Active Filters

  • (-) PSI Divisions = Large Research Facilities GFA
  • (-) Publication Year = 2006 - 2018
  • (-) PSI Laboratories ≠ Center for Proton Therapy CPT
  • (-) PSI Laboratories = Accelerator Technology ABT
Search Results 1 - 20 of 47
Select Page
Solid deuterium surface degradation at ultracold neutron sources
Anghel, A., Bailey, T. L., Bison, G., Blau, B., Broussard, L. J., Clayton, S. M., … Zsigmond, G. (2018). Solid deuterium surface degradation at ultracold neutron sources. European Physical Journal A: Hadrons and Nuclei, 54(9), 148 (15 pp.). https://doi.org/10.1140/epja/i2018-12594-2
The ultracold neutron source at the Paul Scherrer Institute - performance and status
Anghel, A., Bison, G., Blau, B., Daum, M., Hild, N., Kirch, K., … Zsigmond, G. (2018). The ultracold neutron source at the Paul Scherrer Institute - performance and status. Journal of Neutron Research, 20(4), 83-86. https://doi.org/10.3233/JNR-180086
Electromechanical design of a 16-T CCT twin-aperture dipole for FCC
Auchmann, B., Brouwer, L., Caspi, S., Gao, J., Montenero, G., Negrazus, M., … Sanfilippo, S. (2018). Electromechanical design of a 16-T CCT twin-aperture dipole for FCC. IEEE Transactions on Applied Superconductivity, 28(3), 4000705 (5 pp.). https://doi.org/10.1109/TASC.2017.2772898
Beam manipulation using self-induced fields in the SwissFel injector
Bettoni, S., Craievich, P., Ganter, R., Heimgartner, P., Joehri, H., Marcellini, F., & Reiche, S. (2018). Beam manipulation using self-induced fields in the SwissFel injector. In S. Koscielniak, T. Satogata, V. R. W. Schaa, & J. Thomson (Eds.), International particle accelerator conference: Vol. 9. Proceedings of the 9th international particle accelerator conference (pp. 3401-3404). https://doi.org/10.18429/JACoW-IPAC2018-THPAK074
Low energy dark current collimation system in single-pass linacs
Bettoni, S., Craievich, P., Pedrozzi, M., Schaer, M., & Stingelin, L. (2018). Low energy dark current collimation system in single-pass linacs. Physical Review Accelerators and Beams, 21(2), 023401 (13 pp.). https://doi.org/10.1103/PhysRevAccelBeams.21.023401
Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N<sub>2</sub>, and CO<sub>2</sub>
Binninger, T., Pribyl, B., Pătru, A., Ruettimann, P., Bjelić, S., & Schmidt, T. J. (2018). Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N2, and CO2. Journal of Mass Spectrometry, 53(12), 1214-1221. https://doi.org/10.1002/jms.4299
High resolution analysis of the FTIR spectra of trifluoroamine NF<sub>3</sub>
Bolotova, I. B., Ulenikov, O. N., Bekhtereva, E. S., Albert, S., Bauerecker, S., Hollenstein, H., … Wokaun, A. (2018). High resolution analysis of the FTIR spectra of trifluoroamine NF3. Journal of Molecular Spectroscopy, 348, 87-102. https://doi.org/10.1016/j.jms.2018.04.004
A 2-D finite-element model for electrothermal transients in accelerator magnets
Bortot, L., Auchmann, B., Cortes Garcia, I., Fernandez Navarro, A. M., Maciejewski, M., Prioli, M., … Verweij, A. P. (2018). A 2-D finite-element model for electrothermal transients in accelerator magnets. IEEE Transactions on Magnetics, 54(3), 7000404 (4 pp.). https://doi.org/10.1109/TMAG.2017.2748390
STEAM: a hierarchical cosimulation framework for superconducting accelerator magnet circuits
Bortot, L., Auchmann, B., Cortes Garcia, I., Fernandez Navarro, A. M., Maciejewski, M., Mentink, M., … Verweij, A. P. (2018). STEAM: a hierarchical cosimulation framework for superconducting accelerator magnet circuits. IEEE Transactions on Applied Superconductivity, 28(3), 4900706 (6 pp.). https://doi.org/10.1109/TASC.2017.2787665
Analysis of losses in superconducting magnets based on the Nb&lt;sub&gt;3&lt;/sub&gt;Sn Rutherford cable configuration for future gantries
Breschi, M., Cavallucci, L., Ribani, P. L., Calzolaio, C., & Sanfilippo, S. (2018). Analysis of losses in superconducting magnets based on the Nb3Sn Rutherford cable configuration for future gantries. Superconductor Science and Technology, 31(1), 015005 (12 pp.). https://doi.org/10.1088/1361-6668/aa95fd
Consolidation and extension of the high-gradient LINAC RF technology at PSI
Craievich, P., Bopp, M., Braun, H., Citterio, A., Fitze, H., Garvey, T., … Zennaro, R. (2018). Consolidation and extension of the high-gradient LINAC RF technology at PSI. In G. Pei, Y. H. Chin, S. Fu, V. R. W. Schaa, & N. Zhao (Eds.), Linear accelerator conference: Vol. 29. Proceedings of the 29th linear accelerator conference (pp. 937-940). https://doi.org/10.18429/JACoW-LINAC2018-THPO115
Status of the PolariX-TDS project
Craievich, P., Bopp, M., Braun, H., Ganter, R., Kleeb, T., Pedrozzi, M., … de Z. Wagner, A. (2018). Status of the PolariX-TDS project. In S. Koscielniak, T. Satogata, V. R. W. Schaa, & J. Thomson (Eds.), International particle accelerator conference: Vol. 9. Proceedings of the 9th international particle accelerator conference (pp. 3808-3811). https://doi.org/10.18429/JACoW-IPAC2018-THPAL068
SwissFEL LINAC commissioning status, current performance and future plans
Craievich, P. (2018). SwissFEL LINAC commissioning status, current performance and future plans. In G. Pei, Y. H. Chin, S. Fu, V. R. W. Schaa, & N. Zhao (Eds.), Linear accelerator conference: Vol. 29. Proceedings of the 29th linear accelerator conference (pp. 605-608). https://doi.org/10.18429/JACoW-LINAC2018-WE1A05
Linac booster for high energy proton therapy and imaging
Degiovanni, A., Amaldi, U., Lomax, A. J., Schippers, J. M., Stingelin, L., & Bilbao de Mendizabal, J. (2018). Linac booster for high energy proton therapy and imaging. Physical Review Accelerators and Beams, 21(6), 064701 (7 pp.). https://doi.org/10.1103/PhysRevAccelBeams.21.064701
Conceptual design for SLS-2
Dehler, M., Streun, A., Citterio, A., Garvey, T., Hahn, M., Schulz, L., … Vranković, V. (2018). Conceptual design for SLS-2. In Y. H. Chin, Z. Zhao, C. Petit-Jean-Genaz, & V. R. W. Schaa (Eds.), ICFA advanced beam dynamics workshop: Vol. 60. Proceedings of the 60th ICFA advanced beam dynamics workshop on future light sources (pp. 150-153). https://doi.org/10.18429/JACoW-FLS2018-WEP2PT038
Simulation of a quench event in the upgraded High-Luminosity LHC main dipole circuit including the 11 T Nb&lt;sub&gt;3&lt;/sub&gt;Sn dipole magnets
Fernandez Navarro, A. M., Maciejewski, M., Verweij, A. P., Bortot, L., Mentink, M., Prioli, M., … Yammine, S. (2018). Simulation of a quench event in the upgraded High-Luminosity LHC main dipole circuit including the 11 T Nb3Sn dipole magnets. IEEE Transactions on Applied Superconductivity, 28(4), 4702605 (5 pp.). https://doi.org/10.1109/TASC.2018.2807181
The ACHIP experimental chambers at the Paul Scherrer Institut
Ferrari, E., Ischebeck, R., Bednarzik, M., Bettoni, S., Borrelli, S., Braun, H. H., … Rivkin, L. (2018). The ACHIP experimental chambers at the Paul Scherrer Institut. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 907, 244-247. https://doi.org/10.1016/j.nima.2018.02.112
Overview of the soft x-ray line Athos at SwissFEL
Ganter, R., Bettoni, S., Braun, H. H., Calvi, M., Craievich, P., Follath, R., … Zandonella, A. (2018). Overview of the soft x-ray line Athos at SwissFEL. In K. Bishofberger, C. Bruce, & V. R. W. Schaa (Eds.), Proceedings of the 38th international free-electron laser conference (pp. 125-128). https://doi.org/10.18429/JACoW-FEL2017-MOP038
Beam-based optimization of SwissFEL low-level RF system
Geng, Z. Q. (2018). Beam-based optimization of SwissFEL low-level RF system. Nuclear Science and Techniques, 29(9), 128 (8 pp.). https://doi.org/10.1007/s41365-018-0460-7
Development of the new UE38 undulator for the Athos beamline in SwissFEL
Joehri, H., Calvi, M., Hindermann, M., Huber, L., Keller, A., Locher, M., … Zandonella, A. (2018). Development of the new UE38 undulator for the Athos beamline in SwissFEL. In V. R. W. Schaa, K. Tavakoli, & M. Tilmont (Eds.), Mechanical engineering design of synchrotron radiation equipment and instrumentation: Vol. 10. Proceedings of the 10th mechanical engineering design of synchrotron radiation equipment and instrumentation (p. TUOPMA03 (5 pp.). https://doi.org/10.18429/JACoW-MEDSI2018-TUOPMA03