Active Filters

  • (-) … = 165791
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Electronic structure of the highly conductive perovskite oxide SrMoO<sub>3</sub>
Cappelli, E., Hampel, A., Chikina, A., Guedes, E. B., Gatti, G., Hunter, A., … Baumberger, F. (2022). Electronic structure of the highly conductive perovskite oxide SrMoO3. Physical Review Materials, 6(7), 075002 (7 pp.). https://doi.org/10.1103/PhysRevMaterials.6.075002
A laser-ARPES view of the 2D electron systems at LaAlO<sub>3</sub>/SrTiO<sub>3</sub> and Al/SrTiO<sub>3</sub> interfaces
McKewon Walker, S., Boselli, M., Martínez, E. A., Gariglio, S., Bruno, F. Y., & Baumberger, F. (2022). A laser-ARPES view of the 2D electron systems at LaAlO3/SrTiO3 and Al/SrTiO3 interfaces. Advanced Electronic Materials, 8(7), 2101376 (8 pp.). https://doi.org/10.1002/aelm.202101376
Direct comparison of ARPES, STM, and quantum oscillation data for band structure determination in Sr&lt;sub&gt;2&lt;/sub&gt;RhO&lt;sub&gt;4&lt;/sub&gt;
Battisti, I., Tromp, W. O., Riccò, S., Perry, R. S., Mackenzie, A. P., Tamai, A., … Allan, M. P. (2020). Direct comparison of ARPES, STM, and quantum oscillation data for band structure determination in Sr2RhO4. npj Quantum Materials, 5(1), 91 (8 pp.). https://doi.org/10.1038/s41535-020-00292-4
A laser-ARPES study of LaNiO&lt;sub&gt;3&lt;/sub&gt; thin films grown by sputter deposition
Cappelli, E., Tromp, W. O., McKeown Walker, S., Tamai, A., Gibert, M., Baumberger, F., & Bruno, F. Y. (2020). A laser-ARPES study of LaNiO3 thin films grown by sputter deposition. APL Materials, 8(5), 051102 (6 pp.). https://doi.org/10.1063/1.5143316
Bulk and surface electronic structure of the dual-topology semimetal Pt&lt;sub&gt;2&lt;/sub&gt;HgSe&lt;sub&gt;3&lt;/sub&gt;
Cucchi, I., Marrazzo, A., Cappelli, E., Riccò, S., Bruno, F. Y., Lisi, S., … Tamai, A. (2020). Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Physical Review Letters, 124(10), 106402 (6 pp.). https://doi.org/10.1103/PhysRevLett.124.106402
Microfocus laser–angle-resolved photoemission on encapsulated mono-, bi-, and few-layer 1T′-WTe<sub>2</sub>
Cucchi, I., Gutiérrez-Lezama, I., Cappelli, E., McKeown Walker, S., Bruno, F. Y., Tenasini, G., … Baumberger, F. (2019). Microfocus laser–angle-resolved photoemission on encapsulated mono-, bi-, and few-layer 1T′-WTe2. Nano Letters, 19(1), 554-560. https://doi.org/10.1021/acs.nanolett.8b04534
High-resolution photoemission on Sr&lt;sub&gt;2&lt;/sub&gt;RuO&lt;sub&gt;4&lt;/sub&gt; reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies
Tamai, A., Zingl, M., Rozbicki, E., Cappelli, E., Riccò, S., de la Torre, A., … Baumberger, F. (2019). High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies. Physical Review X, 9(2), 021048 (18 pp.). https://doi.org/10.1103/PhysRevX.9.021048
Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas
Vaz, D. C., Noël, P., Johansson, A., Göbel, B., Bruno, F. Y., Singh, G., … Bibes, M. (2019). Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nature Materials, 18(11), 1187-1193. https://doi.org/10.1038/s41563-019-0467-4
Observation of out-of-plane spin texture in a SrTiO&lt;sub&gt;3&lt;/sub&gt; (111) two-dimensional electron gas
He, P., McKeown Walker, S., Zhang, S. S. L., Bruno, F. Y., Bahramy, M. S., Lee, J. M., … Yang, H. (2018). Observation of out-of-plane spin texture in a SrTiO3 (111) two-dimensional electron gas. Physical Review Letters, 120(26), 266802 (5 pp.). https://doi.org/10.1103/PhysRevLett.120.266802
In situ strain tuning of the metal-insulator-transition of Ca&lt;sub&gt;2&lt;/sub&gt;RuO&lt;sub&gt;4&lt;/sub&gt; in angle-resolved photoemission experiments
Riccò, S., Kim, M., Tamai, A., McKeown Walker, S., Bruno, F. Y., Cucchi, I., … Baumberger, F. (2018). In situ strain tuning of the metal-insulator-transition of Ca2RuO4 in angle-resolved photoemission experiments. Nature Communications, 9(1), 4535 (7 pp.). https://doi.org/10.1038/s41467-018-06945-0