Active Filters

  • (-) Funding (EC, SNSF) = Investigation of new particle formation in the CLOUD chamber at CERN and the PSI smog chamber
  • (-) PSI Authors ≠ Frege Issa, Carla
Search Results 1 - 20 of 21
Select Page
Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols
Bianchi, F., Junninen, H., Bigi, A., Sinclair, V. A., Dada, L., Hoyle, C. R., … Dommen, J. (2021). Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 14, 4-9. https://doi.org/10.1038/s41561-020-00661-5
Enhanced growth rate of atmospheric particles from sulfuric acid
Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H., … Winkler, P. M. (2020). Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 20(12), 7359-7372. https://doi.org/10.5194/acp-20-7359-2020
Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds
Wang, M., Chen, D., Xiao, M., Ye, Q., Stolzenburg, D., Hofbauer, V., … Donahue, N. M. (2020). Photo-oxidation of aromatic hydrocarbons produces low-volatility organic compounds. Environmental Science and Technology, 54(13), 7911-7921. https://doi.org/10.1021/acs.est.0c02100
Measurement-model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber
Sarnela, N., Jokinen, T., Duplissy, J., Yan, C., Nieminen, T., Ehn, M., … Sipilä, M. (2018). Measurement-model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber. Atmospheric Chemistry and Physics, 18(4), 2363-2380. https://doi.org/10.5194/acp-18-2363-2018
Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber
Ahlm, L., Yli-Juuti, T., Schobesberger, S., Praplan, A. P., Kim, J., Tikkanen, O. P., … Riipinen, I. (2016). Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 50(10), 1017-1032. https://doi.org/10.1080/02786826.2016.1223268
Contribution of methane to aerosol carbon mass
Bianchi, F., Barmet, P., Stirnweis, L., El Haddad, I., Platt, S. M., Saurer, M., … Dommen, J. (2016). Contribution of methane to aerosol carbon mass. Atmospheric Environment, 141, 41-47. https://doi.org/10.1016/j.atmosenv.2016.06.036
Global atmospheric particle formation from CERN CLOUD measurements
Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., … Carslaw, K. S. (2016). Global atmospheric particle formation from CERN CLOUD measurements. Science, 354(6316), 1119-1124. https://doi.org/10.1126/science.aaf2649
Effect of ions on sulfuric acid-water binary particle formation: 2. experimental data and comparison with QC-normalized classical nucleation theory
Duplissy, J., Merikanto, J., Franchin, A., Tsagkogeorgas, G., Kangasluoma, J., Wimmer, D., … Kulmala, M. (2016). Effect of ions on sulfuric acid-water binary particle formation: 2. experimental data and comparison with QC-normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 121(4), 1752-1775. https://doi.org/10.1002/2015JD023539
Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments
Kim, J., Ahlm, L., Yli-Juuti, T., Lawler, M., Keskinen, H., Tröstl, J., … Virtanen, A. (2016). Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 16(1), 293-304. https://doi.org/10.5194/acp-16-293-2016
Labile peroxides in secondary organic aerosol
Krapf, M., El Haddad, I., Bruns, E. A., Molteni, U., Daellenbach, K. R., Prévôt, A. S. H., … Dommen, J. (2016). Labile peroxides in secondary organic aerosol. Chem, 1(4), 603-616. https://doi.org/10.1016/j.chempr.2016.09.007
Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures
Kürten, A., Bianchi, F., Almeida, J., Kupiainen-Määttä, O., Dunne, E. M., Duplissy, J., … Curtius, J. (2016). Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 121(20), 12377-12400. https://doi.org/10.1002/2015JD023908
The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
Lehtipalo, K., Rondo, L., Kontkanen, J., Schobesberger, S., Jokinen, T., Sarnela, N., … Kulmala, M. (2016). The effect of acid-base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 7, 11594 (9 pp.). https://doi.org/10.1038/ncomms11594
Effect of dimethylamine on the gas phase sulfuric acid concentration measured by chemical ionization mass spectrometry
Rondo, L., Ehrhart, S., Kürten, A., Adamov, A., Bianchi, F., Breitenlechner, M., … Curtius, J. (2016). Effect of dimethylamine on the gas phase sulfuric acid concentration measured by chemical ionization mass spectrometry. Journal of Geophysical Research D: Atmospheres, 121(6), 3036-3049. https://doi.org/10.1002/2015JD023868
Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry
Simon, M., Heinritzi, M., Herzog, S., Leiminger, M., Bianchi, F., Praplan, A., … Kürten, A. (2016). Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry. Atmospheric Measurement Techniques, 9(5), 2135-2145. https://doi.org/10.5194/amt-9-2135-2016
Experimental investigation of ion-ion recombination under atmospheric conditions
Franchin, A., Ehrhart, S., Leppä, J., Nieminen, T., Gagné, S., Schobesberger, S., … Kulmala, M. (2015). Experimental investigation of ion-ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 15(13), 7203-7216. https://doi.org/10.5194/acp-15-7203-2015
Thermodynamics of the formation of sulfuric acid dimers in the binary (H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O) and ternary (H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O-NH<sub&gt
Kürten, A., Münch, S., Rondo, L., Bianchi, F., Duplissy, J., Jokinen, T., … Curtius, J. (2015). Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system. Atmospheric Chemistry and Physics, 15(18), 10701-10721. https://doi.org/10.5194/acp-15-10701-2015
On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation
Schobesberger, S., Franchin, A., Bianchi, F., Rondo, L., Duplissy, J., Kürten, A., … Worsnop, D. R. (2015). On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 15(1), 55-78. https://doi.org/10.5194/acp-15-55-2015
Fast and precise measurement in the sub-20nm size range using a scanning mobility particle sizer
Tröstl, J., Tritscher, T., Bischof, O. F., Horn, H. G., Krinke, T., Baltensperger, U., & Gysel, M. (2015). Fast and precise measurement in the sub-20nm size range using a scanning mobility particle sizer. Journal of Aerosol Science, 87, 75-87. https://doi.org/10.1016/j.jaerosci.2015.04.001
Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters
Bianchi, F., Praplan, A. P., Sarnela, N., Dommen, J., Kürten, A., Ortega, I. K., … Baltensperger, U. (2014). Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters. Environmental Science and Technology, 48(23), 13675-13684. https://doi.org/10.1021/es502380b
Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions
Kürten, A., Jokinen, T., Simon, M., Sipilä, M., Sarnela, N., Junninen, H., … Curtius, J. (2014). Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America PNAS, 111(42), 15019-15024. https://doi.org/10.1073/pnas.1404853111