Active Filters

  • (-) PSI Divisions = Paul Scherrer Institute PSI
  • (-) Publication Year = 2020
  • (-) PSI Authors ≠ Nenoff, Lena
Search Results 1 - 20 of 69

Pages

  • RSS Feed
Select Page
Measurement of the permanent electric dipole moment of the neutron
Abel, C., Afach, S., Ayres, N. J., Baker, C. A., Ban, G., Bison, G., … Zsigmond, G. (2020). Measurement of the permanent electric dipole moment of the neutron. Physical Review Letters, 124(8), 081803 (7 pp.). https://doi.org/10.1103/PhysRevLett.124.081803
Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment
Abel, C., Afach, S., Ayres, N. J., Ban, G., Bison, G., Bodek, K., … Zsigmond, G. (2020). Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment. Physical Review A, 101(5), 053419 (17 pp.). https://doi.org/10.1103/PhysRevA.101.053419
Multiple magnetic bilayers and unconventional criticality without frustration in BaCuSi<sub>2</sub>O<sub>6</sub>
Allenspach, S., Biffin, A., Stuhr, U., Tucker, G. S., Ohira-Kawamura, S., Kofu, M., … Rüegg, C. (2020). Multiple magnetic bilayers and unconventional criticality without frustration in BaCuSi2O6. Physical Review Letters, 124(17), 177205 (7 pp.). https://doi.org/10.1103/PhysRevLett.124.177205
Dosimetric analysis of local failures in skull-base chordoma and chondrosarcoma following pencil beam scanning proton therapy
Basler, L., Poel, R., Schröder, C., Bolsi, A., Lomax, A., Tanadini-Lang, S., … Weber, D. C. (2020). Dosimetric analysis of local failures in skull-base chordoma and chondrosarcoma following pencil beam scanning proton therapy. Radiation Oncology, 15(1), 266 (10 pp.). https://doi.org/10.1186/s13014-020-01711-3
Outcomes, prognostic factors and salvage treatment for recurrent chordoma after pencil beam scanning proton therapy at the Paul Scherrer Institute
Beer, J., Kountouri, M., Kole, A. J., Murray, F. R., Leiser, D., Kliebsch, U., … Weber, D. C. (2020). Outcomes, prognostic factors and salvage treatment for recurrent chordoma after pencil beam scanning proton therapy at the Paul Scherrer Institute. Clinical Oncology, 32(8), 537-544. https://doi.org/10.1016/j.clon.2020.03.002
Impact of laser stacking and photocathode materials on microbunching stability in photoinjectors
Bettoni, S., Csatari Divall, M., Ganter, R., Pedrozzi, M., Prat, E., Reiche, S., … Goryashko, V. (2020). Impact of laser stacking and photocathode materials on microbunching stability in photoinjectors. Physical Review Accelerators and Beams, 23(2), 024401 (11 pp.). https://doi.org/10.1103/PhysRevAccelBeams.23.024401
Optimal CT protocols for CT-guided planning preparation in radiotherapy
Bolsi, A., & Placidi, L. (2020). Optimal CT protocols for CT-guided planning preparation in radiotherapy. In R. G. H. Beets-Tan, W. J. G. Oyen, & V. Valentini (Eds.), Medical radiology. Imaging and interventional radiology for radiation oncology (pp. 27-45). https://doi.org/10.1007/978-3-030-38261-2_3
Pencil beam scanning proton therapy for the treatment of craniopharyngioma complicated with radiation-induced cerebral vasculopathies: a dosimetric and linear energy transfer (LET) evaluation
Bolsi, A., Placidi, L., Pica, A., Ahlhelm, F. J., Walser, M., Lomax, A. J., & Weber, D. C. (2020). Pencil beam scanning proton therapy for the treatment of craniopharyngioma complicated with radiation-induced cerebral vasculopathies: a dosimetric and linear energy transfer (LET) evaluation. Radiotherapy and Oncology, 149, 197-204. https://doi.org/10.1016/j.radonc.2020.04.052
From medical imaging to radiomics: role of data science for advancing precision health
Capobianco, E., & Dominietto, M. (2020). From medical imaging to radiomics: role of data science for advancing precision health. Journal of Personalized Medicine, 10(1), 15 (13 pp.). https://doi.org/10.3390/jpm10010015
Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy
Colvill, E., Krieger, M., Bosshard, P., Steinacher, P., Rohrer Schnidrig, B. A., Parkel, T., … Fattori, G. (2020). Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy. Physics in Medicine and Biology, 65(7), 07NT02 (10 pp.). https://doi.org/10.1088/1361-6560/ab7508
A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator
Decking, W., Abeghyan, S., Abramian, P., Abramsky, A., Aguirre, A., Albrecht, C., … Zybin, D. (2020). A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nature Photonics, 14(6), 391-397. https://doi.org/10.1038/s41566-020-0607-z
Role of complex networks for integrating medical images and radiomic features of intracranial ependymoma patients in response to proton radiotherapy
Dominietto, M., Pica, A., Safai, S., Lomax, A. J., Weber, D. C., & Capobianco, E. (2020). Role of complex networks for integrating medical images and radiomic features of intracranial ependymoma patients in response to proton radiotherapy. Frontiers in Medicine, 6, 333 (13 pp.). https://doi.org/10.3389/fmed.2019.00333
A GATE/Geant4 beam model for the MedAustron non-isocentric proton treatment plans quality assurance
Elia, A., Resch, A. F., Carlino, A., Böhlen, T. T., Fuchs, H., Palmans, H., … Grevillot, L. (2020). A GATE/Geant4 beam model for the MedAustron non-isocentric proton treatment plans quality assurance. Physica Medica, 71, 115-123. https://doi.org/10.1016/j.ejmp.2020.02.006
The potential of Gantry beamline large momentum acceptance for real time tumour tracking in pencil beam scanning proton therapy
Fattori, G., Zhang, Y., Meer, D., Weber, D. C., Lomax, A. J., & Safai, S. (2020). The potential of Gantry beamline large momentum acceptance for real time tumour tracking in pencil beam scanning proton therapy. Scientific Reports, 10(1), 15325 (13 pp.). https://doi.org/10.1038/s41598-020-71821-1
Crystal electric field excitations in the quantum spin liquid candidate NaErS<sub>2</sub>
Gao, S., Xiao, F., Kamazawa, K., Ikeuchi, K., Biner, D., Krämer, K. W., … Arima, T. H. (2020). Crystal electric field excitations in the quantum spin liquid candidate NaErS2. Physical Review B, 102(2), 024424 (7 pp.). https://doi.org/10.1103/PhysRevB.102.024424
Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings
Gao, S., Rosales, H. D., Gómez Albarracín, F. A., Tsurkan, V., Kaur, G., Fennell, T., … Zaharko, O. (2020). Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. Nature, 586, 37-41. https://doi.org/10.1038/s41586-020-2716-8
Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities
Gerlach, S., Pinto, M., Kurichiyanil, N., Grau, C., Hérault, J., Hillbrand, M., … Parodi, K. (2020). Beam characterization and feasibility study for a small animal irradiation platform at clinical proton therapy facilities. Physics in Medicine and Biology, 65(24), 245045 (18 pp.). https://doi.org/10.1088/1361-6560/abc832
Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy
Giger, A., Krieger, M., Jud, C., Duetschler, A., Salomir, R., Bieri, O., … Cattin, P. C. (2020). Liver-ultrasound based motion modelling to estimate 4D dose distributions for lung tumours in scanned proton therapy. Physics in Medicine and Biology, 65(23), 235050 (12 pp.). https://doi.org/10.1088/1361-6560/abaa26
Ultrafast laser spectral reshaping and carrier-frequency control by intense terahertz fields in electro-optic materials
Giorgianni, F., Puc, U., Jazbinsek, M., Koo, M. J., Han, J. H., Kwon, O. P., & Vicario, C. (2020). Ultrafast laser spectral reshaping and carrier-frequency control by intense terahertz fields in electro-optic materials. In International conference on ultrafast phenomena. Conference proceedings 2000-2020: Vol. 22. International conference on ultrafast phenomena (p. Tu4B.3 (3 pp.). https://doi.org/10.1364/UP.2020.Tu4B.3
Particle therapy in Europe
Grau, C., Durante, M., Georg, D., Langendijk, J. A., & Weber, D. C. (2020). Particle therapy in Europe. Molecular Oncology, 14(7), 1492-1499. https://doi.org/10.1002/1878-0261.12677
 

Pages