Active Filters

  • (-) PSI Divisions = Biology and Chemistry BIO
  • (-) Publication Year = 2019 - 2019
Search Results 1 - 17 of 17
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Long-wavelength native-SAD phasing: opportunities and challenges
Basu, S., Olieric, V., Leonarski, F., Matsugaki, N., Kawano, Y., Takashi, T., … Wang, M. (2019). Long-wavelength native-SAD phasing: opportunities and challenges. IUCrJ, 6(3), 1-14. https://doi.org/10.1107/S2052252519002756
Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents
Brindisi, M., Ulivieri, C., Alfano, G., Gemma, S., de Asís Balaguer, F., Khan, T., … Brogi, S. (2019). Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 162, 290-320. https://doi.org/10.1016/j.ejmech.2018.11.004
Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography
Górzny, M. Ł., Opara, N. L., Guzenko, V. A., Cadarso, V. J., Schift, H., Li, X. D., & Padeste, C. (2019). Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography. Micro and Nano Engineering, 3, 31-36. https://doi.org/10.1016/j.mne.2019.03.002
Arrestin-1 engineering facilitates complex stabilization with native rhodopsin
Haider, R. S., Wilhelm, F., Rizk, A., Mutt, E., Deupi, X., Peterhans, C., … Ostermaier, M. K. (2019). Arrestin-1 engineering facilitates complex stabilization with native rhodopsin. Scientific Reports, 9(1), 439. https://doi.org/10.1038/s41598-018-36881-4
Heavy atom labeling enables silanol defect visualization in silicalite-1 crystals
Li, T., Krumeich, F., Ihli, J., Ma, Z., Ishikawa, T., Pinar, A. B., & van Bokhoven, J. A. (2019). Heavy atom labeling enables silanol defect visualization in silicalite-1 crystals. Chemical Communications, 55(4), 482-485. https://doi.org/10.1039/c8cc07912a
Femtosecond phase-transition in hard x-ray excited bismuth
Makita, M., Vartiainen, I., Mohacsi, I., Caleman, C., Diaz, A., Jönsson, H. O., … David, C. (2019). Femtosecond phase-transition in hard x-ray excited bismuth. Scientific Reports, 9(1), 602 (7 pp.). https://doi.org/10.1038/s41598-018-36216-3
Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation
Mayer, D., Damberger, F. F., Samarasimhareddy, M., Feldmueller, M., Vuckovic, Z., Flock, T., … Veprintsev, D. B. (2019). Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nature Communications, 10, 1261 (14 pp.). https://doi.org/10.1038/s41467-019-09204-y
Supramolecular architectures of molecularly thin yet robust free-standing layers
Moradi, M., Opara, N. L., Tulli, L. G., Wäckerlin, C., Dalgarno, S. J., Teat, S. J., … Shahgaldian, P. (2019). Supramolecular architectures of molecularly thin yet robust free-standing layers. Science Advances, 5(2), eaav4489. https://doi.org/10.1126/sciadv.aav4489
An online resource for GPCR structure determination and analysis
Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M., Flock, T., … Gloriam, D. E. (2019). An online resource for GPCR structure determination and analysis. Nature Methods, 16(2), 151-162. https://doi.org/10.1038/s41592-018-0302-x
The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation
Nagata, T., Koyanagi, M., Tsukamoto, H., Mutt, E., Schertler, G. F. X., Deupi, X., & Terakita, A. (2019). The counterion–retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation. Communications Biology, 2, 180 (9). https://doi.org/10.1038/s42003-019-0409-3
Nuclear Pore Membrane Proteins Self-Assemble into Nanopores
Panatala, R., Barbato, S., Kozai, T., Luo, J., Kapinos, L. E., & Lim, R. Y. H. (2019). Nuclear Pore Membrane Proteins Self-Assemble into Nanopores. Biochemistry, 58, 484. https://doi.org/10.1021/acs.biochem.8b01179
Elucidating the Structure-Activity Relationship of the Pentaglutamic Acid Sequence of Minigastrin with Cholecystokinin Receptor Subtype 2
Ritler, A., Shoshan, M. S., Deupi, X., Wilhelm, P., Schibli, R., Wennemers, H., & Béhé, M. (2019). Elucidating the Structure-Activity Relationship of the Pentaglutamic Acid Sequence of Minigastrin with Cholecystokinin Receptor Subtype 2. Bioconjugate Chemistry, 30(3), 657-666. https://doi.org/10.1021/acs.bioconjchem.8b00849
Assessment of the SCC mitigation capabilities of the NobleChem<sup>TM</sup> technology in simulated BWR environment
Ritter, S., Grundler, P. V., & Rowthu, S. (2019). Assessment of the SCC mitigation capabilities of the NobleChemTM technology in simulated BWR environment. S. Ritter (Ed.), . Presented at the International cooperative group on environmentally-assisted cracking of water reactor materials. ICG-EAC Annual meeting 2019. Tainan, Taiwan.
Tetrahydroisoquinoline Sulfamates as Potent Microtubule Disruptors: Synthesis, Antiproliferative and Antitubulin Activity of Dichlorobenzyl-Based Derivatives, and a Tubulin Cocrystal Structure.
Steinmetz, M. O. (2019). Tetrahydroisoquinoline Sulfamates as Potent Microtubule Disruptors: Synthesis, Antiproliferative and Antitubulin Activity of Dichlorobenzyl-Based Derivatives, and a Tubulin Cocrystal Structure. ACS Omega, 4, 755.
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the Gβ subunit
Tsai, C. J., Marino, J., Adaixo, R., Pamula, F., Mühle, J., Maeda, S., … Schertler, G. (2019). Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the Gβ subunit. eLife. https://doi.org/10.7554/eLife.46041
Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR
Varma, N., Mutt, E., Mühle, J., Panneels, V., Terakita, A., Deupi, X., … Lesca, E. (2019). Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proceedings of the National Academy of Sciences of the United States of America PNAS. https://doi.org/10.1073/pnas.1902192116
Crystal structure of the cyclostreptin-tubulin adduct: implications for tubulin activation by taxane-site ligands
de Asís Balaguer, F., Mühlethaler, T., Estévez-Gallego, J., Calvo, E., Giménez-Abián, J., Risinger, A. L., … Díaz, J. F. (2019). Crystal structure of the cyclostreptin-tubulin adduct: implications for tubulin activation by taxane-site ligands. International Journal of Molecular Sciences, 20(6), 1392 (17 pp.). https://doi.org/10.3390/ijms20061392