| Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries
Höltschi, L., Borca, C. N., Huthwelker, T., Marone, F., Schlepütz, C. M., Pelé, V., … Novák, P. (2021). Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 389, 138735 (10 pp.). https://doi.org/10.1016/j.electacta.2021.138735 |
| Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes
Bargardi, F. L., Billaud, J., Villevieille, C., Bouville, F., & Studart, A. R. (2020). Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes. Scientific Reports, 10(1), 12401 (10 pp.). https://doi.org/10.1038/s41598-020-69141-5 |
| Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries
Ferraresi, G., Uhlenbruck, S., Tsai, C. L., Novák, P., & Villevieille, C. (2020). Engineering of Sn and pre-lithiated Sn as negative electrode materials coupled to garnet Ta-LLZO solid electrolyte for all-solid‐state Li batteries. Batteries and Supercaps, 3(6), 557-565. https://doi.org/10.1002/batt.201900173 |
| Study of graphite cycling in sulfide solid electrolytes
Höltschi, L., Jud, F., Borca, C., Huthwelker, T., Villevieille, C., Pelé, V., … Novák, P. (2020). Study of graphite cycling in sulfide solid electrolytes. Journal of the Electrochemical Society, 167(11), 110558 (10 pp.). https://doi.org/10.1149/1945-7111/aba36f |
| The solid-state Li-ion conductor Li<sub>7</sub>TaO<sub>6</sub>: a combined computational and experimental study
Kahle, L., Cheng, X., Binninger, T., Lacey, S. D., Marcolongo, A., Zipoli, F., … Pergolesi, D. (2020). The solid-state Li-ion conductor Li7TaO6: a combined computational and experimental study. Solid State Ionics, 347, 115226 (11 pp.). https://doi.org/10.1016/j.ssi.2020.115226 |
| Insights into the chemical and electronic interface evolution of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> cycled in Li<sub>2</sub>S-P<sub>2</sub>S<sub>5</sub> enabled by <em>o
Wu, X., Villevieille, C., Novák, P., & El Kazzi, M. (2020). Insights into the chemical and electronic interface evolution of Li4Ti5O12 cycled in Li2S-P2S5 enabled by operando X-ray photoelectron spectroscopy. Journal of Materials Chemistry A, 8(10), 5138-5146. https://doi.org/10.1039/C9TA14147B |
| Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials
Billaud, J., Sheptyakov, D., Sallard, S., Leanza, D., Talianker, M., Grinblat, J., … Villevieille, C. (2019). Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials. Journal of Materials Chemistry A, 7(25), 15215-15224. https://doi.org/10.1039/C9TA00399A |
| Chitin and chitosan - structurally related precursors of dissimilar hard carbons for Na-ion battery
Conder, J., Vaulot, C., Marino, C., Villevieille, C., & Ghimbeu, C. M. (2019). Chitin and chitosan - structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Applied Energy Materials, 2(7), 4841-4852. https://doi.org/10.1021/acsaem.9b00545 |
| How reliable is the Na metal as a counter electrode in Na-ion half cells?
Conder, J., & Villevieille, C. (2019). How reliable is the Na metal as a counter electrode in Na-ion half cells? Chemical Communications, 55(9), 1275-1278. https://doi.org/10.1039/c8cc07852a |
| Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials
Tsai, E. H. R., Billaud, J., F. Sanchez, D., Ihli, J., Odstrčil, M., Holler, M., … Guizar-Sicairos, M. (2019). Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials. iScience, 11, 356-365. https://doi.org/10.1016/j.isci.2018.12.028 |
| Operando visualization of morphological dynamics in all‐solid‐state batteries
Wu, X., Billaud, J., Jerjen, I., Marone, F., Ishihara, Y., Adachi, M., … Kato, Y. (2019). Operando visualization of morphological dynamics in all‐solid‐state batteries. Advanced Energy Materials, 9(34), 1901547 (10 pp.). https://doi.org/10.1002/aenm.201901547 |
| Do imaging techniques add real value to the development of better post-Li-ion batteries?
Conder, J., Marino, C., Novák, P., & Villevieille, C. (2018). Do imaging techniques add real value to the development of better post-Li-ion batteries? Journal of Materials Chemistry A, 6(8), 3304-3327. https://doi.org/10.1039/c7ta10622j |
| Is the Li-S battery an everlasting challenge for <em>operando</em> techniques?
Conder, J., & Villevieille, C. (2018). Is the Li-S battery an everlasting challenge for operando techniques? Current Opinion in Electrochemistry, 9, 33-40. https://doi.org/10.1016/j.coelec.2018.03.029 |
| Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode
Ferraresi, G., El Kazzi, M., Czornomaz, L., Tsai, C. L., Uhlenbruck, S., & Villevieille, C. (2018). Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode. ACS Energy Letters, 3(4), 1006-1012. https://doi.org/10.1021/acsenergylett.8b00264 |
| SnO<sub>2</sub> model electrode cycled in Li-Ion battery reveals the formation of Li<sub>2</sub>SnO<sub>3</sub> and Li<sub>8</sub>SnO<sub>6</sub> phases through conversion reactions
Ferraresi, G., Villevieille, C., Czekaj, I., Horisberger, M., Novák, P., & El Kazzi, M. (2018). SnO2 model electrode cycled in Li-Ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions. ACS Applied Materials and Interfaces, 10(10), 8712-8720. https://doi.org/10.1021/acsami.7b19481 |
| Co-Free P2–Na<sub>0.67</sub>Mn<sub>0.6</sub>Fe<sub>0.25</sub>Al<sub>0.15</sub>O<sub>2</sub> as promising cathode material for sodium-ion batteries
Marelli, E., Villevieille, C., Park, S., Hérault, N., & Marino, C. (2018). Co-Free P2–Na0.67Mn0.6Fe0.25Al0.15O2 as promising cathode material for sodium-ion batteries. ACS Applied Energy Materials, 1(11), 5960-5967. https://doi.org/10.1021/acsaem.8b01015 |
| Biowaste lignin-based carbonaceous materials as anodes for Na-ion batteries
Marino, C., Cabanero, J., Povia, M., & Villevieille, C. (2018). Biowaste lignin-based carbonaceous materials as anodes for Na-ion batteries. Journal of the Electrochemical Society, 165(7), A1400-A1408. https://doi.org/10.1149/2.0681807jes |
| Impact of water-based binder on the electrochemical performance of P2-Na<sub>0.67</sub>Mn<sub>0.6</sub>Fe<sub>0.25</sub>Co<sub>0.15</sub>O<sub>2</sub> electrodes in na-ion batteries
Marino, C., Marelli, E., Park, S., & Villevieille, C. (2018). Impact of water-based binder on the electrochemical performance of P2-Na0.67Mn0.6Fe0.25Co0.15O2 electrodes in na-ion batteries. Batteries, 4(4), 66 (12 pp.). https://doi.org/10.3390/batteries4040066 |
| Multiple redox couples cathode material for Li-ion battery: lithium chromium phosphate
Reichardt, M., Sallard, S., Marino, C., Sheptyakov, D., Novák, P., & Villevieille, C. (2018). Multiple redox couples cathode material for Li-ion battery: lithium chromium phosphate. Journal of Energy Storage, 15, 266-273. https://doi.org/10.1016/j.est.2017.12.001 |
| Phosphorus anionic redox activity revealed by <em>operando </em>P K-edge X-ray absorption spectroscopy on diphosphonate-based conversion materials in Li-ion batteries
Schmidt, S., Sallard, S., Borca, C., Huthwelker, T., Novák, P., & Villevieille, C. (2018). Phosphorus anionic redox activity revealed by operando P K-edge X-ray absorption spectroscopy on diphosphonate-based conversion materials in Li-ion batteries. Chemical Communications, 54(39), 4939-4942. https://doi.org/10.1039/c8cc01350k |