Active Filters

  • (-) … = 132815
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Relevance of rhodopsin studies for GPCR activation
Deupi, X. (2014). Relevance of rhodopsin studies for GPCR activation. Biochimica et Biophysica Acta: Bioenergetics, 1837(5), 674-682. https://doi.org/10.1016/j.bbabio.2013.09.002
Production of GPCR and GPCR complexes for structure determination
Maeda, S., & Schertler, G. F. X. (2013). Production of GPCR and GPCR complexes for structure determination. Current Opinion in Structural Biology, 23(3), 381-392. https://doi.org/10.1016/j.sbi.2013.04.006
Relation between sequence and structure in membrane proteins
Olivella, M., Gonzalez, A., Pardo, L., & Deupi, X. (2013). Relation between sequence and structure in membrane proteins. Bioinformatics, 29(13), 1589-1592. https://doi.org/10.1093/bioinformatics/btt249
Insights into congenital stationary night blindness based on the structure of G90D rhodopsin
Singhal, A., Ostermaier, M. K., Vishnivetskiy, S. A., Panneels, V., Homan, K. T., Tesmer, J. J. G., … Standfuss, J. (2013). Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Reports, 14(6), 520-526. https://doi.org/10.1038/embor.2013.44
AAscan, PCRdesign and MutantChecker: a suite of programs for primer design and sequence analysis for high-throughput scanning mutagenesis.
Sun, D., Ostermaier, M. K., Heydenreich, F. M., Mayer, D., Jaussi, R., Standfuss, J., & Veprintsev, D. B. (2013). AAscan, PCRdesign and MutantChecker: a suite of programs for primer design and sequence analysis for high-throughput scanning mutagenesis. PLoS One, 8(10), e78878 (9 pp.). https://doi.org/10.1371/journal.pone.0078878
Two alternative conformations of a voltage-gated sodium channel
Tsai, C. J., Tani, K., Irie, K., Hiroaki, Y., Shimomura, T., McMillan, D. G., … Li, X. D. (2013). Two alternative conformations of a voltage-gated sodium channel. Journal of Molecular Biology, 425(22), 4074-4088. https://doi.org/10.1016/j.jmb.2013.06.036
Molecular signatures of G-protein-coupled receptors
Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185-194. https://doi.org/10.1038/nature11896
Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding
Vishnivetskiy, S. A., Ostermaier, M. K., Singhal, A., Panneels, V., Homan, K. T., Glukhova, A., … Gurevich, V. V. (2013). Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cellular Signalling, 25(11), 2155-2162. https://doi.org/10.1016/j.cellsig.2013.07.009
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II
Deupi, X., Edwards, P., Singhal, A., Nickle, B., Oprian, D., Schertler, G., & Standfuss, J. (2012). Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proceedings of the National Academy of Sciences of the United States of America PNAS, 109(1), 119-124. https://doi.org/10.1073/pnas.1114089108
Structural insights into agonist-induced activation of G-protein-coupled receptors
Deupi, X., & Standfuss, J. (2011). Structural insights into agonist-induced activation of G-protein-coupled receptors. Current Opinion in Structural Biology, 21(4), 541-551. https://doi.org/10.1016/j.sbi.2011.06.002
Membranes
Stroud, R. M., & Schertler, G. F. X. (2011). Membranes. Current Opinion in Structural Biology, 21(4), 495-496. https://doi.org/10.1016/j.sbi.2011.08.001
Preparation of an activated rhodopsin/transducin complex using a constitutively active mutant of rhodopsin
Xie, G., D'Antona, A. M., Edwards, P. C., Fransen, M., Standfuss, J., Schertler, G. F. X., & Oprian, D. D. (2011). Preparation of an activated rhodopsin/transducin complex using a constitutively active mutant of rhodopsin. Biochemistry, 50(47), 10399-10407. https://doi.org/10.1021/bi201126r