Active Filters

  • (-) PSI Authors = Tsai, Ching-Ju
Search Results 1 - 20 of 26
Select Page
Activating an invertebrate bistable opsin with the all-trans 6.11 retinal analog
Rodrigues, M. J., Tejero, O., Mühle, J., Pamula, F., Das, I., Tsai, C. J., … Schertler, G. F. X. (2024). Activating an invertebrate bistable opsin with the all-trans 6.11 retinal analog. Proceedings of the National Academy of Sciences of the United States of America PNAS, 121(31), e2406814121 (3 pp.). https://doi.org/10.1073/pnas.2406814121
Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region
Emmenegger, M., De Cecco, E., Lamparter, D., Jacquat, R. P. B., Riou, J., Menges, D., … Aguzzi, A. (2023). Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region. iScience, 26(2), 105928 (34 pp.). https://doi.org/10.1016/j.isci.2023.105928
Ultrafast structural changes direct the first molecular events of vision
Gruhl, T., Weinert, T., Rodrigues, M. J., Milne, C. J., Ortolani, G., Nass, K., … Panneels, V. (2023). Ultrafast structural changes direct the first molecular events of vision. Nature, 615, 939-944. https://doi.org/10.1038/s41586-023-05863-6
Preparation of a stable CCL5·CCR5·G<sub>i</sub> signaling complex for cryo-EM analysis
Isaikina, P., Tsai, C. J., Petrovic, I., Rogowski, M., Meng Dürr, A., & Grzesiek, S. (2022). Preparation of a stable CCL5·CCR5·Gi signaling complex for cryo-EM analysis. In A. K. Shukla (Ed.), Methods in cell biology: Vol. 169. Biomolecular interactions part B (pp. 115-141). https://doi.org/10.1016/bs.mcb.2022.03.001
Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist
Isaikina, P., Tsai, C. J., Dietz, N., Pamula, F., Grahl, A., Goldie, K. N., … Grzesiek, S. (2021). Structural basis of the activation of the CC chemokine receptor 5 by a chemokine agonist. Science Advances, 7(25), eabg8685 (11 pp.). https://doi.org/10.1126/sciadv.abg8685
Versatile microporous polymer-based supports for serial macromolecular crystallography
Martiel, I., Beale, J. H., Karpik, A., Huang, C. Y., Vera, L., Olieric, N., … Padeste, C. (2021). Versatile microporous polymer-based supports for serial macromolecular crystallography. Acta Crystallographica Section D: Structural Biology, 77(9), 1153-1167. https://doi.org/10.1107/S2059798321007324
Biochemical characterization of GPCR-G protein complex formation
Pamula, F., & Tsai, C. J. (2021). Biochemical characterization of GPCR-G protein complex formation. In I. Schmidt-Krey & J. C. Gumbart (Eds.), Methods in molecular biology: Vol. 2302. Structure and function of membrane proteins (pp. 37-48). https://doi.org/10.1007/978-1-0716-1394-8_3
High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs
Wu, N., Olechwier, A. M., Brunner, C., Edwards, P. C., Tsai, C. J., Tate, C. G., … Ma, P. (2021). High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs. Proceedings of the National Academy of Sciences of the United States of America PNAS, 118(31), e2024146118 (9 pp.). https://doi.org/10.1073/pnas.2024146118
Strategic screening and characterization of the visual GPCR-mini-G protein signaling complex for successful crystallization
Pamula, F., Mühle, J., Blanc, A., Nehmé, R., Edwards, P. C., Tate, C. G., & Tsai, C. J. (2020). Strategic screening and characterization of the visual GPCR-mini-G protein signaling complex for successful crystallization. Journal of Visualized Experiments, 2020(157), e60747 (10 pp.). https://doi.org/10.3791/60747
GPCR activation states induced by nanobodies and mini-G proteins compared by NMR spectroscopy
Rößler, P., Mayer, D., Tsai, C. J., Veprintsev, D. B., Schertler, G. F. X., & Gossert, A. D. (2020). GPCR activation states induced by nanobodies and mini-G proteins compared by NMR spectroscopy. Molecules, 25(24), 5984 (17 pp.). https://doi.org/10.3390/molecules25245984
Membrane protein crystallization
Tsai, C. J., & Schertler, G. F. X. (2020). Membrane protein crystallization. In J. P. Renaud (Ed.), Structural biology in drug discovery. Methods, techniques, and practices (pp. 187-210). https://doi.org/10.1002/9781118681121.ch9
Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Nass, K., Barty, A., Hunter, M. S., Padeste, C., Tsai, C. J., … Pedrini, B. (2019). Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 6, 34-45. https://doi.org/10.1107/S2052252518014641
Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit
Tsai, C. J., Marino, J., Adaixo, R., Pamula, F., Muehle, J., Maeda, S., … Schertler, G. (2019). Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. eLife, 8, e46041 (19 pp.). https://doi.org/10.7554/eLife.46041
Emerging two-dimensional crystallization of cucurbit[8]uril complexes: from supramolecular polymers to nanofibers
del Barrio, J., Liu, J., Brady, R. A., Tan, C. S. Y., Chiodini, S., Ricci, M., … Scherman, O. A. (2019). Emerging two-dimensional crystallization of cucurbit[8]uril complexes: from supramolecular polymers to nanofibers. Journal of the American Chemical Society, 141(36), 14021-14025. https://doi.org/10.1021/jacs.9b07506
Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Tsai, C. J., Barty, A., Hunter, M. S., Zatsepin, N. A., Padeste, C., … Frank, M. (2018). Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 5(1), 103-117. https://doi.org/10.1107/S2052252517017043
Crystal structure of rhodopsin in complex with a mini-G<sub>o</sub> sheds light on the principles of G protein selectivity
Tsai, C. J., Pamula, F., Nehmé, R., Mühle, J., Weinert, T., Flock, T., … Schertler, G. F. X. (2018). Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Science Advances, 4(9), aat7052 (9 pp.). https://doi.org/10.1126/sciadv.aat7052
Structural biology: signalling under the microscope
Tsai, C. J., & Standfuss, J. (2017). Structural biology: signalling under the microscope. Nature, 546(7656), 36-37. https://doi.org/10.1038/nature22491
Backbone NMR reveals allosteric signal transduction networks in the β<sub>1</sub>-adrenergic receptor
Isogai, S., Deupi, X., Opitz, C., Heydenreich, F. M., Tsai, C. J., Brueckner, F., … Grzesiek, S. (2016). Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature, 530(7589), 237-241. https://doi.org/10.1038/nature16577
Low-&lt;em&gt;Z&lt;/em&gt; polymer sample supports for fixed-target serial femtosecond X-ray crystallography
Feld, G. K., Heymann, M., Benner, W. H., Pardini, T., Tsai, C. J., Boutet, S., … Frank, M. (2015). Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography. Journal of Applied Crystallography, 48, 1072-1079. https://doi.org/10.1107/S1600576715010493
Time-resolved structural studies with serial crystallography: a new light on retinal proteins
Panneels, V., Wu, W., Tsai, C. J., Nogly, P., Rheinberger, J., Jaeger, K., … Schertler, G. (2015). Time-resolved structural studies with serial crystallography: a new light on retinal proteins. Structural Dynamics, 2(4), 041718 (8 pp.). https://doi.org/10.1063/1.4922774