Query

Active Filters

  • (-) PSI Laboratories = Muon Spin Spectroscopy LMU
  • (-) PSI Authors ≠ Guguchia, Zurab
  • (-) PSI Authors = Khassanov, Roustem
Search Results 1 - 20 of 149

Pages

  • RSS Feed
Select Page
Interplay of structure and magnetism in LuFe<sub>4</sub>Ge<sub>2</sub> tuned by hydrostatic pressure
Ajeesh, M. O., Materne, P., dos Reis, R. D., Weber, K., Dengre, S., Sarkar, R., … Nicklas, M. (2023). Interplay of structure and magnetism in LuFe4Ge2 tuned by hydrostatic pressure. Physical Review B, 107(12), 125136 (9 pp.). https://doi.org/10.1103/PhysRevB.107.125136
The non-destructive investigation of a late antique knob bow fibula (Bügelknopffibel) from Kaiseraugst/CH using Muon Induced X-ray Emission (MIXE)
Biswas, S., Megatli-Niebel, I., Raselli, L., Simke, R., Cocolios, T. E., Deokar, N., … Amato, A. (2023). The non-destructive investigation of a late antique knob bow fibula (Bügelknopffibel) from Kaiseraugst/CH using Muon Induced X-ray Emission (MIXE). Heritage Science, 11, 43 (17 pp.). https://doi.org/10.1186/s40494-023-00880-0
Confirming the high pressure phase diagram of the Shastry-Sutherland model
Ge, Y., Andreica, D., Sassa, Y., Nocerino, E., Pomjakushina, E., Khasanov, R., … Forslund, O. K. (2023). Confirming the high pressure phase diagram of the Shastry-Sutherland model. In Journal of physics: conference series: Vol. 2462. The 15th international conference on muon spin rotation, relaxation and resonance (p. 012042 (6 pp.). https://doi.org/10.1088/1742-6596/2462/1/012042
Oxygen isotope effect on the superfluid density within the <em>d</em>-wave and <em>s</em>-wave pairing channels of YBa<sub>2</sub>Cu<sub>4</sub>O<sub>8</sub>
Khasanov, R., Shengelaya, A., Conder, K., Karpinski, J., Bussmann-Holder, A., & Keller, H. (2023). Oxygen isotope effect on the superfluid density within the d-wave and s-wave pairing channels of YBa2Cu4O8. Physica C: Superconductivity and its Applications, 613, 1354332 (6 pp.). https://doi.org/10.1016/j.physc.2023.1354332
The use of LEDs as a light source for fluorescence pressure measurements
Khasanov, R., Elender, M., & Klotz, S. (2023). The use of LEDs as a light source for fluorescence pressure measurements. High Pressure Research, 43(3), 192-204. https://doi.org/10.1080/08957959.2023.2209902
Magnetic properties of multifunctional <sup>7</sup>LiFePO<sub>4</sub> under hydrostatic pressure
Miniotaite, U., Forslund, O. K., Nocerino, E., Elson, F., Palm, R., Matsubara, N., … Månsson, M. (2023). Magnetic properties of multifunctional 7LiFePO4 under hydrostatic pressure. In Journal of physics: conference series: Vol. 2462. The 15th international conference on muon spin rotation, relaxation and resonance (p. 012049 (8 pp.). https://doi.org/10.1088/1742-6596/2462/1/012049
Magnetism in the Néel-skyrmion host GaV<sub>4</sub> S<sub>8</sub> under pressure
Hicken, T. J., Wilson, M. N., Holt, S. J. R., Khassanov, R., Lees, M. R., Gupta, R., … Lancaster, T. (2022). Magnetism in the Néel-skyrmion host GaV4 S8 under pressure. Physical Review B, 105(13), 134414 (8 pp.). https://doi.org/10.1103/PhysRevB.105.134414
Muons under pressure
Khasanov, R. (2022). Muons under pressure. In S. J. Blundell, R. De Renzi, T. Lancaster, & F. L. Pratt (Eds.), Muon spectroscopy. An introduction (pp. 313-322). Oxford University Press.
Perspective on muon-spin rotation/relaxation under hydrostatic pressure
Khasanov, R. (2022). Perspective on muon-spin rotation/relaxation under hydrostatic pressure. Journal of Applied Physics, 132(19), 190903 (15 pp.). https://doi.org/10.1063/5.0119840
Three-wall piston-cylinder type pressure cell for muon-spin rotation/relaxation experiments
Khasanov, R., Urquhart, R., Elender, M., & Kamenev, K. (2022). Three-wall piston-cylinder type pressure cell for muon-spin rotation/relaxation experiments. High Pressure Research, 42(1), 29-46. https://doi.org/10.1080/08957959.2021.2013835
Spin-liquid signatures in the quantum critical regime of pressurized CePdAl
Majumder, M., Gupta, R., Luetkens, H., Khasanov, R., Stockert, O., Gegenwart, P., & Fritsch, V. (2022). Spin-liquid signatures in the quantum critical regime of pressurized CePdAl. Physical Review B, 105(18), L180402 (5 pp.). https://doi.org/10.1103/PhysRevB.105.L180402
Optical setup for a piston-cylinder pressure cell: a two-volume approach
Naumov, P., Gupta, R., Bartkowiak, M., Pomjakushina, E., Casati, N. P. M., Elender, M., & Khasanov, R. (2022). Optical setup for a piston-cylinder pressure cell: a two-volume approach. Physical Review Applied, 17(2), 024065 (9 pp.). https://doi.org/10.1103/PhysRevApplied.17.024065
Magnetic correlations in infinite-layer nickelates: an experimental and theoretical multimethod study
Ortiz, R. A., Puphal, P., Klett, M., Hotz, F., Kremer, R. K., Trepka, H., … Hepting, M. (2022). Magnetic correlations in infinite-layer nickelates: an experimental and theoretical multimethod study. Physical Review Research, 4(2), 023093 (19 pp.). https://doi.org/10.1103/PhysRevResearch.4.023093
Evidence of unconventional pairing in the quasi-two-dimensional CuIr<sub>2-x</sub> Ru<sub>x</sub> Te<sub>4</sub> superconductor
Shang, T., Chen, Y., Xie, W., Gawryluk, D. J., Gupta, R., Khasanov, R., … Shiroka, T. (2022). Evidence of unconventional pairing in the quasi-two-dimensional CuIr2-x Rux Te4 superconductor. Physical Review B, 106(14), 144505 (10 pp.). https://doi.org/10.1103/PhysRevB.106.144505
Formation of short-range magnetic order and avoided ferromagnetic quantum criticality in pressurized LaCrGe&lt;sub&gt;3&lt;/sub&gt;
Gati, E., Wilde, J. M., Khasanov, R., Xiang, L., Dissanayake, S., Gupta, R., … Canfield, P. C. (2021). Formation of short-range magnetic order and avoided ferromagnetic quantum criticality in pressurized LaCrGe3. Physical Review B, 103(7), 075111 (28 pp.). https://doi.org/10.1103/PhysRevB.103.075111
Unsplit superconducting and time reversal symmetry breaking transitions in Sr<sub>2</sub>RuO<sub>4</sub> under hydrostatic pressure and disorder
Grinenko, V., Das, D., Gupta, R., Zinkl, B., Kikugawa, N., Maeno, Y., … Khasanov, R. (2021). Unsplit superconducting and time reversal symmetry breaking transitions in Sr2RuO4 under hydrostatic pressure and disorder. Nature Communications, 12(1), 3920 (10 pp.). https://doi.org/10.1038/s41467-021-24176-8
Gap symmetry of the noncentrosymmetric superconductor W<sub>3</sub>Al<sub>2</sub>C
Gupta, R., Ying, T. P., Qi, Y. P., Hosono, H., & Khasanov, R. (2021). Gap symmetry of the noncentrosymmetric superconductor W3Al2C. Physical Review B, 103(17), 174511 (8 pp.). https://doi.org/10.1103/PhysRevB.103.174511
Anomalous gap ratio in anisotropic superconductors: aluminum under pressure
Khasanov, R., & Mazin, I. I. (2021). Anomalous gap ratio in anisotropic superconductors: aluminum under pressure. Physical Review B, 103(6), L060502 (5 pp.). https://doi.org/10.1103/PhysRevB.103.L060502
Isotropic single-gap superconductivity of elemental Pb
Khasanov, R., Das, D., Gawryluk, D. J., Gupta, R., & Mielke, C. (2021). Isotropic single-gap superconductivity of elemental Pb. Physical Review B, 104(10), L100508 (5 pp.). https://doi.org/10.1103/PhysRevB.104.L100508
Pressure dependence of ferromagnetic phase boundary in BaVSe&lt;sub&gt;3&lt;/sub&gt; studied with high-pressure &lt;em&gt;μ&lt;/em&gt;&lt;sup&gt;+&lt;/sup&gt;SR
Sugiyama, J., Higemoto, W., Andreica, D., Forslund, O. K., Nocerino, E., Månsson, M., … Nakamura, H. (2021). Pressure dependence of ferromagnetic phase boundary in BaVSe3 studied with high-pressure μ+SR. Physical Review B, 103(10), 104418 (10 pp.). https://doi.org/10.1103/PhysRevB.103.104418
 

Pages