorhombic Li<sub>3</sub>Co<sub>2</sub>SbO<sub>6</sub>
Duan, Q., Bu, H., Pomjakushin, V., Luetkens, H., Li, Y., Zhao, J., … Guo, H. (2022). Anomalous Ferromagnetic Behavior in Orthorhombic Li3Co2SbO6. Inorganic Chemistry, 61(28), 10880-10887. https://doi.org/10.1021/acs.inorgchem.2c01293
Intrinsic magnetism in superconducting infinite-layer nickelates
Fowlie, J., Hadjimichael, M., Martins, M. M., Li, D., Osada, M., Wang, B. Y., … Suter, A. (2022). Intrinsic magnetism in superconducting infinite-layer nickelates. Nature Physics, 18, 1043-1047. https://doi.org/10.1038/s41567-022-01684-y
A brief review of the physical properties of charge density wave superconductor LaPt<sub>2</sub>Si<sub>2</sub>
Gupta, R., Thamizhavel, A., Rajeev, K. P., & Hossain, Z. (2022). A brief review of the physical properties of charge density wave superconductor LaPt2Si2. Superconductor Science and Technology, 35(8), 084006 (9 pp.). https://doi.org/10.1088/1361-6668/ac7755
Microscopic evidence for anisotropic multigap superconductivity in the CsV<sub>3</sub>Sb<sub>5</sub> kagome superconductor
Gupta, R., Das, D., Mielke III, C. H., Guguchia, Z., Shiroka, T., Baines, C., … Lei, H. (2022). Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Materials, 7, 49 (8 pp.). https://doi.org/10.1038/s41535-022-00453-7
Two types of charge order with distinct interplay with superconductivity in the kagome material CsV<sub>3</sub>Sb<sub>5</sub>
Gupta, R., Das, D., Mielke, C., Ritz, E. T., Hotz, F., Yin, Q., … Khasanov, R. (2022). Two types of charge order with distinct interplay with superconductivity in the kagome material CsV3Sb5. Communications Physics, 5, 232 (8 pp.). https://doi.org/10.1038/s42005-022-01011-0
Energy-gap driven low-temperature magnetic and transport properties in Cr<sub>1/3</sub><em>M</em>S<sub>2</sub> (<em>M </em>= Nb, Ta)
Hicken, T. J., Hawkhead, Z., Wilson, M. N., Huddart, B. M., Hall, A. E., Balakrishnan, G., … Lancaster, T. (2022). Energy-gap driven low-temperature magnetic and transport properties in Cr1/3MS2 (M = Nb, Ta). Physical Review B, 105(6), L060407 (6 pp.). https://doi.org/10.1103/PhysRevB.105.L060407
Magnetism in the Néel-skyrmion host GaV<sub>4</sub> S<sub>8</sub> under pressure
Hicken, T. J., Wilson, M. N., Holt, S. J. R., Khassanov, R., Lees, M. R., Gupta, R., … Lancaster, T. (2022). Magnetism in the Néel-skyrmion host GaV4 S8 under pressure. Physical Review B, 105(13), 134414 (8 pp.). https://doi.org/10.1103/PhysRevB.105.134414
Muon spin spectroscopy
Hillier, A. D., Blundell, S. J., McKenzie, I., Umegaki, I., Shu, L., Wright, J. A., … Watanabe, I. (2022). Muon spin spectroscopy. Nature Reviews Methods Primers, 2, 4 (24 pp.). https://doi.org/10.1038/s43586-021-00089-0
Uncovering the <em>S</em> = <sup>1</sup>/<sub>2</sub> kagome ferromagnet within a family of metal-organic frameworks
Ivko, S. A., Tustain, K., Dolling, T., Abdeldaim, A., Mustonen, O. H. J., Manuel, P., … Clark, L. (2022). Uncovering the S = 1/2 kagome ferromagnet within a family of metal-organic frameworks. Chemistry of Materials, 34, 5409-5421. https://doi.org/10.1021/acs.chemmater.2c00289
Spin excitations in the quantum dipolar magnet Yb(BaBO<sub>3</sub>)<sub>3</sub>
Jiang, C. Y., Yang, Y. X., Gao, Y. X., Wan, Z. T., Zhu, Z. H., Shiroka, T., … Shu, L. (2022). Spin excitations in the quantum dipolar magnet Yb(BaBO3)3. Physical Review B, 106(1), 014409 (7 pp.). https://doi.org/10.1103/PhysRevB.106.014409
Muons under pressure
Khasanov, R. (2022). Muons under pressure. In S. J. Blundell, R. De Renzi, T. Lancaster, & F. L. Pratt (Eds.), Muon spectroscopy. An introduction (pp. 313-322). Oxford University Press.
Three-wall piston-cylinder type pressure cell for muon-spin rotation/relaxation experiments
Khasanov, R., Urquhart, R., Elender, M., & Kamenev, K. (2022). Three-wall piston-cylinder type pressure cell for muon-spin rotation/relaxation experiments. High Pressure Research, 42(1), 29-46. https://doi.org/10.1080/08957959.2021.2013835
Time-reversal symmetry broken by charge order in CsV<sub>3</sub> Sb<sub>5</sub>
Khasanov, R., Das, D., Gupta, R., Mielke, C., Elender, M., Yin, Q., … Luetkens, H. (2022). Time-reversal symmetry broken by charge order in CsV3 Sb5. Physical Review Research, 4(2), 023244 (13 pp.). https://doi.org/10.1103/PhysRevResearch.4.023244
Signature of a randomness-driven spin-liquid state in a frustrated magnet
Khatua, J., Gomilšek, M., Orain, J. C., Strydom, A. M., Jagličić, Z., Colin, C. V., … Khuntia, P. (2022). Signature of a randomness-driven spin-liquid state in a frustrated magnet. Communications Physics, 5(1), 99. https://doi.org/10.1038/s42005-022-00879-2
Depth-resolved study of the SiO<sub>2</sub>-SiC interface using low-energy muon spin rotation spectroscopy
Kumar, P., Martins, M. I. M., Bathen, M. E., Woerle, J., Prokscha, T., & Grossner, U. (2022). Depth-resolved study of the SiO2-SiC interface using low-energy muon spin rotation spectroscopy. In J. F. Michaud, L. V. Phung, D. Alquier, & D. Planson (Eds.), Materials science forum: Vol. 1062. Silicon carbide and related materials 2021 (pp. 315-319). https://doi.org/10.4028/p-w73601
 

Pages