Active Filters

  • (-) Funding (EC, SNSF) = Exploration of emerging magnetoelectric coupling effects in new materials
  • (-) Beamlines ≠ SANS-II
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
<em>In situ</em> control of the helical and skyrmion phases in Cu<sub>2</sub>OSeO<sub>3</sub> using high-pressure helium gas up to 5 kbar
Crisanti, M., Reynolds, N., Živković, I., Magrez, A., Rønnow, H. M., Cubitt, R., & White, J. S. (2020). In situ control of the helical and skyrmion phases in Cu2OSeO3 using high-pressure helium gas up to 5 kbar. Physical Review B, 101(21), 214435 (9 pp.). https://doi.org/10.1103/PhysRevB.101.214435
Emergent topological spin structures in the centrosymmetric cubic perovskite SrFeO<sub>3</sub>
Ishiwata, S., Nakajima, T., Kim, J. H., Inosov, D. S., Kanazawa, N., White, J. S., … Tokura, Y. (2020). Emergent topological spin structures in the centrosymmetric cubic perovskite SrFeO3. Physical Review B, 101(13), 134406 (9 pp.). https://doi.org/10.1103/PhysRevB.101.134406
Metastable skyrmion lattices governed by magnetic disorder and anisotropy in <em>β</em>-Mn-type chiral magnets
Karube, K., White, J. S., Ukleev, V., Dewhurst, C. D., Cubitt, R., Kikkawa, A., … Taguchi, Y. (2020). Metastable skyrmion lattices governed by magnetic disorder and anisotropy in β-Mn-type chiral magnets. Physical Review B, 102(6), 064408 (20 pp.). https://doi.org/10.1103/PhysRevB.102.064408
Emergent spin-1 Haldane gap and ferroelectricity in a frustrated spin-<sup>1</sup>/<sub>2</sub> ladder
Ueda, H., Onoda, S., Yamaguchi, Y., Kimura, T., Yoshizawa, D., Morioka, T., … Yasui, Y. (2020). Emergent spin-1 Haldane gap and ferroelectricity in a frustrated spin-1/2 ladder. Physical Review B, 101, 140408(R) (6 pp.). https://doi.org/10.1103/PhysRevB.101.140408
Correlation between site occupancies and spin-glass transition in skyrmion host Co<sub>10−<em>x</em>/2</sub>Zn<sub>10−<em>x</em>/2</sub>Mn<em><sub>x</sub></em>
Nakajima, T., Karube, K., Ishikawa, Y., Yonemura, M., Reynolds, N., White, J. S., … Arima, T. (2019). Correlation between site occupancies and spin-glass transition in skyrmion host Co10−x/2Zn10−x/2Mnx. Physical Review B, 100(6), 064407 (7 pp.). https://doi.org/10.1103/PhysRevB.100.064407
Magnetic field control of cycloidal domains and electric polarization in multiferroic BiFeO<sub>3</sub>
Bordács, S., Farkas, D. G., White, J. S., Cubitt, R., DeBeer-Schmitt, L., Ito, T., & Kézsmárki, I. (2018). Magnetic field control of cycloidal domains and electric polarization in multiferroic BiFeO3. Physical Review Letters, 120(14), 147203 (5 pp.). https://doi.org/10.1103/PhysRevLett.120.147203
Controlling the helicity of magnetic skyrmions in a <em>β</em>-Mn-type high-temperature chiral magnet
Karube, K., Shibata, K., White, J. S., Koretsune, T., Yu, X. Z., Tokunaga, Y., … Taguchi, Y. (2018). Controlling the helicity of magnetic skyrmions in a β-Mn-type high-temperature chiral magnet. Physical Review B, 98(15), 155120. https://doi.org/10.1103/PhysRevB.98.155120
Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet
Karube, K., White, J. S., Morikawa, D., Dewhurst, C. D., Cubitt, R., Kikkawa, A., … Taguchi, Y. (2018). Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Science Advances, 4(9), eaar7043 (8 pp.). https://doi.org/10.1126/sciadv.aar7043
Magnetoelectric inversion of domain patterns
Leo, N., Carolus, V., White, J. S., Kenzelmann, M., Hudl, M., Tolédano, P., … Fiebig, M. (2018). Magnetoelectric inversion of domain patterns. Nature, 560(7719), 466-470. https://doi.org/10.1038/s41586-018-0432-4
Negative-pressure-induced helimagnetism in ferromagnetic cubic perovskites Sr<sub>1-<em>x</em></sub>Ba<sub><em>x</em></sub>CoO<sub>3</sub>
Sakai, H., Yokoyama, S., Kuwabara, A., White, J. S., Canévet, E., Rønnow, H. M., … Ishiwata, S. (2018). Negative-pressure-induced helimagnetism in ferromagnetic cubic perovskites Sr1-xBaxCoO3. Physical Review Materials, 2(10), 104412 (6 pp.). https://doi.org/10.1103/PhysRevMaterials.2.104412
Low-field bi-Skyrmion formation in a noncentrosymmetric chimney ladder ferromagnet
Takagi, R., Yu, X. Z., White, J. S., Shibata, K., Kaneko, Y., Tatara, G., … Seki, S. (2018). Low-field bi-Skyrmion formation in a noncentrosymmetric chimney ladder ferromagnet. Physical Review Letters, 120(3), 037203 (6 pp.). https://doi.org/10.1103/PhysRevLett.120.037203
Equilibrium skyrmion lattice ground state in a polar easy-plane magnet
Bordács, S., Butykai, A., Szigeti, B. G., White, J. S., Cubitt, R., Leonov, A. O., … Kézsmárki, I. (2017). Equilibrium skyrmion lattice ground state in a polar easy-plane magnet. Scientific Reports, 7, 7584 (11 pp.). https://doi.org/10.1038/s41598-017-07996-x
Coupled multiferroic domain switching in the canted conical spin spiral system MN<sub>2</sub>GeO<sub>4</sub>
Honda, T., White, J. S., Harris, A. B., Chapon, L. C., Fennell, A., Roessli, B., … Kimura, T. (2017). Coupled multiferroic domain switching in the canted conical spin spiral system MN2GeO4. Nature Communications, 8, 15457 (9 pp.). https://doi.org/10.1038/ncomms15457
Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet
Karube, K., White, J. S., Reynolds, N., Gavilano, J. L., Oike, H., Kikkawa, A., … Taguchi, Y. (2016). Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. Nature Materials, 15(12), 1237-1242. https://doi.org/10.1038/nmat4752